/* $NetBSD: acpi.c,v 1.8 2011/02/17 10:18:05 jmcneill Exp $ */ /*- * Copyright (c) 1998 Doug Rabson * Copyright (c) 2000 Mitsuru IWASAKI * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/usr.sbin/acpi/acpidump/acpi.c,v 1.37 2009/08/25 20:35:57 jhb Exp $ */ #include __RCSID("$NetBSD: acpi.c,v 1.8 2011/02/17 10:18:05 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpidump.h" #define BEGIN_COMMENT "/*\n" #define END_COMMENT " */\n" static void acpi_print_string(char *s, size_t length); static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas); static void acpi_print_pci(uint16_t vendorid, uint16_t deviceid, uint8_t seg, uint8_t bus, uint8_t device, uint8_t func); static void acpi_print_pci_sbfd(uint8_t seg, uint8_t bus, uint8_t device, uint8_t func); #ifdef notyet static void acpi_print_hest_generic_status(ACPI_HEST_GENERIC_STATUS *); static void acpi_print_hest_generic_data(ACPI_HEST_GENERIC_DATA *); #endif static void acpi_print_whea(ACPI_WHEA_HEADER *whea, void (*print_action)(ACPI_WHEA_HEADER *), void (*print_ins)(ACPI_WHEA_HEADER *), void (*print_flags)(ACPI_WHEA_HEADER *)); static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt); static void acpi_handle_fadt(ACPI_TABLE_HEADER *fadt); static void acpi_print_cpu(u_char cpu_id); static void acpi_print_cpu_uid(uint32_t uid, char *uid_string); static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags); static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr); static void acpi_print_mps_flags(uint16_t flags); static void acpi_print_intr(uint32_t intr, uint16_t mps_flags); static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags); static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp); static void acpi_handle_bert(ACPI_TABLE_HEADER *sdp); static void acpi_handle_boot(ACPI_TABLE_HEADER *sdp); static void acpi_handle_cpep(ACPI_TABLE_HEADER *sdp); static void acpi_handle_dbgp(ACPI_TABLE_HEADER *sdp); static void acpi_handle_einj(ACPI_TABLE_HEADER *sdp); static void acpi_handle_erst(ACPI_TABLE_HEADER *sdp); static void acpi_handle_hest(ACPI_TABLE_HEADER *sdp); static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_msct(ACPI_TABLE_HEADER *sdp); static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp); static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp); static void acpi_handle_sbst(ACPI_TABLE_HEADER *sdp); static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp); static void acpi_handle_spcr(ACPI_TABLE_HEADER *sdp); static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain, uint32_t flags, uint32_t clockdomain); static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp); static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat); static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp); static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp); static void acpi_handle_waet(ACPI_TABLE_HEADER *sdp); static void acpi_handle_wdat(ACPI_TABLE_HEADER *sdp); static void acpi_handle_wdrt(ACPI_TABLE_HEADER *sdp); static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp); static void acpi_dump_bytes(ACPI_TABLE_HEADER *sdp); static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp); static void acpi_print_facs(ACPI_TABLE_FACS *facs); static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp); static ACPI_TABLE_HEADER *acpi_map_sdt(vm_offset_t pa); static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp); static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp); static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_SUBTABLE_HEADER *)); /* Size of an address. 32-bit for ACPI 1.0, 64-bit for ACPI 2.0 and up. */ static int addr_size; static void acpi_print_string(char *s, size_t length) { int c; /* Trim trailing spaces and NULLs */ while (length > 0 && (s[length - 1] == ' ' || s[length - 1] == '\0')) length--; while (length--) { c = *s++; putchar(c); } } static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas) { switch(gas->SpaceId) { case ACPI_GAS_MEMORY: printf("0x%08lx:%u[%u] (Memory)", (u_long)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_IO: printf("0x%02lx:%u[%u] (IO)", (u_long)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_PCI: printf("%x:%x+0x%x (PCI)", (uint16_t)(gas->Address >> 32), (uint16_t)((gas->Address >> 16) & 0xffff), (uint16_t)gas->Address); break; /* XXX How to handle these below? */ case ACPI_GAS_EMBEDDED: printf("0x%x:%u[%u] (EC)", (uint16_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_SMBUS: printf("0x%x:%u[%u] (SMBus)", (uint16_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_CMOS: case ACPI_GAS_PCIBAR: case ACPI_GAS_DATATABLE: case ACPI_GAS_FIXED: default: printf("0x%08lx (?)", (u_long)gas->Address); break; } } static void acpi_print_pci(uint16_t vendorid, uint16_t deviceid, uint8_t seg, uint8_t bus, uint8_t device, uint8_t func) { if (vendorid == 0xffff && deviceid == 0xffff) { printf("\tPCI Device=NONE\n"); return; } printf("\tPCI device={\n"); printf("\t\tVendor=0x%x\n", vendorid); printf("\t\tDevice=0x%x\n", deviceid); printf("\n"); printf("\t\tSegment Group=%d\n", seg); printf("\t\tBus=%d\n", bus); printf("\t\tDevice=%d\n", device); printf("\t\tFunction=%d\n", func); printf("\t}\n"); } static void acpi_print_pci_sbfd(uint8_t seg, uint8_t bus, uint8_t device, uint8_t func) { if (bus == 0xff && device == 0xff && func == 0xff) { printf("\tPCI Device=NONE\n"); return; } printf("\tPCI device={\n"); printf("\t\tSegment Group=%d\n", seg); printf("\t\tBus=%d\n", bus); printf("\t\tDevice=%d\n", device); printf("\t\tFunction=%d\n", func); printf("\t}\n"); } #ifdef notyet static void acpi_print_hest_errorseverity(uint32_t error) { printf("\tError Severity={ "); switch (error) { case 0: printf("Recoverable"); break; case 1: printf("Fatal"); break; case 2: printf("Corrected"); break; case 3: printf("None"); break; default: printf("%d (reserved)", error); break; } printf("}\n"); } #endif static void acpi_print_hest_errorbank(ACPI_HEST_IA_ERROR_BANK *bank) { printf("\n"); printf("\tBank Number=%d\n", bank->BankNumber); printf("\tClear Status On Init={ %s }\n", bank->ClearStatusOnInit ? "NO" : "YES"); printf("\tStatus Data Format={ "); switch (bank->StatusFormat) { case 0: printf("IA32 MCA"); break; case 1: printf("EMT64 MCA"); break; case 2: printf("AMD64 MCA"); break; } printf(" }\n"); if (bank->ControlRegister) printf("\tControl Register=0x%x\n", bank->ControlRegister); printf("\tControl Init Data=0x%"PRIx64"\n", bank->ControlData); printf("\tStatus MSR=0x%x\n", bank->StatusRegister); printf("\tAddress MSR=0x%x\n", bank->AddressRegister); printf("\tMisc MSR=0x%x\n", bank->MiscRegister); } static void acpi_print_hest_header(ACPI_HEST_HEADER *hest) { printf("\tType={ "); switch (hest->Type) { case ACPI_HEST_TYPE_IA32_CHECK: printf("IA32 Machine Check Exception"); break; case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: printf("IA32 Corrected Machine Check\n"); break; case ACPI_HEST_TYPE_IA32_NMI: printf("IA32 Non-Maskable Interrupt\n"); break; case ACPI_HEST_TYPE_NOT_USED3: case ACPI_HEST_TYPE_NOT_USED4: case ACPI_HEST_TYPE_NOT_USED5: printf("unused type: %d\n", hest->Type); break; case ACPI_HEST_TYPE_AER_ROOT_PORT: printf("PCI Express Root Port AER\n"); break; case ACPI_HEST_TYPE_AER_ENDPOINT: printf("PCI Express Endpoint AER\n"); break; case ACPI_HEST_TYPE_AER_BRIDGE: printf("PCI Express/PCI-X Bridge AER\n"); break; case ACPI_HEST_TYPE_GENERIC_ERROR: printf("Generic Hardware Error Source\n"); break; case ACPI_HEST_TYPE_RESERVED: default: printf("Reserved\n"); break; } printf(" }\n"); printf("\tSourceId=%d\n", hest->SourceId); } static void acpi_print_hest_aer_common(ACPI_HEST_AER_COMMON *data) { printf("\tFlags={ "); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("FIRMWARE_FIRST"); if (data->Flags & ACPI_HEST_GLOBAL) printf("GLOBAL"); printf(" }\n"); printf("\tEnabled={ %s ", data->Flags ? "YES" : "NO"); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("(ignored) "); printf("}\n"); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax. Sections per Record=%d\n", data->MaxSectionsPerRecord); if (!