/* $NetBSD: ahd_pci.c,v 1.23 2006/06/17 23:34:26 christos Exp $ */ /* * Product specific probe and attach routines for: * aic7901 and aic7902 SCSI controllers * * Copyright (c) 1994-2001 Justin T. Gibbs. * Copyright (c) 2000-2002 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * Id: //depot/aic7xxx/aic7xxx/aic79xx_pci.c#80 $ * * $FreeBSD: src/sys/dev/aic7xxx/aic79xx_pci.c,v 1.16 2003/06/28 04:39:49 gibbs Exp $ */ /* * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003 */ #include __KERNEL_RCSID(0, "$NetBSD: ahd_pci.c,v 1.23 2006/06/17 23:34:26 christos Exp $"); #define AHD_PCI_IOADDR PCI_MAPREG_START /* I/O Address */ #define AHD_PCI_MEMADDR (PCI_MAPREG_START + 4) /* Mem I/O Address */ #include #include static inline uint64_t ahd_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor) { uint64_t id; id = subvendor | (subdevice << 16) | ((uint64_t)vendor << 32) | ((uint64_t)device << 48); return (id); } #define ID_ALL_MASK 0xFFFFFFFFFFFFFFFFull #define ID_ALL_IROC_MASK 0xFF7FFFFFFFFFFFFFull #define ID_DEV_VENDOR_MASK 0xFFFFFFFF00000000ull #define ID_9005_GENERIC_MASK 0xFFF0FFFF00000000ull #define ID_9005_GENERIC_IROC_MASK 0xFF70FFFF00000000ull #define ID_AIC7901 0x800F9005FFFF9005ull #define ID_AHA_29320A 0x8000900500609005ull #define ID_AHA_29320ALP 0x8017900500449005ull #define ID_AIC7901A 0x801E9005FFFF9005ull #define ID_AHA_29320LP 0x8014900500449005ull #define ID_AIC7902 0x801F9005FFFF9005ull #define ID_AIC7902_B 0x801D9005FFFF9005ull #define ID_AHA_39320 0x8010900500409005ull #define ID_AHA_29320 0x8012900500429005ull #define ID_AHA_29320B 0x8013900500439005ull #define ID_AHA_39320_B 0x8015900500409005ull #define ID_AHA_39320A 0x8016900500409005ull #define ID_AHA_39320D 0x8011900500419005ull #define ID_AHA_39320D_B 0x801C900500419005ull #define ID_AHA_39320_B_DELL 0x8015900501681028ull #define ID_AHA_39320D_HP 0x8011900500AC0E11ull #define ID_AHA_39320D_B_HP 0x801C900500AC0E11ull #define ID_AIC7902_PCI_REV_A4 0x3 #define ID_AIC7902_PCI_REV_B0 0x10 #define SUBID_HP 0x0E11 #define DEVID_9005_HOSTRAID(id) ((id) & 0x80) #define DEVID_9005_TYPE(id) ((id) & 0xF) #define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */ #define DEVID_9005_TYPE_HBA_2EXT 0x1 /* 2 External Ports */ #define DEVID_9005_TYPE_MB 0xF /* On Motherboard */ #define DEVID_9005_MFUNC(id) ((id) & 0x10) #define DEVID_9005_PACKETIZED(id) ((id) & 0x8000) #define SUBID_9005_TYPE(id) ((id) & 0xF) #define SUBID_9005_TYPE_HBA 0x0 /* Standard Card */ #define SUBID_9005_TYPE_MB 0xF /* On Motherboard */ #define SUBID_9005_AUTOTERM(id) (((id) & 0x10) == 0) #define SUBID_9005_LEGACYCONN_FUNC(id) ((id) & 0x20) #define SUBID_9005_SEEPTYPE(id) ((id) & 0x0C0) >> 6) #define SUBID_9005_SEEPTYPE_NONE 0x0 #define SUBID_9005_SEEPTYPE_4K 0x1 static ahd_device_setup_t ahd_aic7901_setup; static ahd_device_setup_t ahd_aic7901A_setup; static ahd_device_setup_t ahd_aic7902_setup; static ahd_device_setup_t ahd_aic790X_setup; static struct ahd_pci_identity ahd_pci_ident_table [] = { /* aic7901 based controllers */ { ID_AHA_29320A, ID_ALL_MASK, "Adaptec 29320A Ultra320 SCSI adapter", ahd_aic7901_setup }, { ID_AHA_29320ALP, ID_ALL_MASK, "Adaptec 29320ALP Ultra320 SCSI adapter", ahd_aic7901_setup }, /* aic7901A based controllers */ { ID_AHA_29320LP, ID_ALL_MASK, "Adaptec 29320LP Ultra320 SCSI adapter", ahd_aic7901A_setup }, /* aic7902 based controllers */ { ID_AHA_39320, ID_ALL_MASK, "Adaptec 39320 Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320_B, ID_ALL_MASK, "Adaptec 39320 Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320_B_DELL, ID_ALL_IROC_MASK, "Adaptec (Dell OEM) 39320 Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320A, ID_ALL_MASK, "Adaptec 39320A Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320D, ID_ALL_MASK, "Adaptec 39320D Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320D_HP, ID_ALL_MASK, "Adaptec (HP OEM) 39320D Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320D_B, ID_ALL_MASK, "Adaptec 39320D Ultra320 SCSI adapter", ahd_aic7902_setup }, { ID_AHA_39320D_B_HP, ID_ALL_MASK, "Adaptec (HP OEM) 39320D Ultra320 SCSI adapter", ahd_aic7902_setup }, /* Generic chip probes for devices we don't know 'exactly' */ { ID_AIC7901 & ID_9005_GENERIC_MASK, ID_9005_GENERIC_MASK, "Adaptec AIC7901 Ultra320 SCSI adapter", ahd_aic7901_setup }, { ID_AIC7901A & ID_DEV_VENDOR_MASK, ID_DEV_VENDOR_MASK, "Adaptec AIC7901A Ultra320 SCSI adapter", ahd_aic7901A_setup }, { ID_AIC7902 & ID_9005_GENERIC_MASK, ID_9005_GENERIC_MASK, "Adaptec AIC7902 Ultra320 SCSI adapter", ahd_aic7902_setup } }; static const u_int ahd_num_pci_devs = NUM_ELEMENTS(ahd_pci_ident_table); #define DEVCONFIG 0x40 #define PCIXINITPAT 0x0000E000ul #define PCIXINIT_PCI33_66 0x0000E000ul #define PCIXINIT_PCIX50_66 0x0000C000ul #define PCIXINIT_PCIX66_100 0x0000A000ul #define PCIXINIT_PCIX100_133 0x00008000ul #define PCI_BUS_MODES_INDEX(devconfig) \ (((devconfig) & PCIXINITPAT) >> 13) static const char *pci_bus_modes[] = { "PCI bus mode unknown", "PCI bus mode unknown", "PCI bus mode unknown", "PCI bus mode unknown", "PCI-X 101-133 MHz", "PCI-X 67-100 MHz", "PCI-X 50-66 MHz", "PCI 33 or 66 MHz" }; #define TESTMODE 0x00000800ul #define IRDY_RST 0x00000200ul #define FRAME_RST 0x00000100ul #define PCI64BIT 0x00000080ul #define MRDCEN 0x00000040ul #define ENDIANSEL 0x00000020ul #define MIXQWENDIANEN 0x00000008ul #define DACEN 0x00000004ul #define STPWLEVEL 0x00000002ul #define QWENDIANSEL 0x00000001ul #define DEVCONFIG1 0x44 #define PREQDIS 0x01 #define LATTIME 0x0000ff00ul static int ahd_check_extport(struct ahd_softc *ahd); static void ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control); static void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat); static int ahd_pci_test_register_access(struct ahd_softc *); static int ahd_pci_intr(struct ahd_softc *); static const struct ahd_pci_identity * ahd_find_pci_device(pcireg_t id, pcireg_t subid) { u_int64_t full_id; const struct ahd_pci_identity *entry; u_int i; full_id = ahd_compose_id(PCI_PRODUCT(id), PCI_VENDOR(id), PCI_PRODUCT(subid), PCI_VENDOR(subid)); for (i = 0; i < ahd_num_pci_devs; i++) { entry = &ahd_pci_ident_table[i]; if (entry->full_id == (full_id & entry->id_mask)) return (entry); } return (NULL); } static int ahd_pci_probe(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; const struct ahd_pci_identity *entry; pcireg_t subid; subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); entry = ahd_find_pci_device(pa->pa_id, subid); return entry != NULL ? 1 : 0; } static void ahd_pci_attach(struct device *parent, struct device *self, void *aux) { struct pci_attach_args *pa = aux; struct ahd_softc *ahd = (void *)self; const struct ahd_pci_identity *entry; uint32_t devconfig; pcireg_t command; int error; pcireg_t subid; uint16_t subvendor; pcireg_t reg; int ioh_valid, ioh2_valid, memh_valid; pcireg_t memtype; pci_intr_handle_t ih; const char *intrstr; struct ahd_pci_busdata *bd; ahd_set_name(ahd, ahd->sc_dev.dv_xname); ahd->parent_dmat = pa->pa_dmat; command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); entry = ahd_find_pci_device(pa->pa_id, subid); if (entry == NULL) return; /* Keep information about the PCI bus */ bd = malloc(sizeof (struct ahd_pci_busdata), M_DEVBUF, M_NOWAIT); if (bd == NULL) { aprint_error("%s: unable to allocate bus-specific data\n", ahd_name(ahd)); return; } memset(bd, 0, sizeof(struct ahd_pci_busdata)); bd->pc = pa->pa_pc; bd->tag = pa->pa_tag; bd->func = pa->pa_function; bd->dev = pa->pa_device; ahd->bus_data = bd; ahd->description = entry->name; ahd->seep_config = malloc(sizeof(*ahd->seep_config), M_DEVBUF, M_NOWAIT); if (ahd->seep_config == NULL) { aprint_error("%s: cannot malloc seep_config!