/* $NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $ */ /*- * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 */ #include __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $"); #include "opt_ptrace.h" #include "opt_multiprocessor.h" #include "opt_compat_sunos.h" #include "opt_compat_netbsd.h" #include "opt_compat_netbsd32.h" #include "opt_pax.h" #define SIGPROP /* include signal properties table */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PAX_SEGVGUARD #include #endif /* PAX_SEGVGUARD */ #include #include static void ksiginfo_exechook(struct proc *, void *); static void proc_stop_callout(void *); int sigunwait(struct proc *, const ksiginfo_t *); void sigput(sigpend_t *, struct proc *, ksiginfo_t *); int sigpost(struct lwp *, sig_t, int, int); int sigchecktrace(sigpend_t **); void sigswitch(bool, int, int); void sigrealloc(ksiginfo_t *); sigset_t contsigmask, stopsigmask, sigcantmask; struct pool sigacts_pool; /* memory pool for sigacts structures */ static void sigacts_poolpage_free(struct pool *, void *); static void *sigacts_poolpage_alloc(struct pool *, int); static callout_t proc_stop_ch; static struct pool_allocator sigactspool_allocator = { .pa_alloc = sigacts_poolpage_alloc, .pa_free = sigacts_poolpage_free, }; #ifdef DEBUG int kern_logsigexit = 1; #else int kern_logsigexit = 0; #endif static const char logcoredump[] = "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; static const char lognocoredump[] = "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", &pool_allocator_nointr, IPL_NONE); POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL, IPL_VM); /* * signal_init: * * Initialize global signal-related data structures. */ void signal_init(void) { sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", sizeof(struct sigacts) > PAGE_SIZE ? &sigactspool_allocator : &pool_allocator_nointr, IPL_NONE); exechook_establish(ksiginfo_exechook, NULL); callout_init(&proc_stop_ch, CALLOUT_MPSAFE); callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); } /* * sigacts_poolpage_alloc: * * Allocate a page for the sigacts memory pool. */ static void * sigacts_poolpage_alloc(struct pool *pp, int flags) { return (void *)uvm_km_alloc(kernel_map, (PAGE_SIZE)*2, (PAGE_SIZE)*2, ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED); } /* * sigacts_poolpage_free: * * Free a page on behalf of the sigacts memory pool. */ static void sigacts_poolpage_free(struct pool *pp, void *v) { uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); } /* * sigactsinit: * * Create an initial sigctx structure, using the same signal state as * p. If 'share' is set, share the sigctx_proc part, otherwise just * copy it from parent. */ struct sigacts * sigactsinit(struct proc *pp, int share) { struct sigacts *ps, *ps2; ps = pp->p_sigacts; if (share) { mutex_enter(&ps->sa_mutex); ps->sa_refcnt++; mutex_exit(&ps->sa_mutex); ps2 = ps; } else { ps2 = pool_get(&sigacts_pool, PR_WAITOK); /* XXX IPL_SCHED to match p_smutex */ mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); mutex_enter(&ps->sa_mutex); memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); mutex_exit(&ps->sa_mutex); ps2->sa_refcnt = 1; } return ps2; } /* * sigactsunshare: * * Make this process not share its sigctx, maintaining all * signal state. */ void sigactsunshare(struct proc *p) { struct sigacts *ps, *oldps; oldps = p->p_sigacts; if (oldps->sa_refcnt == 1) return; ps = pool_get(&sigacts_pool, PR_WAITOK); /* XXX IPL_SCHED to match p_smutex */ mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); p->p_sigacts = ps; sigactsfree(oldps); } /* * sigactsfree; * * Release a sigctx structure. */ void sigactsfree(struct sigacts *ps) { int refcnt; mutex_enter(&ps->sa_mutex); refcnt = --ps->sa_refcnt; mutex_exit(&ps->sa_mutex); if (refcnt == 0) { mutex_destroy(&ps->sa_mutex); pool_put(&sigacts_pool, ps); } } /* * siginit: * * Initialize signal state for process 0; set to ignore signals that * are ignored by default and disable the signal stack. Locking not * required as the system is still cold. */ void siginit(struct proc *p) { struct lwp *l; struct sigacts *ps; int signo, prop; ps = p->p_sigacts; sigemptyset(&contsigmask); sigemptyset(&stopsigmask); sigemptyset(&sigcantmask); for (signo = 1; signo < NSIG; signo++) { prop = sigprop[signo]; if (prop & SA_CONT) sigaddset(&contsigmask, signo); if (prop & SA_STOP) sigaddset(&stopsigmask, signo); if (prop & SA_CANTMASK) sigaddset(&sigcantmask, signo); if (prop & SA_IGNORE && signo != SIGCONT) sigaddset(&p->p_sigctx.ps_sigignore, signo); sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; } sigemptyset(&p->p_sigctx.ps_sigcatch); p->p_sflag &= ~PS_NOCLDSTOP; ksiginfo_queue_init(&p->p_sigpend.sp_info); sigemptyset(&p->p_sigpend.sp_set); /* * Reset per LWP state. */ l = LIST_FIRST(&p->p_lwps); l->l_sigwaited = NULL; l->l_sigstk.ss_flags = SS_DISABLE; l->l_sigstk.ss_size = 0; l->l_sigstk.ss_sp = 0; ksiginfo_queue_init(&l->l_sigpend.sp_info); sigemptyset(&l->l_sigpend.sp_set); /* One reference. */ ps->sa_refcnt = 1; } /* * execsigs: * * Reset signals for an exec of the specified process. */ void execsigs(struct proc *p) { struct sigacts *ps; struct lwp *l; int signo, prop; sigset_t tset; ksiginfoq_t kq; KASSERT(p->p_nlwps == 1); sigactsunshare(p); ps = p->p_sigacts; /* * Reset caught signals. Held signals remain held through * l->l_sigmask (unless they were caught, and are now ignored * by default). * * No need to lock yet, the process has only one LWP and * at this point the sigacts