(data->Flags & ACPI_HEST_GLOBAL)) acpi_print_pci_sbfd(0, data->Bus, data->Device, data->Function); printf("\tDevice Control=0x%x\n", data->DeviceControl); printf("\tUncorrectable Error Mask Register=0x%x\n", data->UncorrectableMask); printf("\tUncorrectable Error Severity Register=0x%x\n", data->UncorrectableSeverity); printf("\tCorrectable Error Mask Register=0x%x\n", data->CorrectableMask); printf("\tAdvanced Capabilities Register=0x%x\n", data->AdvancedCapabilities); } static void acpi_print_hest_notify(ACPI_HEST_NOTIFY *notify) { printf("\tHW Error Notification={\n"); printf("\t\tType={ "); switch (notify->Type) { case ACPI_HEST_NOTIFY_POLLED: printf("POLLED"); break; case ACPI_HEST_NOTIFY_EXTERNAL: printf("EXTERN"); break; case ACPI_HEST_NOTIFY_LOCAL: printf("LOCAL"); break; case ACPI_HEST_NOTIFY_SCI: printf("SCI"); break; case ACPI_HEST_NOTIFY_NMI: printf("NMI"); break; case ACPI_HEST_NOTIFY_RESERVED: printf("RESERVED"); break; default: printf(" %d (reserved)", notify->Type); break; } printf(" }\n"); printf("\t\tLength=%d\n", notify->Length); printf("\t\tConfig Write Enable={\n"); if (notify->ConfigWriteEnable & ACPI_HEST_TYPE) printf("TYPE"); if (notify->ConfigWriteEnable & ACPI_HEST_POLL_INTERVAL) printf("POLL INTERVAL"); if (notify->ConfigWriteEnable & ACPI_HEST_POLL_THRESHOLD_VALUE) printf("THRESHOLD VALUE"); if (notify->ConfigWriteEnable & ACPI_HEST_POLL_THRESHOLD_WINDOW) printf("THRESHOLD WINDOW"); if (notify->ConfigWriteEnable & ACPI_HEST_ERR_THRESHOLD_VALUE) printf("THRESHOLD VALUE"); if (notify->ConfigWriteEnable & ACPI_HEST_ERR_THRESHOLD_WINDOW) printf("THRESHOLD WINDOW"); printf("}\n"); printf("\t\tPoll Interval=%d msec\n", notify->PollInterval); printf("\t\tInterrupt Vector=%d\n", notify->Vector); printf("\t\tSwitch To Polling Threshold Value=%d\n", notify->PollingThresholdValue); printf("\t\tSwitch To Polling Threshold Window=%d msec\n", notify->PollingThresholdWindow); printf("\t\tError Threshold Value=%d\n", notify->ErrorThresholdValue); printf("\t\tError Threshold Window=%d msec\n", notify->ErrorThresholdWindow); printf("\t}\n"); } #ifdef notyet static void acpi_print_hest_generic_status(ACPI_HEST_GENERIC_STATUS *data) { uint32_t i, pos, entries; ACPI_HEST_GENERIC_DATA *gen; entries = data->BlockStatus & ACPI_HEST_ERROR_ENTRY_COUNT; printf("\tGeneric Error Status={\n"); printf("\t\tBlock Status={ "); if (data->BlockStatus & ACPI_HEST_UNCORRECTABLE) printf("UNCORRECTABLE"); if (data->BlockStatus & ACPI_HEST_CORRECTABLE) printf("CORRECTABLE"); if (data->BlockStatus & ACPI_HEST_MULTIPLE_UNCORRECTABLE) printf("MULTIPLE UNCORRECTABLE"); if (data->BlockStatus & ACPI_HEST_MULTIPLE_CORRECTABLE) printf("MULTIPLE CORRECTABLE"); printf(" }\n"); printf("\t\tEntry Count=%d\n", entries); printf("\t\tRaw Data Offset=%d\n", data->RawDataOffset); printf("\t\tRaw Data Length=%d\n", data->RawDataLength); printf("\t\tData Length=%d\n", data->DataLength); printf("\t"); acpi_print_hest_errorseverity(data->ErrorSeverity); printf("\t}\n"); pos = sizeof(ACPI_HEST_GENERIC_STATUS); for (i = 0; i < entries; i++) { gen = (ACPI_HEST_GENERIC_DATA *)((char *)data + pos); acpi_print_hest_generic_data(gen); pos += sizeof(ACPI_HEST_GENERIC_DATA); } } #endif #ifdef notyet static void acpi_print_hest_generic_data(ACPI_HEST_GENERIC_DATA *data) { printf("\tGeneric Error Data={\n"); printf("\t\tSectionType="); acpi_print_string((char *)data->SectionType, sizeof(data->SectionType)); printf("\n\t"); acpi_print_hest_errorseverity(data->ErrorSeverity); printf("\t\tRevision=0x%x\n", data->Revision); printf("\t\tValidation Bits=0x%x\n", data->ValidationBits); printf("\t\tFlags=0x%x\n", data->Flags); printf("\t\tData Length=%d\n", data->ErrorDataLength); printf("\t\tField Replication Unit Id="); acpi_print_string((char *)data->FruId, sizeof(data->FruId)); printf("\n"); printf("\t\tField Replication Unit="); acpi_print_string((char *)data->FruText, sizeof(data->FruText)); printf("\n"); printf("\t}\n"); } #endif static void acpi_print_whea(ACPI_WHEA_HEADER *whea, void (*print_action)(ACPI_WHEA_HEADER *), void (*print_ins)(ACPI_WHEA_HEADER *), void (*print_flags)(ACPI_WHEA_HEADER *)) { printf("\n"); print_action(whea); print_ins(whea); if (print_flags) print_flags(whea); printf("\tRegisterRegion="); acpi_print_gas(&whea->RegisterRegion); printf("\n"); printf("\tMASK=0x%08"PRIx64"\n", whea->Mask); } static void acpi_print_hest_ia32_check(ACPI_HEST_IA_MACHINE_CHECK *data) { uint32_t i, pos; ACPI_HEST_IA_ERROR_BANK *bank; acpi_print_hest_header(&data->Header); printf("\tFlags={ "); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("FIRMWARE_FIRST"); printf(" }\n"); printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO"); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); printf("\tGlobal Capability Init Data=0x%"PRIx64"\n", data->GlobalCapabilityData); printf("\tGlobal Control Init Data=0x%"PRIx64"\n", data->GlobalControlData); printf("\tNumber of Hardware Error Reporting Banks=%d\n", data->NumHardwareBanks); pos = sizeof(ACPI_HEST_IA_MACHINE_CHECK); for (i = 0; i < data->NumHardwareBanks; i++) { bank = (ACPI_HEST_IA_ERROR_BANK *)((char *)data + pos); acpi_print_hest_errorbank(bank); pos += sizeof(ACPI_HEST_IA_ERROR_BANK); } } static void acpi_print_hest_ia32_correctedcheck(ACPI_HEST_IA_CORRECTED *data) { uint32_t i, pos; ACPI_HEST_IA_ERROR_BANK *bank; acpi_print_hest_header(&data->Header); printf("\tFlags={ "); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("FIRMWARE_FIRST"); printf(" }\n"); printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO"); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); acpi_print_hest_notify(&data->Notify); printf("\tNumber of Hardware Error Reporting Banks=%d\n", data->NumHardwareBanks); pos = sizeof(ACPI_HEST_IA_MACHINE_CHECK); for (i = 0; i < data->NumHardwareBanks; i++) { bank = (ACPI_HEST_IA_ERROR_BANK *)((char *)data + pos); acpi_print_hest_errorbank(bank); pos += sizeof(ACPI_HEST_IA_ERROR_BANK); } } static void acpi_print_hest_ia32_nmi(ACPI_HEST_IA_NMI *data) { acpi_print_hest_header(&data->Header); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); printf("\tMax Raw Data Length=%d\n", data->MaxRawDataLength); } static void acpi_print_hest_aer_root(ACPI_HEST_AER_ROOT *data) { acpi_print_hest_header(&data->Header); acpi_print_hest_aer_common(&data->Aer); printf("Root Error Command Register=0x%x\n", data->RootErrorCommand); } static void acpi_print_hest_aer_endpoint(ACPI_HEST_AER *data) { acpi_print_hest_header(&data->Header); acpi_print_hest_aer_common(&data->Aer); } static void acpi_print_hest_aer_bridge(ACPI_HEST_AER_BRIDGE *data) { acpi_print_hest_header(&data->Header); acpi_print_hest_aer_common(&data->Aer); printf("\tSecondary Uncorrectable Error Mask Register=0x%x\n", data->UncorrectableMask2); printf("\tSecondary Uncorrectable Error Severity Register=0x%x\n", data->UncorrectableSeverity2); printf("\tSecondory Advanced Capabilities Register=0x%x\n", data->AdvancedCapabilities2); } static