\n", ahd_name(ahd)); return; } memset(ahd->seep_config, 0, sizeof(*ahd->seep_config)); LIST_INIT(&ahd->pending_scbs); ahd_timer_init(&ahd->reset_timer); ahd_timer_init(&ahd->stat_timer); ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A; ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT; ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT; ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT; ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT; ahd->int_coalescing_stop_threshold = AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT; if (ahd_platform_alloc(ahd, NULL) != 0) { ahd_free(ahd); return; } /* * Record if this is an HP board. */ subvendor = PCI_VENDOR(subid); if (subvendor == SUBID_HP) ahd->flags |= AHD_HP_BOARD; error = entry->setup(ahd, pa); if (error != 0) return; devconfig = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG); if ((devconfig & PCIXINITPAT) == PCIXINIT_PCI33_66) { ahd->chip |= AHD_PCI; /* Disable PCIX workarounds when running in PCI mode. */ ahd->bugs &= ~AHD_PCIX_BUG_MASK; } else { ahd->chip |= AHD_PCIX; } ahd->bus_description = pci_bus_modes[PCI_BUS_MODES_INDEX(devconfig)]; memh_valid = ioh_valid = ioh2_valid = 0; if (!pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &bd->pcix_off, NULL)) { if (ahd->chip & AHD_PCIX) aprint_error("%s: warning: can't find PCI-X capability\n", ahd->sc_dev.dv_xname); ahd->chip &= ~AHD_PCIX; ahd->chip |= AHD_PCI; ahd->bugs &= ~AHD_PCIX_BUG_MASK; } /* * Map PCI Registers */ if ((ahd->bugs & AHD_PCIX_MMAPIO_BUG) == 0) { memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AHD_PCI_MEMADDR); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: memh_valid = (pci_mapreg_map(pa, AHD_PCI_MEMADDR, memtype, 0, &ahd->tags[0], &ahd->bshs[0], NULL, NULL) == 0); if (memh_valid) { ahd->tags[1] = ahd->tags[0]; bus_space_subregion(ahd->tags[0], ahd->bshs[0], /*offset*/0x100, /*size*/0x100, &ahd->bshs[1]); if (ahd_pci_test_register_access(ahd) != 0) memh_valid = 0; } break; default: memh_valid = 0; aprint_error("%s: unknown memory type: 0x%x\n", ahd_name(ahd), memtype); break; } if (memh_valid) { command &= ~PCI_COMMAND_IO_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); } #ifdef AHD_DEBUG printf("%s: doing memory mapping tag0 0x%x, tag1 0x%x, " "shs0 0x%lx, shs1 0x%lx\n", ahd_name(ahd), ahd->tags[0], ahd->tags[1], ahd->bshs[0], ahd->bshs[1]); #endif } if (command & PCI_COMMAND_IO_ENABLE) { /* First BAR */ ioh_valid = (pci_mapreg_map(pa, AHD_PCI_IOADDR, PCI_MAPREG_TYPE_IO, 0, &ahd->tags[0], &ahd->bshs[0], NULL, NULL) == 0); /* 2nd BAR */ ioh2_valid = (pci_mapreg_map(pa, AHD_PCI_IOADDR1, PCI_MAPREG_TYPE_IO, 0, &ahd->tags[1], &ahd->bshs[1], NULL, NULL) == 0); if (ioh_valid && ioh2_valid) { KASSERT(memh_valid == 0); command &= ~PCI_COMMAND_MEM_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); } #ifdef AHD_DEBUG printf("%s: doing io mapping tag0 0x%x, tag1 0x%x, " "shs0 0x%lx, shs1 0x%lx\n", ahd_name(ahd), ahd->tags[0], ahd->tags[1], ahd->bshs[0], ahd->bshs[1]); #endif } if (memh_valid == 0 && (ioh_valid == 0 || ioh2_valid == 0)) { aprint_error("%s: unable to map registers\n", ahd_name(ahd)); return; } aprint_normal("\n"); aprint_naive("\n"); /* power up chip */ if ((error = pci_activate(pa->pa_pc, pa->pa_tag, ahd, pci_activate_null)) && error != EOPNOTSUPP) { aprint_error("%s: cannot activate %d\n", ahd->sc_dev.dv_xname, error); return; } /* * Should we bother disabling 39Bit addressing * based on installed memory? */ if (sizeof(bus_addr_t) > 4) ahd->flags |= AHD_39BIT_ADDRESSING; /* * If we need to support high memory, enable dual * address cycles. This bit must be set to enable * high address bit generation even if we are on a * 64bit bus (PCI64BIT set in devconfig). */ if ((ahd->flags & (AHD_39BIT_ADDRESSING|AHD_64BIT_ADDRESSING)) != 0) { uint32_t dvconfig; aprint_normal("%s: Enabling 39Bit Addressing\n", ahd_name(ahd)); dvconfig = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG); dvconfig |= DACEN; pci_conf_write(pa->pa_pc, pa->pa_tag, DEVCONFIG, dvconfig); } /* Ensure busmastering is enabled */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg | PCI_COMMAND_MASTER_ENABLE); ahd_softc_init(ahd); /* * Map the interrupt routines */ ahd->bus_intr = ahd_pci_intr; error = ahd_reset(ahd, /*reinit*/FALSE); if (error != 0) { ahd_free(ahd); return; } if (pci_intr_map(pa, &ih)) { aprint_error("%s: couldn't map interrupt\n", ahd_name(ahd)); ahd_free(ahd); return; } intrstr = pci_intr_string(pa->pa_pc, ih); ahd->ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO, ahd_intr, ahd); if (ahd->ih == NULL) { aprint_error("%s: couldn't establish interrupt", ahd_name(ahd)); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); ahd_free(ahd); return; } if (intrstr != NULL) aprint_normal("%s: interrupting at %s\n", ahd_name(ahd), intrstr); /* Get the size of the cache */ ahd->pci_cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG); ahd->pci_cachesize *= 4; ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); /* See if we have a SEEPROM and perform auto-term */ error = ahd_check_extport(ahd); if (error != 0) return; /* Core initialization */ error = ahd_init(ahd); if (error != 0) return; /* * Link this softc in with all other ahd instances. */ ahd_attach(ahd); } CFATTACH_DECL(ahd_pci, sizeof(struct ahd_softc), ahd_pci_probe, ahd_pci_attach, NULL, NULL); /* * Perform some simple tests that should catch situations where * our registers are invalidly mapped. */ static int ahd_pci_test_register_access(struct ahd_softc *ahd) { uint32_t cmd; struct ahd_pci_busdata *bd = ahd->bus_data; u_int targpcistat; uint32_t pci_status1; int error; uint8_t hcntrl; error = EIO; /* * Enable PCI error interrupt status, but suppress NMIs * generated by SERR raised due to target aborts. */ cmd = pci_conf_read(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG); pci_conf_write(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG, cmd & ~PCI_COMMAND_SERR_ENABLE); /* * First a simple test to see if any * registers can be read. Reading * HCNTRL has no side effects and has * at least one bit that is guaranteed to * be zero so it is a good register to * use for this test. */ hcntrl = ahd_inb(ahd, HCNTRL); if (hcntrl == 0xFF) goto fail; /* * Next create a situation where write combining * or read prefetching could be initiated by the * CPU or host bridge. Our device does not support * either, so look for data corruption and/or flaged * PCI errors. First pause without causing another * chip reset. */ hcntrl &= ~CHIPRST; ahd_outb(ahd, HCNTRL, hcntrl|PAUSE); while (ahd_is_paused(ahd) == 0) ; /* Clear any PCI errors that occurred before our driver