are private to the process. */ sigemptyset(&tset); for (signo = 1; signo < NSIG; signo++) { if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { prop = sigprop[signo]; if (prop & SA_IGNORE) { if ((prop & SA_CONT) == 0) sigaddset(&p->p_sigctx.ps_sigignore, signo); sigaddset(&tset, signo); } SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; } sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; } ksiginfo_queue_init(&kq); mutex_enter(&p->p_smutex); sigclearall(p, &tset, &kq); sigemptyset(&p->p_sigctx.ps_sigcatch); /* * Reset no zombies if child dies flag as Solaris does. */ p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; /* * Reset per-LWP state. */ l = LIST_FIRST(&p->p_lwps); l->l_sigwaited = NULL; l->l_sigstk.ss_flags = SS_DISABLE; l->l_sigstk.ss_size = 0; l->l_sigstk.ss_sp = 0; ksiginfo_queue_init(&l->l_sigpend.sp_info); sigemptyset(&l->l_sigpend.sp_set); mutex_exit(&p->p_smutex); ksiginfo_queue_drain(&kq); } /* * ksiginfo_exechook: * * Free all pending ksiginfo entries from a process on exec. * Additionally, drain any unused ksiginfo structures in the * system back to the pool. * * XXX This should not be a hook, every process has signals. */ static void ksiginfo_exechook(struct proc *p, void *v) { ksiginfoq_t kq; ksiginfo_queue_init(&kq); mutex_enter(&p->p_smutex); sigclearall(p, NULL, &kq); mutex_exit(&p->p_smutex); ksiginfo_queue_drain(&kq); } /* * ksiginfo_alloc: * * Allocate a new ksiginfo structure from the pool, and optionally copy * an existing one. If the existing ksiginfo_t is from the pool, and * has not been queued somewhere, then just return it. Additionally, * if the existing ksiginfo_t does not contain any information beyond * the signal number, then just return it. */ ksiginfo_t * ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) { ksiginfo_t *kp; int s; if (ok != NULL) { if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == KSI_FROMPOOL) return ok; if (KSI_EMPTY_P(ok)) return ok; } s = splvm(); kp = pool_get(&ksiginfo_pool, flags); splx(s); if (kp == NULL) { #ifdef DIAGNOSTIC printf("Out of memory allocating ksiginfo for pid %d\n", p->p_pid); #endif return NULL; } if (ok != NULL) { memcpy(kp, ok, sizeof(*kp)); kp->ksi_flags &= ~KSI_QUEUED; } else KSI_INIT_EMPTY(kp); kp->ksi_flags |= KSI_FROMPOOL; return kp; } /* * ksiginfo_free: * * If the given ksiginfo_t is from the pool and has not been queued, * then free it. */ void ksiginfo_free(ksiginfo_t *kp) { int s; if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) return; s = splvm(); pool_put(&ksiginfo_pool, kp); splx(s); } /* * ksiginfo_queue_drain: * * Drain a non-empty ksiginfo_t queue. */ void ksiginfo_queue_drain0(ksiginfoq_t *kq) { ksiginfo_t *ksi; int s; KASSERT(!CIRCLEQ_EMPTY(kq)); KERNEL_LOCK(1, curlwp); /* XXXSMP */ while (!CIRCLEQ_EMPTY(kq)) { ksi = CIRCLEQ_FIRST(kq); CIRCLEQ_REMOVE(kq, ksi, ksi_list); s = splvm(); pool_put(&ksiginfo_pool, ksi); splx(s); } KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */ } /* * sigget: * * Fetch the first pending signal from a set. Optionally, also fetch * or manufacture a ksiginfo element. Returns the number of the first * pending signal, or zero. */ int sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) { ksiginfo_t *ksi; sigset_t tset; /* If there's no pending set, the signal is from the debugger. */ if (sp == NULL) { if (out != NULL) { KSI_INIT(out); out->ksi_info._signo = signo; out->ksi_info._code = SI_USER; } return signo; } /* Construct mask from signo, and 'mask'. */ if (signo == 0) { if (mask != NULL) { tset = *mask; __sigandset(&sp->sp_set, &tset); } else tset = sp->sp_set; /* If there are no signals pending, that's it. */ if ((signo = firstsig(&tset)) == 0) return 0; } else { KASSERT(sigismember(&sp->sp_set, signo)); } sigdelset(&sp->sp_set, signo); /* Find siginfo and copy it out. */ CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { if (ksi->ksi_signo == signo) { CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); ksi->ksi_flags &= ~KSI_QUEUED; if (out != NULL) { memcpy(out, ksi, sizeof(*out)); out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); } ksiginfo_free(ksi); return signo; } } /* If there's no siginfo, then manufacture it. */ if (out != NULL) { KSI_INIT(out); out->ksi_info._signo = signo; out->ksi_info._code = SI_USER; } return signo; } /* * sigput: * * Append a new ksiginfo element to the list of pending ksiginfo's, if * we need to (e.g. SA_SIGINFO was requested). */ void sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) { ksiginfo_t *kp; struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); KASSERT(mutex_owned(&p->p_smutex)); KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); sigaddset(&sp->sp_set, ksi->ksi_signo); /* * If siginfo is not required, or there is none, then just mark the * signal as pending. */ if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi)) return; KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); #ifdef notyet /* XXX: QUEUING */ if (ksi->ksi_signo < SIGRTMIN) #endif { CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { if (kp->ksi_signo == ksi->ksi_signo) { KSI_COPY(ksi, kp); kp->ksi_flags |= KSI_QUEUED; return; } } } ksi->ksi_flags |= KSI_QUEUED; CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); } /* * sigclear: * * Clear all pending signals in the specified set. */ void sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) { ksiginfo_t *ksi, *next; if (mask == NULL) sigemptyset(&sp->sp_set); else sigminusset(mask, &sp->sp_set); ksi = CIRCLEQ_FIRST(&sp->sp_info); for (; ksi != (void *)&sp->sp_info; ksi = next) { next = CIRCLEQ_NEXT(ksi, ksi_list); if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); } } } /* * sigclearall: * * Clear all pending signals in the specified set from a process and * its LWPs. */ void sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) { struct lwp *l; KASSERT(mutex_owned(&p->p_smutex)); sigclear(&p->p_sigpend, mask, kq); LIST_FOREACH(l, &p->p_lwps, l_sibling) { sigclear(&l->l_sigpend, mask, kq); } } /* * sigispending: * * Return true if there are pending signals for the current LWP. May * be called unlocked provided that LW_PENDSIG is set, and that the * signal has been posted to the appopriate queue before LW_PENDSIG is * set. */ int sigispending(struct lwp *l, int signo) { struct proc *p = l->l_proc; sigset_t tset; membar_consumer(); tset = l->l_sigpend.sp_set; sigplusset(&p->p_sigpend.sp_set, &tset); sigminusset(&p->p_sigctx.ps_sigignore, &tset); sigminusset(&l->l_sigmask, &tset); if (signo == 0) { if (firstsig(&tset) != 0) return EINTR; } else if (sigismember(&tset, signo)) return EINTR; return 0; } /* * siginfo_alloc: * * Allocate a new siginfo_t structure from the pool. */ siginfo_t * siginfo_alloc(int flags) { return pool_get(&siginfo_pool, flags); } /* * siginfo_free: * * Return a siginfo_t structure to the pool. */ void siginfo_free(void *arg) { pool_put(&siginfo_pool, arg); } void getucontext(struct lwp *l, ucontext_t *ucp) { struct proc *p = l->l_proc; KASSERT(mutex_owned(&p->p_smutex)); ucp->uc_flags = 0; ucp->uc_link = l->l_ctxlink; ucp->uc_sigmask = l->l_sigmask; ucp->uc_flags |= _UC_SIGMASK; /* * The (unsupplied) definition of the `current execution stack' * in the System V Interface Definition appears to allow returning * the main context stack. */ if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ } else { /* Simply copy alternate signal execution stack. */ ucp->uc_stack = l->l_sigstk; } ucp->uc_flags |= _UC_STACK; mutex_exit(&p->p_smutex); cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); mutex_enter(&p->p_smutex); } int setucontext(struct lwp *l, const ucontext_t *ucp) { struct proc *p = l->l_proc; int error; KASSERT(mutex_owned(&p->p_smutex)); if ((ucp->uc_flags & _UC_SIGMASK) != 0) { error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); if (error != 0) return error; } mutex_exit(&p->p_smutex); error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); mutex_enter(&p->p_smutex); if (error != 0) return (error); l->l_ctxlink = ucp->uc_link; /* * If there was stack information, update whether or not we are * still running on an alternate signal stack. */ if ((ucp->uc_flags & _UC_STACK) != 0) { if (ucp->uc_stack.ss_flags & SS_ONSTACK) l->l_sigstk.ss_flags |= SS_ONSTACK; else l->l_sigstk.ss_flags &= ~SS_ONSTACK; } return 0; } /* * Common code for kill process group/broadcast kill. cp is calling * process. */ int killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) { struct proc *p, *cp; kauth_cred_t pc; struct pgrp *pgrp; int nfound; int signo = ksi->ksi_signo; cp = l->l_proc; pc = l->l_cred; nfound = 0; mutex_enter(&proclist_lock); if (all) { /* * broadcast */ PROCLIST_FOREACH(p, &allproc) { if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp) continue; mutex_enter(&p->p_mutex); if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, NULL) == 0) { nfound++; if (signo) { mutex_enter(&proclist_mutex); mutex_enter(&p->p_smutex); kpsignal2(p, ksi); mutex_exit(&p->p_smutex); mutex_exit(&proclist_mutex); } } mutex_exit(&p->p_mutex); } } else { if (pgid == 0) /* * zero pgid means send to my process group. */ pgrp = cp->p_pgrp; else { pgrp = pg_find(pgid, PFIND_LOCKED); if (pgrp == NULL) goto out; } LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) continue; mutex_enter(&p->p_mutex); if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, NULL) == 0) { nfound++; if (signo) { mutex_enter(&proclist_mutex); mutex_enter(&p->p_smutex); if (P_ZOMBIE(p) == 0) kpsignal2(p, ksi); mutex_exit(&p->p_smutex); mutex_exit(&proclist_mutex); } } mutex_exit(&p->p_mutex); } } out: mutex_exit(&proclist_lock); return (nfound ? 0 : ESRCH); } /* * Send a signal to a process group. If checktty is 1, limit to members * which have a controlling terminal. */ void pgsignal(struct pgrp *pgrp, int sig, int checkctty) { ksiginfo_t ksi; KASSERT(mutex_owned(&proclist_mutex)); KSI_INIT_EMPTY(&ksi); ksi.ksi_signo = sig; kpgsignal(pgrp, &ksi, NULL, checkctty); } void kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) { struct proc *p; KASSERT(mutex_owned(&proclist_mutex)); if (pgrp) LIST_FOREACH(p, &pgrp->pg_members, p_pglist) if (checkctty == 0 || p->p_lflag & PL_CONTROLT) kpsignal(p, ksi, data); } /* * Send a signal caused by a trap to the current LWP. If it will be caught * immediately, deliver it with correct code. Otherwise, post it normally. */ void trapsignal(struct lwp *l, ksiginfo_t *ksi) { struct proc *p; struct sigacts *ps; int signo = ksi->ksi_signo; KASSERT(KSI_TRAP_P(ksi)); ksi->ksi_lid = l->l_lid; p = l->l_proc; mutex_enter(&proclist_mutex); mutex_enter(&p->p_smutex); ps = p->p_sigacts; if ((p->p_slflag & PSL_TRACED) == 0 && sigismember(&p->p_sigctx.ps_sigcatch, signo) && !sigismember(&l->l_sigmask, signo)) { mutex_exit(&proclist_mutex); l->l_ru.ru_nsignals++; kpsendsig(l, ksi, &l->l_sigmask); mutex_exit(&p->p_smutex); ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, &l->l_sigmask, ksi); } else { /* XXX for core dump/debugger */ p->p_sigctx.ps_lwp = l->l_lid; p->p_sigctx.ps_signo = ksi->ksi_signo; p->p_sigctx.ps_code = ksi->ksi_trap; kpsignal2(p, ksi); mutex_exit(&proclist_mutex); mutex_exit(&p->p_smutex); } } /* * Fill in signal information and signal the parent for a child status change. */ void child_psignal(struct proc *p, int mask) { ksiginfo_t ksi; struct proc *q; int xstat; KASSERT(mutex_owned(&proclist_mutex)); KASSERT(mutex_owned(&p->p_smutex)); xstat = p->p_xstat; KSI_INIT(&ksi); ksi.ksi_signo = SIGCHLD; ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); ksi.ksi_pid = p->p_pid; ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); ksi.ksi_status = xstat; ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; q = p->p_pptr; mutex_exit(&p->p_smutex); mutex_enter(&q->p_smutex); if ((q->p_sflag & mask) == 0) kpsignal2(q, &ksi); mutex_exit(&q->p_smutex); mutex_enter(&p->p_smutex); } void psignal(struct proc *p, int signo) { ksiginfo_t ksi; KASSERT(mutex_owned(&proclist_mutex)); KSI_INIT_EMPTY(&ksi); ksi.ksi_signo = signo; mutex_enter(&p->p_smutex); kpsignal2(p, &ksi); mutex_exit(&p->p_smutex); } void kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) { fdfile_t *ff; file_t *fp; KASSERT(mutex_owned(&proclist_mutex)); if ((p->p_sflag & PS_WEXIT) == 0 && data) { size_t fd; filedesc_t *fdp = p->p_fd; /* XXXSMP locking */ ksi->ksi_fd = -1; for (fd = 0; fd < fdp->fd_nfiles; fd++) { if ((ff = fdp->fd_ofiles[fd]) == NULL) continue; if ((fp = ff->ff_file) == NULL) continue; if (fp->f_data == data) { ksi->ksi_fd = fd; break; } } } mutex_enter(&p->p_smutex); kpsignal2(p, ksi); mutex_exit(&p->p_smutex); } /* * sigismasked: * * Returns true if signal is ignored or masked for the specified LWP. */ int sigismasked(struct lwp *l, int sig) { struct proc *p = l->l_proc; return (sigismember(&p->p_sigctx.ps_sigignore, sig) || sigismember(&l->l_sigmask, sig)); } /* * sigpost: * * Post a pending signal to an LWP. Returns non-zero if the LWP was * able to take the signal. */ int sigpost(struct lwp *l, sig_t action, int prop, int sig) { int rv, masked; KASSERT(mutex_owned(&l->l_proc->p_smutex)); /* * If the LWP is on the way out, sigclear() will be busy draining all * pending signals. Don't give it more. */ if (l->l_refcnt == 0) return 0; lwp_lock(l); /* * Have the LWP check for signals. This ensures that even if no LWP * is found to take the signal immediately, it should be taken soon. */ l->l_flag |= LW_PENDSIG; /* * SIGCONT can be masked, but must always restart stopped LWPs. */ masked = sigismember(&l->l_sigmask, sig); if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { lwp_unlock(l); return 0; } /* * If killing the process, make it run fast. */ if (__predict_false((prop & SA_KILL) != 0) && action == SIG_DFL && l->l_priority < MAXPRI_USER) { KASSERT(l->l_class == SCHED_OTHER); lwp_changepri(l, MAXPRI_USER); } /* * If the LWP is running or on a run queue, then we win. If it's * sleeping interruptably, wake it and make it take the signal. If * the sleep isn't interruptable, then the chances are it will get * to see the signal soon anyhow. If suspended, it can't take the * signal right now. If it's LWP private or for all LWPs, save it * for later; otherwise punt. */ rv = 0; switch (l->l_stat) { case LSRUN: case LSONPROC: lwp_need_userret(l); rv = 1; break; case LSSLEEP: if ((l->l_flag & LW_SINTR) != 0) { /* setrunnable() will release the lock. */ setrunnable(l); return 1; } break; case LSSUSPENDED: if ((prop & SA_KILL) != 0) { /* lwp_continue() will release the lock. */ lwp_continue(l); return 1; } break; case LSSTOP: if ((prop & SA_STOP) != 0) break; /* * If the LWP is stopped and we are sending a continue * signal, then start it again. */ if ((prop & SA_CONT) != 0) { if (l->l_wchan != NULL) { l->l_stat = LSSLEEP; l->l_proc->p_nrlwps++; rv = 1; break; } /* setrunnable() will release the lock. */ setrunnable(l); return 1; } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { /* setrunnable() will release the lock. */ setrunnable(l); return 1; } break; default: break; } lwp_unlock(l); return rv; } /* * Notify an LWP that it has a pending signal. */ void signotify(struct lwp *l) { KASSERT(lwp_locked(l, NULL)); l->l_flag |= LW_PENDSIG; lwp_need_userret(l); } /* * Find an LWP within process p that is waiting on signal ksi, and hand * it on. */ int sigunwait(struct proc *p, const ksiginfo_t *ksi) { struct lwp *l; int signo; KASSERT(mutex_owned(&p->p_smutex)); signo = ksi->ksi_signo; if (ksi->ksi_lid != 0) { /* * Signal came via _lwp_kill(). Find the LWP and see if * it's interested. */ if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) return 0; if (l->l_sigwaited == NULL || !sigismember(&l->l_sigwaitset, signo)) return 0; } else { /* * Look for any LWP that may be interested. */ LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { KASSERT(l->l_sigwaited != NULL); if (sigismember(&l->l_sigwaitset, signo)) break; } } if (l != NULL) { l->l_sigwaited->ksi_info = ksi->ksi_info; l->l_sigwaited = NULL; LIST_REMOVE(l, l_sigwaiter); cv_signal(&l->l_sigcv); return 1; } return 0; } /* * Send the signal to the process. If the signal has an action, the action * is usually performed by the target process rather than the caller; we add * the signal to the set of pending signals for the process. * * Exceptions: * o When a stop signal is sent to a sleeping process that takes the * default action, the process is stopped without awakening it. * o SIGCONT restarts stopped processes (or puts them back to sleep) * regardless of the signal action (eg, blocked or ignored). * * Other ignored signals are