/* $NetBSD: zs.c,v 1.1 1998/02/18 13:48:14 tsubai Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zsc.h" /* NZSC */ #define NZS NZSC /* Make life easier for the initialized arrays here. */ #if NZS < 2 #undef NZS #define NZS 2 #endif extern void Debugger __P((void)); /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zs_major = 1; /* * The news3400 provides a 4.9152 MHz clock to the ZS chips. */ #define PCLK (9600 * 512) /* PCLK pin input clock rate */ /* * Define interrupt levels. */ #define ZSHARD_PRI 64 #define ZS_DELAY() delay(2) /* The layout of this is hardware-dependent (padding, order). */ struct zschan { volatile u_char zc_csr; /* ctrl,status, and indirect access */ volatile u_char zc_data; /* data */ }; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Saved PROM mappings */ static struct zsdevice *zsaddr[NZS] = { (void *)SCCPORT0B, (void *)SCCPORT1B, }; /* Flags from cninit() */ static int zs_hwflags[NZS][2]; /* Default speed for each channel */ static int zs_defspeed[NZS][2] = { { 9600, /* tty00 */ 9600 }, /* tty01 */ { 9600, /* tty10 */ 9600 }, /* tty11 */ }; static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ ZSHARD_PRI, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 14, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; struct zschan * zs_get_chan_addr(zs_unit, channel) int zs_unit, channel; { struct zsdevice *addr; struct zschan *zc; if (zs_unit >= NZS) return NULL; addr = zsaddr[zs_unit]; if (addr == NULL) return NULL; if (channel == 0) { zc = &addr->zs_chan_a; } else { zc = &addr->zs_chan_b; } return (zc); } /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zs_match __P((struct device *, struct cfdata *, void *)); static void zs_attach __P((struct device *, struct device *, void *)); static int zs_print __P((void *, const char *name)); struct cfattach zsc_ca = { sizeof(struct zsc_softc), zs_match, zs_attach }; extern struct cfdriver zsc_cd; static void zshard __P((void *)); static void zssoft __P((void *)); static int zs_get_speed __P((struct zs_chanstate *)); /* * Is the zs chip present? */ static int zs_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct confargs *ca = aux; int unit = cf->cf_unit; void *va; if (strcmp(ca->ca_name, "zsc")) return 0; /* Make sure zs_init() found mappings. */ va = zsaddr[unit]; if (va == NULL) return 0; /* This returns -1 on a fault (bus error). */ if (badaddr(va, 1)) return 0; return 1; } /* * Attach a found zs. * * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static void zs_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *) self; /* struct confargs *ca = aux; */ struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct zs_chanstate *cs; int s, zs_unit, channel; static int didintr; zs_unit = zsc->zsc_dev.dv_unit; printf("\n"); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zs_unit][channel]; cs = &zsc->zsc_cs_store[channel]; zsc->zsc_cs[channel] = cs; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; zc = zs_get_chan_addr(zs_unit, channel); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); /* XXX: Get these from the EEPROM instead? */ /* XXX: See the mvme167 code. Better. */ if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) cs->cs_defspeed = zs_get_speed(cs); else cs->cs_defspeed = zs_defspeed[zs_unit][channel]; cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zs_print)) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splhigh(); zs_write_reg(cs, 9, reset); splx(s); } } /* * Now safe to install interrupt handlers. Note the arguments * to the interrupt handlers aren't used. Note, we only do this * once since both SCCs interrupt at the same level and vector. */ if (!didintr) { didintr = 1; #if 0 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI); isr_add_autovect(zshard, NULL, ca->ca_intpri); #endif } /* XXX; evcnt_attach() ? */ /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splhigh(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } static int zs_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s: ", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } static volatile int zssoftpending; /* * Our ZS chips all share a common, autovectored interrupt, * so we have to look at all of them on each interrupt. */ static void zshard(arg) void *arg; { register struct zsc_softc *zsc; register int unit, rval, softreq; rval = softreq = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; rval |= zsc_intr_hard(zsc); softreq |= zsc->zsc_cs[0]->cs_softreq; softreq |= zsc->zsc_cs[1]->cs_softreq; } /* We are at splzs here, so no need to lock. */ if (softreq && (zssoftpending == 0)) { zssoftpending = 1; timeout(zssoft, arg, 1); /*isr_soft_request(ZSSOFT_PRI);*/ } return; } /* * Similar scheme as for zshard (look at all of them) */ static void zssoft(arg) void *arg; { register struct zsc_softc *zsc; register int s, unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return; /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. The order of * these next two statements prevents our clearing * the soft intr bit just after zshard has set it. */ /*isr_soft_clear(ZSSOFT_PRI);*/ /*zssoftpending = 0;*/ /* Make sure we call the tty layer at spltty. */ s = spltty(); for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; (void) zsc_intr_soft(zsc); } splx(s); zssoftpending = 0; return; } /* * Compute the current baud rate given a ZS channel. */ static int zs_get_speed(cs) struct zs_chanstate *cs; { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(cs, bps) struct zs_chanstate *cs; int bps; /* bits per second */ { int tconst, real_bps; if (bps == 0) return (0); #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(cs, cflag) struct zs_chanstate *cs; int cflag; /* bits per second */ { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); if ((cflag & (CLOCAL | MDMBUF)) != 0) cs->cs_rr0_dcd = 0; else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { register u_char val; val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_data(cs) struct zs_chanstate *cs; { register u_char val; val = *cs->cs_reg_data; ZS_DELAY(); return val; } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_data = val; ZS_DELAY(); } void zs_abort(cs) struct zs_chanstate *cs; { } /* * Polled input char. */ int zs_getc(arg) void *arg; { register volatile struct zschan *zc = arg; register int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ void zs_putc(arg, c) void *arg; int c; { register volatile struct zschan *zc = arg; register int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); zc->zc_data = c; ZS_DELAY(); splx(s); } /*****************************************************************/ static void zscnprobe __P((struct consdev *)); static void zscninit __P((struct consdev *)); static int zscngetc __P((dev_t)); static void zscnputc __P((dev_t, int)); static void zscnpollc __P((dev_t, int)); struct consdev consdev_zs = { zscnprobe, zscninit, zscngetc, zscnputc, zscnpollc }; void zscnprobe(cn) struct consdev *cn; { } void zscninit(cn) struct consdev *cn; { cn->cn_dev = makedev(zs_major, 0); cn->cn_pri = CN_REMOTE; zs_hwflags[0][0] = ZS_HWFLAG_CONSOLE; } int zscngetc(dev) dev_t dev; { return zs_getc(SCCPORT0A); } void zscnputc(dev, c) dev_t dev; int c; { zs_putc(SCCPORT0A, c); } void zscnpollc(dev, on) dev_t dev; int on; { } /* * ZS vector interrupt service routine. */ void zs_intr() { int vec; vec = *(volatile u_char *)SCCVECT; zshard((void *)vec); /* XXX vec is not used */ }