attached. */ ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); targpcistat = ahd_inb(ahd, TARGPCISTAT); ahd_outb(ahd, TARGPCISTAT, targpcistat); pci_status1 = pci_conf_read(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG); pci_conf_write(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG, pci_status1); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, CLRINT, CLRPCIINT); ahd_outb(ahd, SEQCTL0, PERRORDIS); ahd_outl(ahd, SRAM_BASE, 0x5aa555aa); if (ahd_inl(ahd, SRAM_BASE) != 0x5aa555aa) goto fail; if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) { u_int trgpcistat; ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); trgpcistat = ahd_inb(ahd, TARGPCISTAT); if ((trgpcistat & STA) != 0) goto fail; } error = 0; fail: if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) { ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); targpcistat = ahd_inb(ahd, TARGPCISTAT); /* Silently clear any latched errors. */ ahd_outb(ahd, TARGPCISTAT, targpcistat); pci_status1 = pci_conf_read(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG); pci_conf_write(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG, pci_status1); ahd_outb(ahd, CLRINT, CLRPCIINT); } ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS); pci_conf_write(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG, cmd); return (error); } /* * Check the external port logic for a serial eeprom * and termination/cable detection contrls. */ static int ahd_check_extport(struct ahd_softc *ahd) { struct vpd_config vpd; struct seeprom_config *sc; u_int adapter_control; int have_seeprom; int error; sc = ahd->seep_config; have_seeprom = ahd_acquire_seeprom(ahd); if (have_seeprom) { u_int start_addr; /* * Fetch VPD for this function and parse it. */ #ifdef AHD_DEBUG printf("%s: Reading VPD from SEEPROM...", ahd_name(ahd)); #endif /* Address is always in units of 16bit words */ start_addr = ((2 * sizeof(*sc)) + (sizeof(vpd) * (ahd->channel - 'A'))) / 2; error = ahd_read_seeprom(ahd, (uint16_t *)&vpd, start_addr, sizeof(vpd)/2, /*bytestream*/TRUE); if (error == 0) error = ahd_parse_vpddata(ahd, &vpd); #ifdef AHD_DEBUG printf("%s: VPD parsing %s\n", ahd_name(ahd), error == 0 ? "successful" : "failed"); #endif #ifdef AHD_DEBUG printf("%s: Reading SEEPROM...", ahd_name(ahd)); #endif /* Address is always in units of 16bit words */ start_addr = (sizeof(*sc) / 2) * (ahd->channel - 'A'); error = ahd_read_seeprom(ahd, (uint16_t *)sc, start_addr, sizeof(*sc)/2, /*bytestream*/FALSE); if (error != 0) { #ifdef AHD_DEBUG printf("Unable to read SEEPROM\n"); #endif have_seeprom = 0; } else { have_seeprom = ahd_verify_cksum(sc); #ifdef AHD_DEBUG if (have_seeprom == 0) printf ("checksum error\n"); else printf ("done.\n"); #endif } ahd_release_seeprom(ahd); } if (!have_seeprom) { u_int nvram_scb; /* * Pull scratch ram settings and treat them as * if they are the contents of an seeprom if * the 'ADPT', 'BIOS', or 'ASPI' signature is found * in SCB 0xFF. We manually compose the data as 16bit * values to avoid endian issues. */ ahd_set_scbptr(ahd, 0xFF); nvram_scb = ahd_inb_scbram(ahd, SCB_BASE + NVRAM_SCB_OFFSET); if (nvram_scb != 0xFF && ((ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A' && ahd_inb_scbram(ahd, SCB_BASE + 1) == 'D' && ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P' && ahd_inb_scbram(ahd, SCB_BASE + 3) == 'T') || (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'B' && ahd_inb_scbram(ahd, SCB_BASE + 1) == 'I' && ahd_inb_scbram(ahd, SCB_BASE + 2) == 'O' && ahd_inb_scbram(ahd, SCB_BASE + 3) == 