discarded immediately. */ void kpsignal2(struct proc *p, ksiginfo_t *ksi) { int prop, lid, toall, signo = ksi->ksi_signo; struct sigacts *sa; struct lwp *l; ksiginfo_t *kp; ksiginfoq_t kq; sig_t action; KASSERT(mutex_owned(&proclist_mutex)); KASSERT(mutex_owned(&p->p_smutex)); KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); KASSERT(signo > 0 && signo < NSIG); /* * If the process is being created by fork, is a zombie or is * exiting, then just drop the signal here and bail out. */ if (p->p_stat != SACTIVE && p->p_stat != SSTOP) return; /* * Notify any interested parties of the signal. */ KNOTE(&p->p_klist, NOTE_SIGNAL | signo); /* * Some signals including SIGKILL must act on the entire process. */ kp = NULL; prop = sigprop[signo]; toall = ((prop & SA_TOALL) != 0); if (toall) lid = 0; else lid = ksi->ksi_lid; /* * If proc is traced, always give parent a chance. */ if (p->p_slflag & PSL_TRACED) { action = SIG_DFL; if (lid == 0) { /* * If the process is being traced and the signal * is being caught, make sure to save any ksiginfo. */ if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) return; sigput(&p->p_sigpend, p, kp); } } else { /* * If the signal was the result of a trap and is not being * caught, then reset it to default action so that the * process dumps core immediately. */ if (KSI_TRAP_P(ksi)) { sa = p->p_sigacts; mutex_enter(&sa->sa_mutex); if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { sigdelset(&p->p_sigctx.ps_sigignore, signo); SIGACTION(p, signo).sa_handler = SIG_DFL; } mutex_exit(&sa->sa_mutex); } /* * If the signal is being ignored, then drop it. Note: we * don't set SIGCONT in ps_sigignore, and if it is set to * SIG_IGN, action will be SIG_DFL here. */ if (sigismember(&p->p_sigctx.ps_sigignore, signo)) return; else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) action = SIG_CATCH; else { action = SIG_DFL; /* * If sending a tty stop signal to a member of an * orphaned process group, discard the signal here if * the action is default; don't stop the process below * if sleeping, and don't clear any pending SIGCONT. */ if (prop & SA_TTYSTOP && (p->p_sflag & PS_ORPHANPG) != 0) return; if (prop & SA_KILL && p->p_nice > NZERO) p->p_nice = NZERO; } } /* * If stopping or continuing a process, discard any pending * signals that would do the inverse. */ if ((prop & (SA_CONT | SA_STOP)) != 0) { ksiginfo_queue_init(&kq); if ((prop & SA_CONT) != 0) sigclear(&p->p_sigpend, &stopsigmask, &kq); if ((prop & SA_STOP) != 0) sigclear(&p->p_sigpend, &contsigmask, &kq); ksiginfo_queue_drain(&kq); /* XXXSMP */ } /* * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, * please!), check if any LWPs are waiting on it. If yes, pass on * the signal info. The signal won't be processed further here. */ if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && sigunwait(p, ksi)) return; /* * XXXSMP Should be allocated by the caller, we're holding locks * here. */ if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) return; /* * LWP private signals are easy - just find the LWP and post * the signal to it. */ if (lid != 0) { l = lwp_find(p, lid); if (l != NULL) { sigput(&l->l_sigpend, p, kp); membar_producer(); (void)sigpost(l, action, prop, kp->ksi_signo); } goto out; } /* * Some signals go to all LWPs, even if posted with _lwp_kill(). */ if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { if ((p->p_slflag & PSL_TRACED) != 0) goto deliver; /* * If SIGCONT is default (or ignored) and process is * asleep, we are finished; the process should not * be awakened. */ if ((prop & SA_CONT) != 0 && action == SIG_DFL) goto out; sigput(&p->p_sigpend, p, kp); } else { /* * Process is stopped or stopping. If traced, then no * further action is necessary. */ if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) goto out; if ((prop & (SA_CONT | SA_KILL)) != 0) { /* * Re-adjust p_nstopchild if the process wasn't * collected by its parent. */ p->p_stat = SACTIVE; p->p_sflag &= ~PS_STOPPING; if (!p->p_waited) p->p_pptr->p_nstopchild--; /* * If SIGCONT is default (or ignored), we continue * the process but don't leave the signal in * ps_siglist, as it has no further action. If * SIGCONT is held, we continue the process and * leave the signal in ps_siglist. If the process * catches SIGCONT, let it handle the signal itself. * If it isn't waiting on an event, then it goes * back to run state. Otherwise, process goes back * to sleep state. */ if ((prop & SA_CONT) == 0 || action != SIG_DFL) sigput(&p->p_sigpend, p, kp); } else if ((prop & SA_STOP) != 0) { /* * Already stopped, don't need to stop again. * (If we did the shell could get confused.) */ goto out; } else sigput(&p->p_sigpend, p, kp); } deliver: /* * Before we set LW_PENDSIG on any LWP, ensure that the signal is * visible on the per process list (for sigispending()). This * is unlikely to be needed in practice, but... */ membar_producer(); /* * Try to find an LWP that can take the signal. */ LIST_FOREACH(l, &p->p_lwps, l_sibling) if (sigpost(l, action, prop, kp->ksi_signo) && !toall) break; out: /* * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory * with locks held. The caller should take care of this. */ ksiginfo_free(kp); } void kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) { struct proc *p = l->l_proc; KASSERT(mutex_owned(&p->p_smutex)); (*p->p_emul->e_sendsig)(ksi, mask); } /* * Stop any LWPs sleeping interruptably. */ static void proc_stop_lwps(struct proc *p) { struct lwp *l; KASSERT(mutex_owned(&p->p_smutex)); KASSERT((p->p_sflag & PS_STOPPING) != 0); LIST_FOREACH(l, &p->p_lwps, l_sibling) { lwp_lock(l); if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { l->l_stat = LSSTOP; p->p_nrlwps--; } lwp_unlock(l); } } /* * Finish stopping of a process. Mark it stopped and notify the parent. * * Drop p_smutex briefly if PS_NOTIFYSTOP is set and ppsig is true. */ static void proc_stop_done(struct proc *p, bool ppsig, int ppmask) { KASSERT(mutex_owned(&proclist_mutex)); KASSERT(mutex_owned(&p->p_smutex)); KASSERT((p->p_sflag & PS_STOPPING) != 0); KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); p->p_sflag &= ~PS_STOPPING; p->p_stat = SSTOP; p->p_waited = 0; p->p_pptr->p_nstopchild++; if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { if (ppsig) { /* child_psignal drops p_smutex briefly. */ child_psignal(p, ppmask); } cv_broadcast(&p->p_pptr->p_waitcv); } } /* * Stop the current process and switch away when being stopped or traced. */ void sigswitch(bool ppsig, int ppmask, int signo) { struct lwp *l = curlwp; struct proc *p = l->l_proc; #ifdef MULTIPROCESSOR int biglocks; #endif KASSERT(mutex_owned(&p->p_smutex)); KASSERT(l->l_stat == LSONPROC); KASSERT(p->p_nrlwps > 0); /* * On entry we know that the process needs to stop. If it's * the result of a 'sideways' stop signal that has been sourced * through issignal(), then stop other LWPs in the process too. */ if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { KASSERT(signo != 0); proc_stop(p, 1, signo); KASSERT(p->p_nrlwps > 0); } /* * If we are the last live LWP, and the stop was a result of * a new signal, then signal the parent. */ if ((p->p_sflag & PS_STOPPING) != 0) { if (!mutex_tryenter(&proclist_mutex)) { mutex_exit(&p->p_smutex); mutex_enter(&proclist_mutex); mutex_enter(&p->p_smutex); } if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { /* * Note that proc_stop_done() can drop * p->p_smutex briefly. */ proc_stop_done(p, ppsig, ppmask); } mutex_exit(&proclist_mutex); } /* * Unlock and switch away. */ KERNEL_UNLOCK_ALL(l, &biglocks); if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { p->p_nrlwps--; lwp_lock(l); KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); l->l_stat = LSSTOP; lwp_unlock(l); } mutex_exit(&p->p_smutex); lwp_lock(l); mi_switch(l); KERNEL_LOCK(biglocks, l); mutex_enter(&p->p_smutex); } /* * Check for a signal from the debugger. */ int sigchecktrace(sigpend_t **spp) { struct lwp *l = curlwp; struct proc *p = l->l_proc; int signo; KASSERT(mutex_owned(&p->p_smutex)); /* * If we are no longer being traced, or the parent didn't * give us a signal, look for more signals. */ if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) return 0; /* If there's a pending SIGKILL, process it immediately. */ if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) return 0; /* * If the new signal is being masked, look for other signals. * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). */ signo = p->p_xstat; p->p_xstat = 0; if ((sigprop[signo] & SA_TOLWP) != 0) *spp = &l->l_sigpend; else *spp = &p->p_sigpend; if (sigismember(&l->l_sigmask, signo)) signo = 0; return signo; } /* * If the current process has received a signal (should be caught or cause * termination, should interrupt current syscall), return the signal number. * * Stop signals with default action are processed immediately, then cleared; * they aren't returned. This is checked after each entry to the system for * a syscall or trap. * * We will also return -1 if the process is exiting and the current LWP must * follow suit. * * Note that we may be called while on a sleep queue, so MUST NOT sleep. We * can switch away, though. */ int issignal(struct lwp *l) { struct proc *p = l->l_proc; int signo = 0, prop; sigpend_t *sp = NULL; sigset_t ss; KASSERT(mutex_owned(&p->p_smutex)); for (;;) { /* Discard any signals that we have decided not to take. */ if (signo != 0) (void)sigget(sp, NULL, signo, NULL); /* * If the process is stopped/stopping, then stop ourselves * now that we're on the kernel/userspace boundary. When * we awaken, check for a signal from the debugger. */ if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { sigswitch(true, PS_NOCLDSTOP, 0); signo = sigchecktrace(&sp); } else signo = 0; /* * If the debugger didn't provide a signal, find a pending * signal from our set. Check per-LWP signals first, and * then per-process. */ if (signo == 0) { sp = &l->l_sigpend; ss = sp->sp_set; if ((p->p_sflag & PS_PPWAIT) != 0) sigminusset(&stopsigmask, &ss); sigminusset(&l->l_sigmask, &ss); if ((signo = firstsig(&ss)) == 0) { sp = &p->p_sigpend; ss = sp->sp_set; if ((p->p_sflag & PS_PPWAIT) != 0) sigminusset(&stopsigmask, &ss); sigminusset(&l->l_sigmask, &ss); if ((signo = firstsig(&ss)) == 0) { /* * No signal pending - clear the * indicator and bail out. */ lwp_lock(l); l->l_flag &= ~LW_PENDSIG; lwp_unlock(l); sp = NULL; break; } } } /* * We should see pending but ignored signals only if * we are being traced. */ if (sigismember(&p->p_sigctx.ps_sigignore, signo) && (p->p_slflag & PSL_TRACED) == 0) { /* Discard the signal. */ continue; } /* * If traced, always stop, and stay stopped until released * by the debugger. If the our parent process is waiting * for us, don't hang as we could deadlock. */ if ((p->p_slflag & PSL_TRACED) != 0 && (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) { /* Take the signal. */ (void)sigget(sp, NULL, signo, NULL); p->p_xstat = signo; /* Emulation-specific handling of signal trace */ if (p->p_emul->e_tracesig == NULL || (*p->p_emul->e_tracesig)(p, signo) == 0) sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, signo); /* Check for a signal from the debugger. */ if ((signo = sigchecktrace(&sp)) == 0) continue; } prop = sigprop[signo]; /* * Decide whether the signal should be returned. */ switch ((long)SIGACTION(p, signo).sa_handler) { case (long)SIG_DFL: /* * Don't take default actions on system processes. */ if (p->p_pid <= 1) { #ifdef DIAGNOSTIC /* * Are you sure you want to ignore SIGSEGV * in init? XXX */ printf_nolog("Process (pid %d) got sig %d\n", p->p_pid, signo); #endif continue; } /* * If there is a pending stop signal to process with * default action, stop here, then clear the signal. * However, if process is member of an orphaned * process group, ignore tty stop signals. */ if (prop & SA_STOP) { if (p->p_slflag & PSL_TRACED || ((p->p_sflag & PS_ORPHANPG) != 0 && prop & SA_TTYSTOP)) { /* Ignore the signal. */ continue; } /* Take the signal. */ (void)sigget(sp, NULL, signo, NULL); p->p_xstat = signo; signo = 0; sigswitch(true, PS_NOCLDSTOP, p->p_xstat); } else if (prop & SA_IGNORE) { /* * Except for SIGCONT, shouldn't get here. * Default action is to ignore; drop it. */ continue; } break; case (long)SIG_IGN: #ifdef DEBUG_ISSIGNAL /* * Masking above should prevent us ever trying * to take action on an ignored signal other * than SIGCONT, unless process is traced. */ if ((prop & SA_CONT) == 0 && (p->p_slflag & PSL_TRACED) == 0) printf_nolog("issignal\n"); #endif continue; default: /* * This signal has an action, let postsig() process * it. */ break; } break; } l->l_sigpendset = sp; return signo; } /* * Take the action for the specified signal * from the current set of pending signals. */ void postsig(int signo) { struct lwp *l; struct proc *p; struct sigacts *ps; sig_t action; sigset_t *returnmask; ksiginfo_t ksi; l = curlwp; p = l->l_proc; ps = p->p_sigacts; KASSERT(mutex_owned(&p->p_smutex)); KASSERT(signo > 0); /* * Set the new mask value and also defer further occurrences of this * signal. * * Special case: user has done a sigsuspend. Here the current mask is * not of interest, but rather the mask from before the sigsuspen is * what we want restored after the signal processing is completed. */ if (l->l_sigrestore) { returnmask = &l->l_sigoldmask; l->l_sigrestore = 0; } else returnmask = &l->l_sigmask; /* * Commit to taking the signal before releasing the mutex. */ action = SIGACTION_PS(ps, signo).sa_handler; l->l_ru.ru_nsignals++; sigget(l->l_sigpendset, &ksi, signo, NULL); if (ktrpoint(KTR_PSIG)) { mutex_exit(&p->p_smutex); ktrpsig(signo, action, returnmask, NULL); mutex_enter(&p->p_smutex); } if (action == SIG_DFL) { /* * Default action, where the default is to kill * the process. (Other cases were ignored above.) */ sigexit(l, signo); return; } /* * If we get here, the signal must be caught. */ #ifdef DIAGNOSTIC if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) panic("postsig action"); #endif kpsendsig(l, &ksi, returnmask); } /* * sendsig_reset: * * Reset the signal action. Called from emulation specific sendsig() * before unlocking to deliver the signal. */ void sendsig_reset(struct lwp *l, int signo) { struct proc *p = l->l_proc; struct sigacts *ps = p->p_sigacts; KASSERT(mutex_owned(&p->p_smutex)); p->p_sigctx.ps_lwp = 0; p->p_sigctx.ps_code = 0; p->p_sigctx.ps_signo = 0; mutex_enter(&ps->sa_mutex); sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { sigdelset(&p->p_sigctx.ps_sigcatch, signo); if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) sigaddset(&p->p_sigctx.ps_sigignore, signo); SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; } mutex_exit(&ps->sa_mutex); } /* * Kill the current process for stated reason. */ void killproc(struct proc *p, const char *why) { log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); mutex_enter(&proclist_mutex); /* XXXSMP */ psignal(p, SIGKILL); mutex_exit(&proclist_mutex); /* XXXSMP */ } /* * Force the current process to exit with the specified signal, dumping core * if appropriate. We bypass the normal tests for masked and caught * signals, allowing unrecoverable failures to terminate the process without * changing signal state. Mark the accounting record with the signal * termination. If dumping core, save the signal number for the debugger. * Calls exit and does not return. */ void sigexit(struct lwp *l, int signo) { int exitsig, error, docore; struct proc *p; struct lwp *t; p = l->l_proc; KASSERT(mutex_owned(&p->p_smutex)); KERNEL_UNLOCK_ALL(l, NULL); /* * Don't permit coredump() multiple times in the same process. * Call back into sigexit, where we will be suspended until * the deed is done. Note that this is a recursive call, but * LW_WCORE will prevent us from coming back this way. */ if ((p->p_sflag & PS_WCORE) != 0) { lwp_lock(l); l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); lwp_unlock(l); mutex_exit(&p->p_smutex); lwp_userret(l); #ifdef DIAGNOSTIC panic("sigexit"); #endif /* NOTREACHED */ } /* * Prepare all other LWPs for exit. If dumping core, suspend them * so that their registers are available long enough to be dumped. */ if ((docore = (sigprop[signo] & SA_CORE)) != 0) { p->p_sflag |= PS_WCORE; for (;;) { LIST_FOREACH(t, &p->p_lwps, l_sibling) { lwp_lock(t); if (t == l) { t->l_flag &= ~LW_WSUSPEND; lwp_unlock(t); continue; } t->l_flag |= (LW_WCORE | LW_WEXIT); lwp_suspend(l, t); } if (p->p_nrlwps == 1) break; /* * Kick any LWPs sitting in lwp_wait1(), and wait * for everyone else to stop before proceeding. */ p->p_nlwpwait++; cv_broadcast(&p->p_lwpcv); cv_wait(&p->p_lwpcv, &p->p_smutex); p->p_nlwpwait--; } } exitsig = signo; p->p_acflag |= AXSIG; p->p_sigctx.ps_signo = signo; mutex_exit(&p->p_smutex); KERNEL_LOCK(1, l); if (docore) { if ((error = coredump(l, NULL)) == 0) exitsig |= WCOREFLAG; if (kern_logsigexit) { int uid = l->l_cred ? (int)kauth_cred_geteuid(l->l_cred) : -1; if (error) log(LOG_INFO, lognocoredump, p->p_pid, p->p_comm, uid, signo, error); else log(LOG_INFO, logcoredump, p->p_pid, p->p_comm, uid, signo); } #ifdef PAX_SEGVGUARD pax_segvguard(l, p->p_textvp, p->p_comm, true); #endif /* PAX_SEGVGUARD */ } /* Acquire the sched state mutex. exit1() will release it. */ mutex_enter(&p->p_smutex); /* No longer dumping core. */ p->p_sflag &= ~PS_WCORE; exit1(l, W_EXITCODE(0, exitsig)); /* NOTREACHED */ } /* * Put process 'p' into the stopped state and optionally, notify the parent. */ void proc_stop(struct proc *p, int notify, int signo) { struct lwp *l; KASSERT(mutex_owned(&p->p_smutex)); /* * First off, set the stopping indicator and bring all sleeping * LWPs to a halt so they are included in p->p_nrlwps. We musn't * unlock between here and the p->p_nrlwps check below. */ p->p_sflag |= PS_STOPPING; if (notify) p->p_sflag |= PS_NOTIFYSTOP; else p->p_sflag &= ~PS_NOTIFYSTOP; membar_producer(); proc_stop_lwps(p); /* * If there are no LWPs available to take the signal, then we * signal the parent process immediately. Otherwise, the last * LWP to stop will take care of it. */ if (p->p_nrlwps == 0) { proc_stop_done(p, true, PS_NOCLDSTOP); } else { /* * Have the remaining LWPs come to a halt, and trigger * proc_stop_callout() to ensure that they do. */ LIST_FOREACH(l, &p->p_lwps, l_sibling) sigpost(l, SIG_DFL, SA_STOP, signo); callout_schedule(&proc_stop_ch, 1); } } /* * When stopping a process, we do not immediatly set sleeping LWPs stopped, * but wait for them to come to a halt at the kernel-user boundary. This is * to allow LWPs to release any locks that they may hold before stopping. * * Non-interruptable sleeps can be long, and there is the potential for an * LWP to begin sleeping interruptably soon after the process has been set * stopping (PS_STOPPING). These LWPs will not notice that the process is * stopping, and so complete halt of the process and the return of status * information to the parent could be delayed indefinitely. * * To handle this race, proc_stop_callout() runs once per tick while there * are stopping processes in the system. It sets LWPs that are sleeping * interruptably into the LSSTOP state. * * Note that we are not concerned about keeping all LWPs stopped while the * process is stopped: stopped LWPs can awaken briefly to handle signals. * What we do need to ensure is that all LWPs in a stopping process have * stopped at least once, so that notification can be sent to the parent * process. */ static void proc_stop_callout(void *cookie) { bool more, restart; struct proc *p; (void)cookie; do { restart = false; more = false; mutex_enter(&proclist_lock); mutex_enter(&proclist_mutex); PROCLIST_FOREACH(p, &allproc) { mutex_enter(&p->p_smutex); if ((p->p_sflag & PS_STOPPING) == 0) { mutex_exit(&p->p_smutex); continue; } /* Stop any LWPs sleeping interruptably. */ proc_stop_lwps(p); if (p->p_nrlwps == 0) { /* * We brought the process to a halt. * Mark it as stopped and notify the * parent. */ if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { /* * Note that proc_stop_done() will * drop p->p_smutex briefly. * Arrange to restart and check * all processes again. */ restart = true; } proc_stop_done(p, true, PS_NOCLDSTOP); } else more = true; mutex_exit(&p->p_smutex); if (restart) break; } mutex_exit(&proclist_mutex); mutex_exit(&proclist_lock); } while (restart); /* * If we noted processes that are stopping but still have * running LWPs, then arrange to check again in 1 tick. */ if (more) callout_schedule(&proc_stop_ch, 1); } /* * Given a process in state SSTOP, set the state back to SACTIVE and * move LSSTOP'd LWPs to LSSLEEP or make them runnable. */ void proc_unstop(struct proc *p) { struct lwp *l; int sig; KASSERT(mutex_owned(&proclist_mutex)); KASSERT(mutex_owned(&p->p_smutex)); p->p_stat = SACTIVE; p->p_sflag &= ~PS_STOPPING; sig = p->p_xstat; if (!p->p_waited) p->p_pptr->p_nstopchild--; LIST_FOREACH(l, &p->p_lwps, l_sibling) { lwp_lock(l); if (l->l_stat != LSSTOP) { lwp_unlock(l); continue; } if (l->l_wchan == NULL) { setrunnable(l); continue; } if (sig && (l->l_flag & LW_SINTR) != 0) { setrunnable(l); sig = 0; } else { l->l_stat = LSSLEEP; p->p_nrlwps++; lwp_unlock(l); } } } static int filt_sigattach(struct knote *kn) { struct proc *p = curproc; kn->kn_obj = p; kn->kn_flags |= EV_CLEAR; /* automatically set */ mutex_enter(&p->p_smutex); SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); mutex_exit(&p->p_smutex); return (0); } static void filt_sigdetach(struct knote *kn) { struct proc *p = kn->kn_obj; mutex_enter(&p->p_smutex); SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); mutex_exit(&p->p_smutex); } /* * signal knotes are shared with proc knotes, so we apply a mask to * the hint in order to differentiate them from process hints. This * could be avoided by using a signal-specific knote list, but probably * isn't worth the trouble. */ static int filt_signal(struct knote *kn, long hint) { if (hint & NOTE_SIGNAL) { hint &= ~NOTE_SIGNAL; if (kn->kn_id == hint) kn->kn_data++; } return (kn->kn_data != 0); } const struct filterops sig_filtops = { 0, filt_sigattach, filt_sigdetach, filt_signal };