void acpi_print_hest_generic(ACPI_HEST_GENERIC *data) { acpi_print_hest_header(&data->Header); if (data->RelatedSourceId != 0xffff) printf("\tReleated SourceId=%d\n", data->RelatedSourceId); printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO"); printf("\tNumber of Records to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); printf("\tMax Raw Data Length=%d\n", data->MaxRawDataLength); printf("\tError Status Address="); acpi_print_gas(&data->ErrorStatusAddress); acpi_print_hest_notify(&data->Notify); printf("\tError Block Length=%d\n", data->ErrorBlockLength); } static void acpi_handle_hest(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HEST *hest; ACPI_HEST_HEADER *subhest; uint32_t i, pos; void *subtable; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); hest = (ACPI_TABLE_HEST *)sdp; printf("\tError Source Count=%d\n", hest->ErrorSourceCount); pos = sizeof(ACPI_TABLE_HEST); for (i = 0; i < hest->ErrorSourceCount; i++) { subhest = (ACPI_HEST_HEADER *)((char *)hest + pos); subtable = (void *)((char *)subhest + sizeof(ACPI_HEST_HEADER)); printf("\n"); printf("\tType={ "); switch (subhest->Type) { case ACPI_HEST_TYPE_IA32_CHECK: acpi_print_hest_ia32_check(subtable); pos += sizeof(ACPI_HEST_IA_MACHINE_CHECK); break; case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: acpi_print_hest_ia32_correctedcheck(subtable); pos += sizeof(ACPI_HEST_IA_CORRECTED); break; case ACPI_HEST_TYPE_IA32_NMI: acpi_print_hest_ia32_nmi(subtable); pos += sizeof(ACPI_HEST_IA_NMI); break; case ACPI_HEST_TYPE_NOT_USED3: case ACPI_HEST_TYPE_NOT_USED4: case ACPI_HEST_TYPE_NOT_USED5: pos += sizeof(ACPI_HEST_HEADER); break; case ACPI_HEST_TYPE_AER_ROOT_PORT: acpi_print_hest_aer_root(subtable); pos += sizeof(ACPI_HEST_AER_ROOT); break; case ACPI_HEST_TYPE_AER_ENDPOINT: acpi_print_hest_aer_endpoint(subtable); pos += sizeof(ACPI_HEST_AER_ROOT); break; case ACPI_HEST_TYPE_AER_BRIDGE: acpi_print_hest_aer_bridge(subtable); pos += sizeof(ACPI_HEST_AER_BRIDGE); break; case ACPI_HEST_TYPE_GENERIC_ERROR: acpi_print_hest_generic(subtable); pos += sizeof(ACPI_HEST_GENERIC); break; case ACPI_HEST_TYPE_RESERVED: default: pos += sizeof(ACPI_HEST_HEADER); break; } } printf(END_COMMENT); } /* The FADT revision indicates whether we use the DSDT or X_DSDT addresses. */ static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt) { int fadt_revision; /* Set the FADT revision separately from the RSDP version. */ if (addr_size == 8) { fadt_revision = 2; /* * A few systems (e.g., IBM T23) have an RSDP that claims * revision 2 but the 64 bit addresses are invalid. If * revision 2 and the 32 bit address is non-zero but the * 32 and 64 bit versions don't match, prefer the 32 bit * version for all subsequent tables. */ if (fadt->Facs != 0 && (fadt->XFacs & 0xffffffff) != fadt->Facs) fadt_revision = 1; } else fadt_revision = 1; return (fadt_revision); } static void acpi_handle_fadt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HEADER *dsdp; ACPI_TABLE_FACS *facs; ACPI_TABLE_FADT *fadt; int fadt_revision; fadt = (ACPI_TABLE_FADT *)sdp; acpi_print_fadt(sdp); fadt_revision = acpi_get_fadt_revision(fadt); if (fadt_revision == 1) facs = (ACPI_TABLE_FACS *)acpi_map_sdt(fadt->Facs); else facs = (ACPI_TABLE_FACS *)acpi_map_sdt(fadt->XFacs); if (memcmp(facs->Signature, ACPI_SIG_FACS, 4) != 0 || facs->Length < 64) errx(EXIT_FAILURE, "FACS is corrupt"); acpi_print_facs(facs); if (fadt_revision == 1) dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt); else dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt); if (acpi_checksum(dsdp, dsdp->Length)) errx(EXIT_FAILURE, "DSDT is corrupt"); acpi_print_dsdt(dsdp); } static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_SUBTABLE_HEADER *)) { ACPI_SUBTABLE_HEADER *subtable; char *end; subtable = first; end = (char *)table + table->Length; while ((char *)subtable < end) { printf("\n"); action(subtable); subtable = (ACPI_SUBTABLE_HEADER *)((char *)subtable + subtable->Length); } } static void acpi_print_cpu(u_char cpu_id) { printf("\tACPI CPU="); if (cpu_id == 0xff) printf("ALL\n"); else printf("%d\n", (u_int)cpu_id); } static void acpi_print_cpu_uid(uint32_t uid, char *uid_string) { printf("\tUID=%d", uid); if (uid_string != NULL) printf(" (%s)", uid_string); printf("\n"); } static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags) { printf("\tFlags={"); if (flags & ACPI_MADT_ENABLED) printf("ENABLED"); else printf("DISABLED"); printf("}\n"); printf("\tAPIC ID=%d\n", apic_id); } static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr) { printf("\tAPIC ID=%d\n", apic_id); printf("\tINT BASE=%d\n", int_base); printf("\tADDR=0x%016jx\n", (uintmax_t)apic_addr); } static void acpi_print_mps_flags(uint16_t flags) { printf("\tFlags={Polarity="); switch (flags & ACPI_MADT_POLARITY_MASK) { case ACPI_MADT_POLARITY_CONFORMS: printf("conforming"); break; case ACPI_MADT_POLARITY_ACTIVE_HIGH: printf("active-hi"); break; case ACPI_MADT_POLARITY_ACTIVE_LOW: printf("active-lo"); break; default: printf("0x%x", flags & ACPI_MADT_POLARITY_MASK); break; } printf(", Trigger="); switch (flags & ACPI_MADT_TRIGGER_MASK) { case ACPI_MADT_TRIGGER_CONFORMS: printf("conforming"); break; case ACPI_MADT_TRIGGER_EDGE: printf("edge"); break; case ACPI_MADT_TRIGGER_LEVEL: printf("level"); break; default: printf("0x%x", (flags & ACPI_MADT_TRIGGER_MASK) >> 2); } printf("}\n"); } static void acpi_print_intr(uint32_t intr, uint16_t mps_flags) { printf("\tINTR=%d\n", intr); acpi_print_mps_flags(mps_flags); } static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags) { printf("\tLINT Pin=%d\n", lint); acpi_print_mps_flags(mps_flags); } const char *apic_types[] = { "Local APIC", "IO APIC", "INT Override", "NMI", "Local APIC NMI", "Local APIC Override", "IO SAPIC", "Local SAPIC", "Platform Interrupt", "Local X2APIC", "Local X2APIC NMI" }; const char *platform_int_types[] = { "0 (unknown)", "PMI", "INIT", "Corrected Platform Error" }; static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp) { ACPI_MADT_LOCAL_APIC *lapic; ACPI_MADT_IO_APIC *ioapic; ACPI_MADT_INTERRUPT_OVERRIDE *over; ACPI_MADT_NMI_SOURCE *nmi; ACPI_MADT_LOCAL_APIC_NMI *lapic_nmi; ACPI_MADT_LOCAL_APIC_OVERRIDE *lapic_over; ACPI_MADT_IO_SAPIC *iosapic; ACPI_MADT_LOCAL_SAPIC *lsapic; ACPI_MADT_INTERRUPT_SOURCE *isrc; ACPI_MADT_LOCAL_X2APIC *x2apic; ACPI_MADT_LOCAL_X2APIC_NMI *x2apic_nmi; if (mp->Type < sizeof(apic_types) / sizeof(apic_types[0])) printf("\tType=%s\n", apic_types[mp->Type]); else printf("\tType=%d (unknown)\n", mp->Type); switch (mp->Type) { case ACPI_MADT_TYPE_LOCAL_APIC: lapic = (ACPI_MADT_LOCAL_APIC *)mp; acpi_print_cpu(lapic->ProcessorId); acpi_print_local_apic(lapic->Id, lapic->LapicFlags); break; case ACPI_MADT_TYPE_IO_APIC: ioapic = (ACPI_MADT_IO_APIC *)mp; acpi_print_io_apic(ioapic->Id, ioapic->GlobalIrqBase, ioapic->Address); break; case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: over = (ACPI_MADT_INTERRUPT_OVERRIDE *)mp; printf("\tBUS=%d\n", (u_int)over->Bus); printf("\tIRQ=%d\n", (u_int)over->SourceIrq); acpi_print_intr(over->GlobalIrq, over->IntiFlags); break; case ACPI_MADT_TYPE_NMI_SOURCE: nmi = (ACPI_MADT_NMI_SOURCE *)mp; acpi_print_intr(nmi->GlobalIrq, nmi->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_APIC_NMI: lapic_nmi = (ACPI_MADT_LOCAL_APIC_NMI *)mp; acpi_print_cpu(lapic_nmi->ProcessorId); acpi_print_local_nmi(lapic_nmi->Lint, lapic_nmi->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: lapic_over = (ACPI_MADT_LOCAL_APIC_OVERRIDE *)mp; printf("\tLocal APIC ADDR=0x%016jx\n", (uintmax_t)lapic_over->Address); break; case ACPI_MADT_TYPE_IO_SAPIC: iosapic = (ACPI_MADT_IO_SAPIC *)mp; acpi_print_io_apic(iosapic->Id, iosapic->GlobalIrqBase, iosapic->Address); break; case ACPI_MADT_TYPE_LOCAL_SAPIC: lsapic = (ACPI_MADT_LOCAL_SAPIC *)mp; acpi_print_cpu(lsapic->ProcessorId); acpi_print_local_apic(lsapic->Id, lsapic->LapicFlags); printf("\tAPIC EID=%d\n", (u_int)lsapic->Eid); if (mp->Length > offsetof(ACPI_MADT_LOCAL_SAPIC, Uid)) acpi_print_cpu_uid(lsapic->Uid, lsapic->UidString); break; case ACPI_MADT_TYPE_INTERRUPT_SOURCE: isrc = (ACPI_MADT_INTERRUPT_SOURCE *)mp; if (isrc->Type < sizeof(platform_int_types) / sizeof(platform_int_types[0])) printf("\tType=%s\n", platform_int_types[isrc->Type]); else printf("\tType=%d (unknown)\n", isrc->Type); printf("\tAPIC ID=%d\n", (u_int)isrc->Id); printf("\tAPIC EID=%d\n", (u_int)isrc->Eid); printf("\tSAPIC Vector=%d\n", (u_int)isrc->IoSapicVector); acpi_print_intr(isrc->GlobalIrq, isrc->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_X2APIC: x2apic = (ACPI_MADT_LOCAL_X2APIC *)mp; acpi_print_cpu_uid(x2apic->Uid, NULL); acpi_print_local_apic(x2apic->LocalApicId, x2apic->LapicFlags); break; case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: x2apic_nmi = (ACPI_MADT_LOCAL_X2APIC_NMI *)mp; acpi_print_cpu_uid(x2apic_nmi->Uid, NULL); acpi_print_local_nmi(x2apic_nmi->Lint, x2apic_nmi->IntiFlags); break; } } #ifdef notyet static void acpi_print_bert_region(ACPI_BERT_REGION *region) { uint32_t i, pos, entries; ACPI_HEST_GENERIC_DATA *data; printf("\n"); printf("\tBlockStatus={ "); if (region->BlockStatus & ACPI_BERT_UNCORRECTABLE) printf("Uncorrectable"); if (region->BlockStatus & ACPI_BERT_CORRECTABLE) printf("Correctable"); if (region->BlockStatus & ACPI_BERT_MULTIPLE_UNCORRECTABLE) printf("Multiple Uncorrectable"); if (region->BlockStatus & ACPI_BERT_MULTIPLE_CORRECTABLE) printf("Multiple Correctable"); entries = region->BlockStatus & ACPI_BERT_ERROR_ENTRY_COUNT; printf(", Error Entry Count=%d", entries); printf("}\n"); printf("\tRaw Data Offset=0x%x\n", region->RawDataOffset); printf("\tRaw Data Length=0x%x\n", region->RawDataLength); printf("\tData Length=0x%x\n", region->DataLength); acpi_print_hest_errorseverity(region->ErrorSeverity); pos = sizeof(ACPI_BERT_REGION); for (i = 0; i < entries; i++) { data = (ACPI_HEST_GENERIC_DATA *)((char *)region + pos); acpi_print_hest_generic_data(data); pos += sizeof(ACPI_HEST_GENERIC_DATA); } } #endif static void acpi_handle_bert(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_BERT *bert; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); bert = (ACPI_TABLE_BERT *)sdp; printf("\tLength of Boot Error Region=%d bytes\n", bert->RegionLength); printf("\tPhysical Address of Region=0x%"PRIx64"\n", bert->Address); printf(END_COMMENT); } static void acpi_handle_boot(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_BOOT *boot; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); boot = (ACPI_TABLE_BOOT *)sdp; printf("\tCMOS Index=0x%02x\n", boot->CmosIndex); printf(END_COMMENT); } static void acpi_handle_cpep(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_CPEP *cpep; ACPI_CPEP_POLLING *poll; uint32_t cpep_pos; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); cpep = (ACPI_TABLE_CPEP *)sdp; cpep_pos = sizeof(ACPI_TABLE_CPEP); while (cpep_pos < sdp->Length) { poll = (ACPI_CPEP_POLLING *)((char *)cpep + cpep_pos); acpi_print_cpu(poll->Id); printf("\tACPI CPU EId=%d\n", poll->Eid); printf("\tPoll Interval=%d msec\n", poll->Interval); cpep_pos += sizeof(ACPI_CPEP_POLLING); } printf(END_COMMENT); } static void acpi_handle_dbgp(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_DBGP *dbgp; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); dbgp = (ACPI_TABLE_DBGP *)sdp; printf("\tType={"); switch (dbgp->Type) { case 0: printf("full 16550"); break; case 1: printf("subset of 16550"); break; } printf("}\n"); printf("DebugPort="); acpi_print_gas(&dbgp->DebugPort); printf(END_COMMENT); } static void acpi_print_einj_action(ACPI_WHEA_HEADER *whea) { printf("\tACTION={"); switch (whea->Action) { case ACPI_EINJ_BEGIN_OPERATION: printf("Begin Operation"); break; case ACPI_EINJ_GET_TRIGGER_TABLE: printf("Get Trigger Table"); break; case ACPI_EINJ_SET_ERROR_TYPE: printf("Set Error Type"); break; case ACPI_EINJ_GET_ERROR_TYPE: printf("Get Error Type"); break; case ACPI_EINJ_END_OPERATION: printf("End Operation"); break; case ACPI_EINJ_EXECUTE_OPERATION: printf("Execute Operation"); break; case ACPI_EINJ_CHECK_BUSY_STATUS: printf("Check Busy Status"); break; case ACPI_EINJ_GET_COMMAND_STATUS: printf("Get Command Status"); break; case ACPI_EINJ_ACTION_RESERVED: printf("Preserved"); break; case ACPI_EINJ_TRIGGER_ERROR: printf("Trigger Error"); break; default: printf("%d", whea->Action); break; } printf("}\n"); } static void acpi_print_einj_instruction(ACPI_WHEA_HEADER *whea) { uint32_t ins = whea->Instruction; printf("\tINSTRUCTION={"); switch (ins) { case ACPI_EINJ_READ_REGISTER: printf("Read Register"); break; case ACPI_EINJ_READ_REGISTER_VALUE: printf("Read Register Value"); break; case ACPI_EINJ_WRITE_REGISTER: printf("Write Register"); break; case ACPI_EINJ_WRITE_REGISTER_VALUE: printf("Write Register Value"); break; case ACPI_EINJ_NOOP: printf("Noop"); break; case ACPI_EINJ_INSTRUCTION_RESERVED: printf("Reserved"); break; default: printf("%d", ins); break; } printf("}\n"); } static void acpi_print_einj_flags(ACPI_WHEA_HEADER *whea) { uint32_t flags = whea->Flags; printf("\tFLAGS={ "); if (flags & ACPI_EINJ_PRESERVE) printf("PRESERVED"); printf("}\n"); } static void acpi_handle_einj(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_EINJ *einj; ACPI_EINJ_ENTRY *einj_entry; uint32_t einj_pos; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); einj = (ACPI_TABLE_EINJ *)sdp; printf("\tHeader Length=%d\n", einj->HeaderLength); printf("\tFlags=0x%x\n", einj->Flags); printf("\tEntries=%d\n", einj->Entries); einj_pos = sizeof(ACPI_TABLE_EINJ); for (i = 0; i < einj->Entries; i++) { einj_entry = (ACPI_EINJ_ENTRY *)((char *)einj + einj_pos); acpi_print_whea(&einj_entry->WheaHeader, acpi_print_einj_action, acpi_print_einj_instruction, acpi_print_einj_flags); einj_pos += sizeof(ACPI_EINJ_ENTRY); } printf(END_COMMENT); } static void acpi_print_erst_action(ACPI_WHEA_HEADER *whea) { printf("\tACTION={"); switch (whea->Action) { case ACPI_ERST_BEGIN_WRITE: printf("Begin Write"); break; case ACPI_ERST_BEGIN_READ: printf("Begin Read"); break; case ACPI_ERST_BEGIN_CLEAR: printf("Begin Clear"); break; case ACPI_ERST_END: printf("End"); break; case ACPI_ERST_SET_RECORD_OFFSET: printf("Set Record Offset"); break; case ACPI_ERST_EXECUTE_OPERATION: printf("Execute Operation"); break; case ACPI_ERST_CHECK_BUSY_STATUS: printf("Check Busy Status"); break; case ACPI_ERST_GET_COMMAND_STATUS: printf("Get Command Status"); break; case ACPI_ERST_GET_RECORD_ID: printf("Get Record ID"); break; case ACPI_ERST_SET_RECORD_ID: printf("Set Record ID"); break; case ACPI_ERST_GET_RECORD_COUNT: printf("Get Record Count"); break; case ACPI_ERST_BEGIN_DUMMY_WRIITE: printf("Begin Dummy Write"); break; case ACPI_ERST_NOT_USED: printf("Unused"); break; case ACPI_ERST_GET_ERROR_RANGE: printf("Get Error Range"); break; case ACPI_ERST_GET_ERROR_LENGTH: printf("Get Error Length"); break; case ACPI_ERST_GET_ERROR_ATTRIBUTES: printf("Get Error Attributes"); break; case ACPI_ERST_ACTION_RESERVED: printf("Reserved"); break; default: printf("%d", whea->Action); break; } printf("}\n"); } static void acpi_print_erst_instruction(ACPI_WHEA_HEADER *whea) { printf("\tINSTRUCTION={"); switch (whea->Instruction) { case ACPI_ERST_READ_REGISTER: printf("Read Register"); break; case ACPI_ERST_READ_REGISTER_VALUE: printf("Read Register Value"); break; case ACPI_ERST_WRITE_REGISTER: printf("Write Register"); break; case ACPI_ERST_WRITE_REGISTER_VALUE: printf("Write Register Value"); break; case ACPI_ERST_NOOP: printf("Noop"); break; case ACPI_ERST_LOAD_VAR1: printf("Load Var1"); break; case ACPI_ERST_LOAD_VAR2: printf("Load Var2"); break; case ACPI_ERST_STORE_VAR1: printf("Store Var1"); break; case ACPI_ERST_ADD: printf("Add"); break; case ACPI_ERST_SUBTRACT: printf("Subtract"); break; case ACPI_ERST_ADD_VALUE: printf("Add Value"); break; case ACPI_ERST_SUBTRACT_VALUE: printf("Subtract Value"); break; case ACPI_ERST_STALL: printf("Stall"); break; case ACPI_ERST_STALL_WHILE_TRUE: printf("Stall While True"); break; case ACPI_ERST_SKIP_NEXT_IF_TRUE: printf("Skip Next If True"); break; case ACPI_ERST_GOTO: printf("Goto"); break; case ACPI_ERST_SET_SRC_ADDRESS_BASE: printf("Set Src Address Base"); break; case ACPI_ERST_SET_DST_ADDRESS_BASE: printf("Set Dst Address Base"); break; case ACPI_ERST_MOVE_DATA: printf("Move Data"); break; case ACPI_ERST_INSTRUCTION_RESERVED: printf("Reserved"); break; default: printf("%d (reserved)", whea->Instruction); break; } printf("}\n"); } static void acpi_print_erst_flags(ACPI_WHEA_HEADER *whea) { uint32_t flags = whea->Flags; printf("\tFLAGS={ "); if (flags & ACPI_ERST_PRESERVE) printf("PRESERVED"); printf("}\n"); } static void acpi_handle_erst(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_ERST *erst; ACPI_ERST_ENTRY *erst_entry; uint32_t erst_pos; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); erst = (ACPI_TABLE_ERST *)sdp; printf("\tHeader Length=%d\n", erst->HeaderLength); printf("\tEntries=%d\n", erst->Entries); erst_pos = sizeof(ACPI_TABLE_ERST); for (i = 0; i < erst->Entries; i++) { erst_entry = (ACPI_ERST_ENTRY *)((char *)erst + erst_pos); acpi_print_whea(&erst_entry->WheaHeader, acpi_print_erst_action, acpi_print_erst_instruction, acpi_print_erst_flags); erst_pos += sizeof(ACPI_ERST_ENTRY); } printf(END_COMMENT); } static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MADT *madt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); madt = (ACPI_TABLE_MADT *)sdp; printf("\tLocal APIC ADDR=0x%08x\n", madt->Address); printf("\tFlags={"); if (madt->Flags & ACPI_MADT_PCAT_COMPAT) printf("PC-AT"); printf("}\n"); acpi_walk_subtables(sdp, (madt + 1), acpi_print_madt); printf(END_COMMENT); } static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HPET *hpet; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); hpet = (ACPI_TABLE_HPET *)sdp; printf("\tHPET Number=%d\n", hpet->Sequence); printf("\tADDR="); acpi_print_gas(&hpet->Address); printf("\tHW Rev=0x%x\n", hpet->Id & ACPI_HPET_ID_HARDWARE_REV_ID); printf("\tComparators=%d\n", (hpet->Id & ACPI_HPET_ID_COMPARATORS) >> 8); printf("\tCounter Size=%d\n", hpet->Id & ACPI_HPET_ID_COUNT_SIZE_CAP ? 1 : 0); printf("\tLegacy IRQ routing capable={"); if (hpet->Id & ACPI_HPET_ID_LEGACY_CAPABLE) printf("TRUE}\n"); else printf("FALSE}\n"); printf("\tPCI Vendor ID=0x%04x\n", hpet->Id >> 16); printf("\tMinimal Tick=%d\n", hpet->MinimumTick); printf(END_COMMENT); } static void acpi_handle_msct(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MSCT *msct; ACPI_MSCT_PROXIMITY *msctentry; uint32_t pos; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); msct = (ACPI_TABLE_MSCT *)sdp; printf("\tProximity Offset=0x%x\n", msct->ProximityOffset); printf("\tMax Proximity Domains=%d\n", msct->MaxProximityDomains); printf("\tMax Clock Domains=%d\n", msct->MaxClockDomains); printf("\tMax Physical Address=0x%"PRIx64"\n", msct->MaxAddress); pos = msct->ProximityOffset; while (pos < msct->Header.Length) { msctentry = (ACPI_MSCT_PROXIMITY *)((char *)msct + pos); pos += msctentry->Length; printf("\n"); printf("\tRevision=%d\n", msctentry->Revision); printf("\tLength=%d\n", msctentry->Length); printf("\tRange Start=%d\n", msctentry->RangeStart); printf("\tRange End=%d\n", msctentry->RangeEnd); printf("\tProcessor Capacity=%d\n", msctentry->ProcessorCapacity); printf("\tMemory Capacity=0x%"PRIx64" byte\n", msctentry->MemoryCapacity); } printf(END_COMMENT); } static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_ECDT *ecdt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); ecdt = (ACPI_TABLE_ECDT *)sdp; printf("\tEC_CONTROL="); acpi_print_gas(&ecdt->Control); printf("\n\tEC_DATA="); acpi_print_gas(&ecdt->Data); printf("\n\tUID=%#x, ", ecdt->Uid); printf("GPE_BIT=%#x\n", ecdt->Gpe); printf("\tEC_ID=%s\n", ecdt->Id); printf(END_COMMENT); } static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MCFG *mcfg; ACPI_MCFG_ALLOCATION *alloc; u_int i, entries; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); mcfg = (ACPI_TABLE_MCFG *)sdp; entries = (sdp->Length - sizeof(ACPI_TABLE_MCFG)) / sizeof(ACPI_MCFG_ALLOCATION); alloc = (ACPI_MCFG_ALLOCATION *)(mcfg + 1); for (i = 0; i < entries; i++, alloc++) { printf("\n"); printf("\tBase Address=0x%016jx\n", alloc->Address); printf("\tSegment Group=0x%04x\n", alloc->PciSegment); printf("\tStart Bus=%d\n", alloc->StartBusNumber); printf("\tEnd Bus=%d\n", alloc->EndBusNumber); } printf(END_COMMENT); } static void acpi_handle_sbst(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SBST *sbst; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); sbst = (ACPI_TABLE_SBST *)sdp; printf("\tWarning Level=%d mWh\n", sbst->WarningLevel); printf("\tLow Level=%d mWh\n", sbst->LowLevel); printf("\tCritical Level=%d mWh\n", sbst->CriticalLevel); printf(END_COMMENT); } static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SLIT *slit; u_int idx; uint64_t cnt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); slit = (ACPI_TABLE_SLIT *)sdp; cnt = slit->LocalityCount * slit->LocalityCount; printf("\tLocalityCount=%"PRIu64"\n", slit->LocalityCount); printf("\tEntry=\n\t"); for (idx = 0; idx < cnt; idx++) { printf("%u ", slit->Entry[idx]); if ((idx % slit->LocalityCount) == (slit->LocalityCount - 1)) { printf("\n"); if (idx < cnt - 1) printf("\t"); } } printf(END_COMMENT); } static void acpi_handle_spcr(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SPCR *spcr; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); spcr = (ACPI_TABLE_SPCR *)sdp; printf("\tSerial Port="); acpi_print_gas(&spcr->SerialPort); printf("\n\tInterrupt Type={"); if (spcr->InterruptType & 0x1) { printf("\n\t\tdual-8259 IRQ="); switch (spcr->PcInterrupt) { case 2 ... 7: case 9 ... 12: case 14 ... 