'S') || (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A' && ahd_inb_scbram(ahd, SCB_BASE + 1) == 'S' && ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P' && ahd_inb_scbram(ahd, SCB_BASE + 3) == 'I'))) { uint16_t *sc_data; int i; ahd_set_scbptr(ahd, nvram_scb); sc_data = (uint16_t *)sc; for (i = 0; i < 64; i += 2) *sc_data++ = ahd_inw_scbram(ahd, SCB_BASE+i); have_seeprom = ahd_verify_cksum(sc); if (have_seeprom) ahd->flags |= AHD_SCB_CONFIG_USED; } } #ifdef AHD_DEBUG if ((have_seeprom != 0) && (ahd_debug & AHD_DUMP_SEEPROM) != 0) { uint16_t *sc_data; int i; printf("%s: Seeprom Contents:", ahd_name(ahd)); sc_data = (uint16_t *)sc; for (i = 0; i < (sizeof(*sc)); i += 2) printf("\n\t0x%.4x", sc_data[i]); printf("\n"); } #endif if (!have_seeprom) { aprint_error("%s: No SEEPROM available.\n", ahd_name(ahd)); ahd->flags |= AHD_USEDEFAULTS; error = ahd_default_config(ahd); adapter_control = CFAUTOTERM|CFSEAUTOTERM; free(ahd->seep_config, M_DEVBUF); ahd->seep_config = NULL; } else { error = ahd_parse_cfgdata(ahd, sc); adapter_control = sc->adapter_control; } if (error != 0) return (error); ahd_configure_termination(ahd, adapter_control); return (0); } static void ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control) { int error; u_int sxfrctl1; uint8_t termctl; uint32_t devconfig; struct ahd_pci_busdata *bd = ahd->bus_data; devconfig = pci_conf_read(bd->pc, bd->tag, DEVCONFIG); devconfig &= ~STPWLEVEL; if ((ahd->flags & AHD_STPWLEVEL_A) != 0) devconfig |= STPWLEVEL; #ifdef AHD_DEBUG printf("%s: STPWLEVEL is %s\n", ahd_name(ahd), (devconfig & STPWLEVEL) ? "on" : "off"); #endif pci_conf_write(bd->pc, bd->tag, DEVCONFIG, devconfig); /* Make sure current sensing is off. */ if ((ahd->flags & AHD_CURRENT_SENSING) != 0) { (void)ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0); } /* * Read to sense. Write to set. */ error = ahd_read_flexport(ahd, FLXADDR_TERMCTL, &termctl); if ((adapter_control & CFAUTOTERM) == 0) { if (bootverbose) printf("%s: Manual Primary Termination\n", ahd_name(ahd)); termctl &= ~(FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH); if ((adapter_control & CFSTERM) != 0) termctl |= FLX_TERMCTL_ENPRILOW; if ((adapter_control & CFWSTERM) != 0) termctl |= FLX_TERMCTL_ENPRIHIGH; } else if (error != 0) { if (bootverbose) printf("%s: Primary Auto-Term Sensing failed! " "Using Defaults.\n", ahd_name(ahd)); termctl = FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH; } if ((adapter_control & CFSEAUTOTERM) == 0) { if (bootverbose) printf("%s: Manual Secondary Termination\n", ahd_name(ahd)); termctl &= ~(FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH); if ((adapter_control & CFSELOWTERM) != 0) termctl |= FLX_TERMCTL_ENSECLOW; if ((adapter_control & CFSEHIGHTERM) != 0) termctl |= FLX_TERMCTL_ENSECHIGH; } else if (error != 0) { if (bootverbose) printf("%s: Secondary Auto-Term Sensing failed! " "Using Defaults.\n", ahd_name(ahd)); termctl |= FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH; } /* * Now set the termination based on what we found. */ sxfrctl1 = ahd_inb(ahd, SXFRCTL1) & ~STPWEN; if ((termctl & FLX_TERMCTL_ENPRILOW) != 0) { ahd->flags |= AHD_TERM_ENB_A; sxfrctl1 |= STPWEN; } /* Must set the latch once in order to be effective. */ ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN); ahd_outb(ahd, SXFRCTL1, sxfrctl1); error = ahd_write_flexport(ahd, FLXADDR_TERMCTL, termctl); if (error != 0) { aprint_error("%s: Unable to set termination settings!\n", ahd_name(ahd)); } else { if (bootverbose) { printf("%s: Primary High byte termination %sabled\n", ahd_name(ahd), (termctl & FLX_TERMCTL_ENPRIHIGH) ? "En" : "Dis"); printf("%s: Primary Low byte termination %sabled\n", ahd_name(ahd), (termctl & FLX_TERMCTL_ENPRILOW) ? "En" : "Dis"); printf("%s: Secondary High byte termination %sabled\n", ahd_name(ahd), (termctl & FLX_TERMCTL_ENSECHIGH) ? "En" : "Dis"); printf("%s: Secondary Low byte termination %sabled\n", ahd_name(ahd), (termctl & FLX_TERMCTL_ENSECLOW) ? "En" : "Dis"); } } return; } #define DPE 0x80 #define SSE 0x40 #define RMA 0x20 #define RTA 0x10 #define STA 0x08 #define DPR 0x01 static const char *split_status_source[] = { "DFF0", "DFF1", "OVLY", "CMC", }; static const char *pci_status_source[] = { "DFF0", "DFF1", "SG", "CMC", "OVLY", "NONE", "MSI", "TARG" }; static const char *split_status_strings[] = { "%s: Received split response in %s.\n", "%s: Received split completion error message in %s\n", "%s: Receive overrun in %s\n", "%s: Count not complete in %s\n", "%s: Split completion data bucket in %s\n", "%s: Split completion address error in %s\n", "%s: Split completion byte count error in %s\n", "%s: Signaled Target-abort to early terminate a split in %s\n" }; static const char *pci_status_strings[] = { "%s: Data Parity Error has been reported via PERR# in %s\n", "%s: Target initial wait state error in %s\n", "%s: Split completion read data parity error in %s\n", "%s: Split completion address attribute parity error in %s\n", "%s: Received a Target Abort in %s\n", "%s: Received a Master Abort in %s\n", "%s: Signal System Error Detected in %s\n", "%s: Address or Write Phase Parity Error Detected in %s.\n" }; static int ahd_pci_intr(struct ahd_softc *ahd) { uint8_t pci_status[8]; ahd_mode_state saved_modes; u_int pci_status1; u_int intstat; u_int i; u_int reg; struct ahd_pci_busdata *bd = ahd->bus_data; intstat = ahd_inb(ahd, INTSTAT); if ((intstat & SPLTINT) != 0) ahd_pci_split_intr(ahd, intstat); if ((intstat & PCIINT) == 0) return 0; printf("%s: PCI error Interrupt\n", ahd_name(ahd)); saved_modes = ahd_save_modes(ahd); ahd_dump_card_state(ahd); ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); for (i = 0, reg = DF0PCISTAT; i < 8; i++, reg++) { if (i == 5) continue; pci_status[i] = ahd_inb(ahd, reg); /* Clear latched errors. So our interrupt deasserts. */ ahd_outb(ahd, reg, pci_status[i]); } for (i = 0; i < 8; i++) { u_int bit; if (i == 5) continue; for (bit = 0; bit < 8; bit++) { if ((pci_status[i] & (0x1 << bit)) != 0) { static const char *s; s = pci_status_strings[bit]; if (i == 7/*TARG*/ && bit == 3) s = "%s: Signaled Target Abort\n"; printf(s, ahd_name(ahd), pci_status_source[i]); } } } pci_status1 = pci_conf_read(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG); pci_conf_write(bd->pc, bd->tag, PCI_COMMAND_STATUS_REG , pci_status1); ahd_restore_modes(ahd, saved_modes); ahd_outb(ahd, CLRINT, CLRPCIINT); ahd_unpause(ahd); return 1; } static void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat) { uint8_t split_status[4]; uint8_t split_status1[4]; uint8_t sg_split_status[2]; uint8_t sg_split_status1[2]; ahd_mode_state saved_modes; u_int i; pcireg_t pcix_status; struct ahd_pci_busdata *bd = ahd->bus_data; /* * Check for splits in all modes. Modes 0 and 1 * additionally have SG engine splits to look at. */ pcix_status = pci_conf_read(bd->pc, bd->tag, bd->pcix_off + PCI_PCIX_STATUS); printf("%s: PCI Split Interrupt - PCI-X status = 0x%x\n", ahd_name(ahd), pcix_status); saved_modes = ahd_save_modes(ahd); for (i = 0; i < 4; i++) { ahd_set_modes(ahd, i, i); split_status[i] = ahd_inb(ahd, DCHSPLTSTAT0); split_status1[i] = ahd_inb(ahd, DCHSPLTSTAT1); /* Clear latched errors. So