15: printf("%d", spcr->PcInterrupt); break; default: printf("%d (invalid entry)", spcr->PcInterrupt); break; } } if (spcr->InterruptType & 0x2) { printf("\n\t\tIO APIC={ GSI=%d }", spcr->Interrupt); } if (spcr->InterruptType & 0x4) { printf("\n\t\tIO SAPIC={ GSI=%d }", spcr->Interrupt); } printf("\n\t}\n"); printf("\tBaud Rate="); switch (spcr->BaudRate) { case 3: printf("9600"); break; case 4: printf("19200"); break; case 6: printf("57600"); break; case 7: printf("115200"); break; default: printf("unknown speed index %d", spcr->BaudRate); break; } printf("\n\tParity={"); switch (spcr->Parity) { case 0: printf("OFF"); break; default: printf("ON"); break; } printf("}\n"); printf("\tStop Bits={"); switch (spcr->StopBits) { case 1: printf("ON"); break; default: printf("OFF"); break; } printf("}\n"); printf("\tFlow Control={"); if (spcr->FlowControl & 0x1) printf("DCD, "); if (spcr->FlowControl & 0x2) printf("RTS/CTS hardware, "); if (spcr->FlowControl & 0x4) printf("XON/XOFF software"); printf("}\n"); printf("\tTerminal="); switch (spcr->TerminalType) { case 0: printf("VT100"); break; case 1: printf("VT100+"); break; case 2: printf("VT-UTF8"); break; case 3: printf("ANSI"); break; default: printf("unknown type %d", spcr->TerminalType); break; } printf("\n"); acpi_print_pci(spcr->PciVendorId, spcr->PciDeviceId, spcr->PciSegment, spcr->PciBus, spcr->PciDevice, spcr->PciFunction); printf("\tPCI Flags={"); if (spcr->PciFlags & ACPI_SPCR_DO_NOT_DISABLE) printf("DONOT_DISABLE"); printf("}\n"); printf(END_COMMENT); } static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain, uint32_t flags, uint32_t clockdomain) { printf("\tFlags={"); if (flags & ACPI_SRAT_CPU_ENABLED) printf("ENABLED"); else printf("DISABLED"); printf("}\n"); printf("\tAPIC ID=%d\n", apic_id); printf("\tProximity Domain=%d\n", proximity_domain); printf("\tClock Domain=%d\n", clockdomain); } static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp) { printf("\tFlags={"); if (mp->Flags & ACPI_SRAT_MEM_ENABLED) printf("ENABLED"); else printf("DISABLED"); if (mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) printf(",HOT_PLUGGABLE"); if (mp->Flags & ACPI_SRAT_MEM_NON_VOLATILE) printf(",NON_VOLATILE"); printf("}\n"); printf("\tBase Address=0x%016jx\n", (uintmax_t)mp->BaseAddress); printf("\tLength=0x%016jx\n", (uintmax_t)mp->Length); printf("\tProximity Domain=%d\n", mp->ProximityDomain); } const char *srat_types[] = { "CPU", "Memory", "X2APIC" }; static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat) { ACPI_SRAT_CPU_AFFINITY *cpu; ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic; if (srat->Type < sizeof(srat_types) / sizeof(srat_types[0])) printf("\tType=%s\n", srat_types[srat->Type]); else printf("\tType=%d (unknown)\n", srat->Type); switch (srat->Type) { case ACPI_SRAT_TYPE_CPU_AFFINITY: cpu = (ACPI_SRAT_CPU_AFFINITY *)srat; acpi_print_srat_cpu(cpu->ApicId, cpu->ProximityDomainHi[2] << 24 | cpu->ProximityDomainHi[1] << 16 | cpu->ProximityDomainHi[0] << 0 | cpu->ProximityDomainLo, cpu->Flags, cpu->ClockDomain); break; case ACPI_SRAT_TYPE_MEMORY_AFFINITY: acpi_print_srat_memory((ACPI_SRAT_MEM_AFFINITY *)srat); break; case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)srat; acpi_print_srat_cpu(x2apic->ApicId, x2apic->ProximityDomain, x2apic->Flags, x2apic->ClockDomain); break; } } static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SRAT *srat; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); srat = (ACPI_TABLE_SRAT *)sdp; printf("\tTable Revision=%d\n", srat->TableRevision); acpi_walk_subtables(sdp, (srat + 1), acpi_print_srat); printf(END_COMMENT); } static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_TCPA *tcpa; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); tcpa = (ACPI_TABLE_TCPA *)sdp; printf("\tMaximum Length of Event Log Area=%d\n", tcpa->MaxLogLength); printf("\tPhysical Address of Log Area=0x%08"PRIx64"\n", tcpa->LogAddress); printf(END_COMMENT); } static void acpi_handle_waet(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WAET *waet; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); waet = (ACPI_TABLE_WAET *)sdp; printf("\tRTC Timer={"); if (waet->Flags & ACPI_WAET_RTC_NO_ACK) printf("No ACK required"); else printf("default behaviour"); printf("}\n"); printf("\t ACPI PM Timer={"); if (waet->Flags & ACPI_WAET_TIMER_ONE_READ) printf("One Read sufficient"); else printf("default behaviour"); printf("}\n"); printf(END_COMMENT); } static void acpi_print_wdat_action(ACPI_WHEA_HEADER *whea) { printf("\tACTION={"); switch (whea->Action) { case ACPI_WDAT_RESET: printf("RESET"); break; case ACPI_WDAT_GET_CURRENT_COUNTDOWN: printf("GET_CURRENT_COUNTDOWN"); break; case ACPI_WDAT_GET_COUNTDOWN: printf("GET_COUNTDOWN"); break; case ACPI_WDAT_SET_COUNTDOWN: printf("SET_COUNTDOWN"); break; case ACPI_WDAT_GET_RUNNING_STATE: printf("GET_RUNNING_STATE"); break; case ACPI_WDAT_SET_RUNNING_STATE: printf("SET_RUNNING_STATE"); break; case ACPI_WDAT_GET_STOPPED_STATE: printf("GET_STOPPED_STATE"); break; case ACPI_WDAT_SET_STOPPED_STATE: printf("SET_STOPPED_STATE"); break; case ACPI_WDAT_GET_REBOOT: printf("GET_REBOOT"); break; case ACPI_WDAT_SET_REBOOT: printf("SET_REBOOT"); break; case ACPI_WDAT_GET_SHUTDOWN: printf("GET_SHUTDOWN"); break; case ACPI_WDAT_SET_SHUTDOWN: printf("SET_SHUTDOWN"); break; case ACPI_WDAT_GET_STATUS: printf("GET_STATUS"); break; case ACPI_WDAT_SET_STATUS: printf("SET_STATUS"); break; case ACPI_WDAT_ACTION_RESERVED: printf("ACTION_RESERVED"); break; default: printf("%d", whea->Action); break; } printf("}\n"); } static void acpi_print_wdat_instruction(ACPI_WHEA_HEADER *whea) { uint32_t ins; ins = whea->Instruction & ~ACPI_WDAT_PRESERVE_REGISTER; printf("\tINSTRUCTION={"); switch (ins) { case ACPI_WDAT_READ_VALUE: printf("READ_VALUE"); break; case ACPI_WDAT_READ_COUNTDOWN: printf("READ_COUNTDOWN"); break; case ACPI_WDAT_WRITE_VALUE: printf("WRITE_VALUE"); break; case ACPI_WDAT_WRITE_COUNTDOWN: printf("WRITE_COUNTDOWN"); break; case ACPI_WDAT_INSTRUCTION_RESERVED: printf("INSTRUCTION_RESERVED"); break; default: printf("%d", ins); break; } if (whea->Instruction & ACPI_WDAT_PRESERVE_REGISTER) printf(", Preserve Register "); printf("}\n"); } static void acpi_handle_wdat(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WDAT *wdat; ACPI_WHEA_HEADER *whea; char *wdat_pos; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); wdat = (ACPI_TABLE_WDAT *)sdp; printf("\tHeader Length=%d\n", wdat->HeaderLength); acpi_print_pci_sbfd(wdat->PciSegment, wdat->PciBus, wdat->PciDevice, wdat->PciFunction); printf("\n\tTimer Counter Period=%d msec\n", wdat->TimerPeriod); printf("\tTimer Maximum Counter Value=%d\n", wdat->MaxCount); printf("\tTimer Minimum Counter Value=%d\n", wdat->MinCount); printf("\tFlags={"); if (wdat->Flags & ACPI_WDAT_ENABLED) printf("ENABLED"); if (wdat->Flags & ACPI_WDAT_STOPPED) printf(", STOPPED"); printf("}\n"); wdat_pos = ((char *)wdat + sizeof(ACPI_TABLE_HEADER) + wdat->HeaderLength); for (i = 0; i < wdat->Entries; i++) { whea = (ACPI_WHEA_HEADER *)wdat_pos; acpi_print_whea(whea, acpi_print_wdat_action, acpi_print_wdat_instruction, NULL); wdat_pos += sizeof(ACPI_WDAT_ENTRY); } printf(END_COMMENT); } static void acpi_handle_wdrt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WDRT *wdrt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); wdrt = (ACPI_TABLE_WDRT *)sdp; printf("\tControl Register="); acpi_print_gas(&wdrt->ControlRegister); printf("\tCount Register="); acpi_print_gas(&wdrt->CountRegister); acpi_print_pci(wdrt->PciVendorId, wdrt->PciDeviceId, wdrt->PciSegment, wdrt->PciBus, wdrt->PciDevice, wdrt->PciFunction); /* Value must be >= 511 and < 65535 */ printf("\tMaxCount=%d", wdrt->MaxCount); if (wdrt->MaxCount < 511) printf(" (Out of Range. Valid range: 511 <= maxcount < 65535)"); printf("\n"); printf("\tUnit={"); switch (wdrt->Units) { case 0: printf("1 seconds/count"); break; case 1: printf("100 milliseconds/count"); break; case 2: printf("10 milliseconds/count"); break; default: printf("%d", wdrt->Units); break; } printf("}\n"); printf(END_COMMENT); } static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp) { printf(" "); acpi_print_string(sdp->Signature, ACPI_NAME_SIZE); printf(": Length=%d, Revision=%d, Checksum=%d", sdp->Length, sdp->Revision, sdp->Checksum); if (acpi_checksum(sdp, sdp->Length)) printf(" (Incorrect)"); printf(",\n\tOEMID="); acpi_print_string(sdp->OemId, ACPI_OEM_ID_SIZE); printf(", OEM Table ID="); acpi_print_string(sdp->OemTableId, ACPI_OEM_TABLE_ID_SIZE); printf(", OEM Revision=0x%x,\n", sdp->OemRevision); printf("\tCreator ID="); acpi_print_string(sdp->AslCompilerId, ACPI_NAME_SIZE); printf(", Creator Revision=0x%x\n", sdp->AslCompilerRevision); } static void acpi_dump_bytes(ACPI_TABLE_HEADER *sdp) { unsigned int i; uint8_t *p; p = (uint8_t *)sdp; printf("\n\tData={"); for (i = 0; i < sdp->Length; i++) { if (cflag) { if (i % 64 == 0) printf("\n\t "); else if (i % 16 == 0) printf(" "); printf("%c", (p[i] >= ' ' && p[i] <= '~') ? p[i] : '.'); } else { if (i % 16 == 0) printf("\n\t\t"); else if (i % 8 == 0) printf(" "); printf(" %02x", p[i]); } } printf("\n\t}\n"); } static void acpi_print_rsdt(ACPI_TABLE_HEADER *rsdp) { ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; int i, entries; u_long addr; rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; printf(BEGIN_COMMENT); acpi_print_sdt(rsdp); entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; printf("\tEntries={ "); for (i = 0; i < entries; i++) { if (i > 0) printf(", "); switch (addr_size) { case 4: addr = le32toh(rsdt->TableOffsetEntry[i]); break; case 8: addr = le64toh(xsdt->TableOffsetEntry[i]); break; default: addr = 0; } assert(addr != 0); printf("0x%08lx", addr); } printf(" }\n"); printf(END_COMMENT); } static const char *acpi_pm_profiles[] = { "Unspecified", "Desktop", "Mobile", "Workstation", "Enterprise Server", "SOHO Server", "Appliance PC" }; static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_FADT *fadt; const char *pm; char sep; fadt = (ACPI_TABLE_FADT *)sdp; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); printf(" \tFACS=0x%x, DSDT=0x%x\n", fadt->Facs, fadt->Dsdt); printf("\tINT_MODEL=%s\n", fadt->Model ? "APIC" : "PIC"); if (fadt->PreferredProfile >= sizeof(acpi_pm_profiles) / sizeof(char *)) pm = "Reserved"; else pm = acpi_pm_profiles[fadt->PreferredProfile]; printf("\tPreferred_PM_Profile=%s (%d)\n", pm, fadt->PreferredProfile); printf("\tSCI_INT=%d\n", fadt->SciInterrupt); printf("\tSMI_CMD=0x%x, ", fadt->SmiCommand); printf("ACPI_ENABLE=0x%x, ", fadt->AcpiEnable); printf("ACPI_DISABLE=0x%x, ", fadt->AcpiDisable); printf("S4BIOS_REQ=0x%x\n", fadt->S4BiosRequest); printf("\tPSTATE_CNT=0x%x\n", fadt->PstateControl); printf("\tPM1a_EVT_BLK=0x%x-0x%x\n", fadt->Pm1aEventBlock, fadt->Pm1aEventBlock + fadt->Pm1EventLength - 1); if (fadt->Pm1bEventBlock != 0) printf("\tPM1b_EVT_BLK=0x%x-0x%x\n", fadt->Pm1bEventBlock, fadt->Pm1bEventBlock + fadt->Pm1EventLength - 1); printf("\tPM1a_CNT_BLK=0x%x-0x%x\n", fadt->Pm1aControlBlock, fadt->Pm1aControlBlock + fadt->Pm1ControlLength - 1); if (fadt->Pm1bControlBlock != 0) printf("\tPM1b_CNT_BLK=0x%x-0x%x\n", fadt->Pm1bControlBlock, fadt->Pm1bControlBlock + fadt->Pm1ControlLength - 1); if (fadt->Pm2ControlBlock != 0) printf("\tPM2_CNT_BLK=0x%x-0x%x\n", fadt->Pm2ControlBlock, fadt->Pm2ControlBlock + fadt->Pm2ControlLength - 1); printf("\tPM_TMR_BLK=0x%x-0x%x\n", fadt->PmTimerBlock, fadt->PmTimerBlock + fadt->PmTimerLength - 1); if (fadt->Gpe0Block != 0) printf("\tGPE0_BLK=0x%x-0x%x\n", fadt->Gpe0Block, fadt->Gpe0Block + fadt->Gpe0BlockLength - 1); if (fadt->Gpe1Block != 0) printf("\tGPE1_BLK=0x%x-0x%x, GPE1_BASE=%d\n", fadt->Gpe1Block, fadt->Gpe1Block + fadt->Gpe1BlockLength - 1, fadt->Gpe1Base); if (fadt->CstControl != 0) printf("\tCST_CNT=0x%x\n", fadt->CstControl); printf("\tP_LVL2_LAT=%d us, P_LVL3_LAT=%d us\n", fadt->C2Latency, fadt->C3Latency); printf("\tFLUSH_SIZE=%d, FLUSH_STRIDE=%d\n", fadt->FlushSize, fadt->FlushStride); printf("\tDUTY_OFFSET=%d, DUTY_WIDTH=%d\n", fadt->DutyOffset, fadt->DutyWidth); printf("\tDAY_ALRM=%d, MON_ALRM=%d, CENTURY=%d\n", fadt->DayAlarm, fadt->MonthAlarm, fadt->Century); #define PRINTFLAG(var, flag) do { \ if ((var) & ACPI_FADT_## flag) { \ printf("%c%s", sep, #flag); sep = ','; \ } \ } while (0) printf("\tIAPC_BOOT_ARCH="); sep = '{'; PRINTFLAG(fadt->BootFlags, LEGACY_DEVICES); PRINTFLAG(fadt->BootFlags, 8042); PRINTFLAG(fadt->BootFlags, NO_VGA); PRINTFLAG(fadt->BootFlags, NO_MSI); PRINTFLAG(fadt->BootFlags, NO_ASPM); if (fadt->BootFlags != 0) printf("}"); printf("\n"); printf("\tFlags="); sep = '{'; PRINTFLAG(fadt->Flags, WBINVD); PRINTFLAG(fadt->Flags, WBINVD_FLUSH); PRINTFLAG(fadt->Flags, C1_SUPPORTED); PRINTFLAG(fadt->Flags, C2_MP_SUPPORTED); PRINTFLAG(fadt->Flags, POWER_BUTTON); PRINTFLAG(fadt->Flags, SLEEP_BUTTON); PRINTFLAG(fadt->Flags, FIXED_RTC); PRINTFLAG(fadt->Flags, S4_RTC_WAKE); PRINTFLAG(fadt->Flags, 32BIT_TIMER); PRINTFLAG(fadt->Flags, DOCKING_SUPPORTED); PRINTFLAG(fadt->Flags, RESET_REGISTER); PRINTFLAG(fadt->Flags, SEALED_CASE); PRINTFLAG(fadt->Flags, HEADLESS); PRINTFLAG(fadt->Flags, SLEEP_TYPE); PRINTFLAG(fadt->Flags, PCI_EXPRESS_WAKE); PRINTFLAG(fadt->Flags, PLATFORM_CLOCK); PRINTFLAG(fadt->Flags, S4_RTC_VALID); PRINTFLAG(fadt->Flags, REMOTE_POWER_ON); PRINTFLAG(fadt->Flags, APIC_CLUSTER); PRINTFLAG(fadt->Flags, APIC_PHYSICAL); if (fadt->Flags != 0) printf("}\n"); #undef PRINTFLAG if (fadt->Flags & ACPI_FADT_RESET_REGISTER) { printf("\tRESET_REG="); acpi_print_gas(&fadt->ResetRegister); printf(", RESET_VALUE=%#x\n", fadt->ResetValue); } if (acpi_get_fadt_revision(fadt) > 1) { printf("\tX_FACS=0x%08lx, ", (u_long)fadt->XFacs); printf("X_DSDT=0x%08lx\n", (u_long)fadt->XDsdt); printf("\tX_PM1a_EVT_BLK="); acpi_print_gas(&fadt->XPm1aEventBlock); if (fadt->XPm1bEventBlock.Address != 0) { printf("\n\tX_PM1b_EVT_BLK="); acpi_print_gas(&fadt->XPm1bEventBlock); } printf("\n\tX_PM1a_CNT_BLK="); acpi_print_gas(&fadt->XPm1aControlBlock); if (fadt->XPm1bControlBlock.Address != 0) { printf("\n\tX_PM1b_CNT_BLK="); acpi_print_gas(&fadt->XPm1bControlBlock); } if (fadt->XPm2ControlBlock.Address != 0) { printf("\n\tX_PM2_CNT_BLK="); acpi_print_gas(&fadt->XPm2ControlBlock); } printf("\n\tX_PM_TMR_BLK="); acpi_print_gas(&fadt->XPmTimerBlock); if (fadt->XGpe0Block.Address != 0) { printf("\n\tX_GPE0_BLK="); acpi_print_gas(&fadt->XGpe0Block); } if (fadt->XGpe1Block.Address != 0) { printf("\n\tX_GPE1_BLK="); acpi_print_gas(&fadt->XGpe1Block); } printf("\n"); } printf(END_COMMENT); } static void acpi_print_facs(ACPI_TABLE_FACS *facs) { printf(BEGIN_COMMENT); printf(" FACS:\tLength=%u, ", facs->Length); printf("HwSig=0x%08x, ", facs->HardwareSignature); printf("Firm_Wake_Vec=0x%08x\n", facs->FirmwareWakingVector); printf("\tGlobal_Lock="); if (facs->GlobalLock != 0) { if (facs->GlobalLock & ACPI_GLOCK_PENDING) printf("PENDING,"); if (facs->GlobalLock & ACPI_GLOCK_OWNED) printf("OWNED"); } printf("\n"); printf("\tFlags="); if (facs->Flags & ACPI_FACS_S4_BIOS_PRESENT) printf("S4BIOS"); printf("\n"); if (facs->XFirmwareWakingVector != 0) { printf("\tX_Firm_Wake_Vec=%08lx\n", (u_long)facs->XFirmwareWakingVector); } printf("\tVersion=%u\n", facs->Version); printf(END_COMMENT); } static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp) { printf(BEGIN_COMMENT); acpi_print_sdt(dsdp); printf(END_COMMENT); } int acpi_checksum(void *p, size_t length) { uint8_t *bp; uint8_t sum; bp = p; sum = 0; while (length--) sum += *bp++; return (sum); } static ACPI_TABLE_HEADER * acpi_map_sdt(vm_offset_t pa) { ACPI_TABLE_HEADER *sp; sp = acpi_map_physical(pa, sizeof(ACPI_TABLE_HEADER)); sp = acpi_map_physical(pa, sp->Length); return (sp); } static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp) { printf(BEGIN_COMMENT); printf(" RSD PTR: OEM="); acpi_print_string(rp->OemId, ACPI_OEM_ID_SIZE); printf(", ACPI_Rev=%s (%d)\n", rp->Revision < 2 ? "1.0x" : "2.0x", rp->Revision); if (rp->Revision < 2) { printf("\tRSDT=0x%08x, cksum=%u\n", rp->RsdtPhysicalAddress, rp->Checksum); } else { printf("\tXSDT=0x%08lx, length=%u, cksum=%u\n", (u_long)rp->XsdtPhysicalAddress, rp->Length, rp->ExtendedChecksum); } printf(END_COMMENT); } static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp) { ACPI_TABLE_HEADER *sdp; ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; vm_offset_t addr; int entries, i; acpi_print_rsdt(rsdp); rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; for (i = 0; i < entries; i++) { switch (addr_size) { case 4: addr = le32toh(rsdt->TableOffsetEntry[i]); break; case 8: addr = le64toh(xsdt->TableOffsetEntry[i]); break; default: assert((addr = 0)); } sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); if (acpi_checksum(sdp, sdp->Length)) { warnx("RSDT entry %d (sig %.4s) is corrupt", i, sdp->Signature); if (sflag) continue; } if (!memcmp(sdp->Signature, ACPI_SIG_FADT, 4)) acpi_handle_fadt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_BERT, 4)) acpi_handle_bert(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_BOOT, 4)) acpi_handle_boot(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_CPEP, 4)) acpi_handle_cpep(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_DBGP, 4)) acpi_handle_dbgp(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_EINJ, 4)) acpi_handle_einj(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_ERST, 4)) acpi_handle_erst(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MADT, 4)) acpi_handle_madt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MSCT, 4)) acpi_handle_msct(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_HEST, 4)) acpi_handle_hest(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_HPET, 4)) acpi_handle_hpet(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_ECDT, 4)) acpi_handle_ecdt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MCFG, 4)) acpi_handle_mcfg(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SBST, 4)) acpi_handle_sbst(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SLIT, 4)) acpi_handle_slit(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SPCR, 4)) acpi_handle_spcr(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SRAT, 4)) acpi_handle_srat(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_TCPA, 4)) acpi_handle_tcpa(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WAET, 4)) acpi_handle_waet(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WDAT, 4)) acpi_handle_wdat(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WDRT, 4)) acpi_handle_wdrt(sdp); else { printf(BEGIN_COMMENT); acpi_print_sdt(sdp); acpi_dump_bytes(sdp); printf(END_COMMENT); } } } ACPI_TABLE_HEADER * sdt_load_devmem(void) { ACPI_TABLE_RSDP *rp; ACPI_TABLE_HEADER *rsdp; rp = acpi_find_rsd_ptr(); if (!rp) errx(EXIT_FAILURE, "Can't find ACPI information"); if (tflag) acpi_print_rsd_ptr(rp); if (rp->Revision < 2) { rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->RsdtPhysicalAddress); if (memcmp(rsdp->Signature, "RSDT", 4) != 0 || acpi_checksum(rsdp, rsdp->Length) != 0) errx(EXIT_FAILURE, "RSDT is corrupted"); addr_size = sizeof(uint32_t); } else { rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->XsdtPhysicalAddress); if (memcmp(rsdp->Signature, "XSDT", 4) != 0 || acpi_checksum(rsdp, rsdp->Length) != 0) errx(EXIT_FAILURE, "XSDT is corrupted"); addr_size = sizeof(uint64_t); } return (rsdp); } /* Write the DSDT to a file, concatenating any SSDTs (if present). */ static int write_dsdt(int fd, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdt) { ACPI_TABLE_HEADER sdt; ACPI_TABLE_HEADER *ssdt; uint8_t sum; /* Create a new checksum to account for the DSDT and any SSDTs. */ sdt = *dsdt; if (rsdt != NULL) { sdt.Checksum = 0; sum = acpi_checksum(dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, NULL); while (ssdt != NULL) { sdt.Length += ssdt->Length - sizeof(ACPI_TABLE_HEADER); sum += acpi_checksum(ssdt + 1, ssdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, ssdt); } sum += acpi_checksum(&sdt, sizeof(ACPI_TABLE_HEADER)); sdt.Checksum -= sum; } /* Write out the DSDT header and body. */ write(fd, &sdt, sizeof(ACPI_TABLE_HEADER)); write(fd, dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER)); /* Write out any SSDTs (if present.) */ if (rsdt != NULL) { ssdt = sdt_from_rsdt(rsdt, "SSDT", NULL); while (ssdt != NULL) { write(fd, ssdt + 1, ssdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt); } } return (0); } void dsdt_save_file(char *outfile, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp) { int fd; mode_t mode; assert(outfile != NULL); mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; fd = open(outfile, O_WRONLY | O_CREAT | O_TRUNC, mode); if (fd == -1) { perror("dsdt_save_file"); return; } write_dsdt(fd, rsdt, dsdp); close(fd); } void aml_disassemble(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp) { char buf[MAXPATHLEN], tmpstr[MAXPATHLEN]; const char *tmpdir; char *tmpext; FILE *fp; size_t len; int fd; if (rsdt == NULL) errx(EXIT_FAILURE, "aml_disassemble: invalid rsdt"); if (dsdp == NULL) errx(EXIT_FAILURE, "aml_disassemble: invalid dsdp"); tmpdir = getenv("TMPDIR"); if (tmpdir == NULL) tmpdir = _PATH_TMP; strlcpy(tmpstr, tmpdir, sizeof(tmpstr)); if (realpath(tmpstr, buf) == NULL) { perror("realpath tmp file"); return; } strlcpy(tmpstr, buf, sizeof(tmpstr)); strlcat(tmpstr, "/acpidump.", sizeof(tmpstr)); len = strlen(tmpstr); tmpext = tmpstr + len; strlcpy(tmpext, "XXXXXX", sizeof(tmpstr) - len); fd = mkstemp(tmpstr); if (fd < 0) { perror("iasl tmp file"); return; } write_dsdt(fd, rsdt, dsdp); close(fd); /* Run iasl -d on the temp file */ if (fork() == 0) { close(STDOUT_FILENO); if (vflag == 0) close(STDERR_FILENO); execl("/usr/bin/iasl", "iasl", "-d", tmpstr, NULL); err(EXIT_FAILURE, "exec"); } wait(NULL); unlink(tmpstr); /* Dump iasl's output to stdout */ strlcpy(tmpext, "dsl", sizeof(tmpstr) - len); fp = fopen(tmpstr, "r"); unlink(tmpstr); if (fp == NULL) { perror("iasl tmp file (read)"); return; } while ((len = fread(buf, 1, sizeof(buf), fp)) > 0) fwrite(buf, 1, len, stdout); fclose(fp); } void sdt_print_all(ACPI_TABLE_HEADER *rsdp) { acpi_handle_rsdt(rsdp); } /* Fetch a table matching the given signature via the RSDT. */ ACPI_TABLE_HEADER * sdt_from_rsdt(ACPI_TABLE_HEADER *rsdp, const char *sig, ACPI_TABLE_HEADER *last) { ACPI_TABLE_HEADER *sdt; ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; vm_offset_t addr; int entries, i; rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; for (i = 0; i < entries; i++) { switch (addr_size) { case 4: addr = le32toh(rsdt->TableOffsetEntry[i]); break; case 8: addr = le64toh(xsdt->TableOffsetEntry[i]); break; default: assert((addr = 0)); } sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); if (last != NULL) { if (sdt == last) last = NULL; continue; } if (memcmp(sdt->Signature, sig, strlen(sig))) continue; if (acpi_checksum(sdt, sdt->Length)) errx(EXIT_FAILURE, "RSDT entry %d is corrupt", i); return (sdt); } return (NULL); } ACPI_TABLE_HEADER * dsdt_from_fadt(ACPI_TABLE_FADT *fadt) { ACPI_TABLE_HEADER *sdt; /* Use the DSDT address if it is version 1, otherwise use XDSDT. */ if (acpi_get_fadt_revision(fadt) == 1) sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt); else sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt); if (acpi_checksum(sdt, sdt->Length)) errx(EXIT_FAILURE, "DSDT is corrupt\n"); return (sdt); }