our interrupt deasserts. */ ahd_outb(ahd, DCHSPLTSTAT0, split_status[i]); ahd_outb(ahd, DCHSPLTSTAT1, split_status1[i]); if (i > 1) continue; sg_split_status[i] = ahd_inb(ahd, SGSPLTSTAT0); sg_split_status1[i] = ahd_inb(ahd, SGSPLTSTAT1); /* Clear latched errors. So our interrupt deasserts. */ ahd_outb(ahd, SGSPLTSTAT0, sg_split_status[i]); ahd_outb(ahd, SGSPLTSTAT1, sg_split_status1[i]); } for (i = 0; i < 4; i++) { u_int bit; for (bit = 0; bit < 8; bit++) { if ((split_status[i] & (0x1 << bit)) != 0) { static const char *s; s = split_status_strings[bit]; printf(s, ahd_name(ahd), split_status_source[i]); } if (i > 0) continue; if ((sg_split_status[i] & (0x1 << bit)) != 0) { static const char *s; s = split_status_strings[bit]; printf(s, ahd_name(ahd), "SG"); } } } /* * Clear PCI-X status bits. */ pci_conf_write(bd->pc, bd->tag, bd->pcix_off + PCI_PCIX_STATUS, pcix_status); ahd_outb(ahd, CLRINT, CLRSPLTINT); ahd_restore_modes(ahd, saved_modes); } static int ahd_aic7901_setup(struct ahd_softc *ahd, struct pci_attach_args *pa) { ahd->chip = AHD_AIC7901; ahd->features = AHD_AIC7901_FE; return (ahd_aic790X_setup(ahd, pa)); } static int ahd_aic7901A_setup(struct ahd_softc *ahd, struct pci_attach_args *pa) { ahd->chip = AHD_AIC7901A; ahd->features = AHD_AIC7901A_FE; return (ahd_aic790X_setup(ahd, pa)); } static int ahd_aic7902_setup(struct ahd_softc *ahd, struct pci_attach_args *pa) { ahd->chip = AHD_AIC7902; ahd->features = AHD_AIC7902_FE; return (ahd_aic790X_setup(ahd, pa)); } static int ahd_aic790X_setup(struct ahd_softc *ahd, struct pci_attach_args *pa) { u_int rev; rev = PCI_REVISION(pa->pa_class); #ifdef AHD_DEBUG printf("\n%s: aic7902 chip revision 0x%x\n", ahd_name(ahd), rev); #endif if (rev < ID_AIC7902_PCI_REV_A4) { aprint_error("%s: Unable to attach to unsupported chip revision %d\n", ahd_name(ahd), rev); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 0); return (ENXIO); } ahd->channel = (pa->pa_function == 1) ? 'B' : 'A'; if (rev < ID_AIC7902_PCI_REV_B0) { /* * Enable A series workarounds. */ ahd->bugs |= AHD_SENT_SCB_UPDATE_BUG|AHD_ABORT_LQI_BUG | AHD_PKT_BITBUCKET_BUG|AHD_LONG_SETIMO_BUG | AHD_NLQICRC_DELAYED_BUG|AHD_SCSIRST_BUG | AHD_LQO_ATNO_BUG|AHD_AUTOFLUSH_BUG | AHD_CLRLQO_AUTOCLR_BUG|AHD_PCIX_MMAPIO_BUG | AHD_PCIX_CHIPRST_BUG|AHD_PCIX_SCBRAM_RD_BUG | AHD_PKTIZED_STATUS_BUG|AHD_PKT_LUN_BUG | AHD_MDFF_WSCBPTR_BUG|AHD_REG_SLOW_SETTLE_BUG | AHD_SET_MODE_BUG|AHD_BUSFREEREV_BUG | AHD_NONPACKFIFO_BUG|AHD_PACED_NEGTABLE_BUG | AHD_FAINT_LED_BUG; /* * IO Cell parameter setup. */ AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29); if ((ahd->flags & AHD_HP_BOARD) == 0) AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVA); } else { u_int devconfig1; ahd->features |= AHD_RTI|AHD_NEW_IOCELL_OPTS | AHD_NEW_DFCNTRL_OPTS; ahd->bugs |= AHD_LQOOVERRUN_BUG|AHD_EARLY_REQ_BUG; /* * Some issues have been resolved in the 7901B. */ if ((ahd->features & AHD_MULTI_FUNC) != 0) ahd->bugs |= AHD_INTCOLLISION_BUG|AHD_ABORT_LQI_BUG; /* * IO Cell parameter setup. */ AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29); AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVB); AHD_SET_AMPLITUDE(ahd, AHD_AMPLITUDE_DEF); /* * Set the PREQDIS bit for H2B which disables some workaround * that doesn't work on regular PCI busses. * XXX - Find out exactly what this does from the hardware * folks! */ devconfig1 = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG1); pci_conf_write(pa->pa_pc, pa->pa_tag, DEVCONFIG1, devconfig1|PREQDIS); devconfig1 = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG1); } return (0); }