/* $NetBSD: zs.c,v 1.38 2008/04/28 20:23:40 martin Exp $ */ /*- * Copyright (c) 1998 Minoura Makoto * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port; * while channel B is dedicated to the mouse. * Extra Z8530's can be installed for serial ports. This driver * supports up to 5 chips including the built-in one. */ #include __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.38 2008/04/28 20:23:40 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" #include "zsc.h" /* NZSC */ #include "opt_zsc.h" #ifndef ZSCN_SPEED #define ZSCN_SPEED 9600 #endif #include "zstty.h" extern void Debugger(void); /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zscn_def_cflag = (CREAD | CS8 | HUPCL); /* * X68k provides a 5.0 MHz clock to the ZS chips. */ #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */ /* Default physical addresses. */ #define ZS_MAXDEV 5 static bus_addr_t zs_physaddr[ZS_MAXDEV] = { 0x00e98000, 0x00eafc00, 0x00eafc10, 0x00eafc20, 0x00eafc30 }; static uint8_t zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ 0x70, /* 2: XXX: IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, ZSWR10_NRZ, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE, }; static volatile struct zschan *conschan = 0; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zs_match(device_t, cfdata_t, void *); static void zs_attach(device_t, device_t, void *); static int zs_print(void *, const char *name); CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc), zs_match, zs_attach, NULL, NULL); static int zshard(void *); static int zs_get_speed(struct zs_chanstate *); /* * Is the zs chip present? */ static int zs_match(device_t parent, cfdata_t cf, void *aux) { struct intio_attach_args *ia = aux; struct zsdevice *zsaddr = (void *)ia->ia_addr; int i; if (strcmp(ia->ia_name, "zsc") != 0) return 0; for (i = 0; i < ZS_MAXDEV; i++) if (zsaddr == (void *)zs_physaddr[i]) /* XXX */ break; ia->ia_size = 8; if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY)) return 0; if (zsaddr != (void *)zs_physaddr[i]) return 0; if (badaddr(INTIO_ADDR(zsaddr))) return 0; return (1); } /* * Attach a found zs. */ static void zs_attach(device_t parent, device_t self, void *aux) { struct zsc_softc *zsc = device_private(self); struct intio_attach_args *ia = aux; struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct zs_chanstate *cs; int r, s, zs_unit, channel; zsc->zsc_dev = self; aprint_normal("\n"); zs_unit = device_unit(self); zsc->zsc_addr = (void *)ia->ia_addr; ia->ia_size = 8; r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE); #ifdef DIAGNOSTIC if (r) panic("zs: intio IO map corruption"); #endif /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { struct device *child; zsc_args.channel = channel; zsc_args.hwflags = 0; cs = &zsc->zsc_cs_store[channel]; zsc->zsc_cs[channel] = cs; zs_lock_init(cs); cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; if (channel == 0) zc = (volatile void *)INTIO_ADDR(&zsc->zsc_addr->zs_chan_a); else zc = (volatile void *)INTIO_ADDR(&zsc->zsc_addr->zs_chan_b); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; zs_init_reg[2] = ia->ia_intr; memcpy(cs->cs_creg, zs_init_reg, 16); memcpy(cs->cs_preg, zs_init_reg, 16); if (zc == conschan) { zsc_args.hwflags |= ZS_HWFLAG_CONSOLE; cs->cs_defspeed = zs_get_speed(cs); cs->cs_defcflag = zscn_def_cflag; } else { cs->cs_defspeed = 9600; cs->cs_defcflag = zs_def_cflag; } /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { s = splzs(); zs_write_reg(cs, 9, 0); splx(s); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ child = config_found(self, (void *)&zsc_args, zs_print); #if ZSTTY > 0 if (zc == conschan && ((child && strcmp(device_xname(child), "zstty0")) || child == NULL)) /* XXX */ panic("%s: console device mismatch", __func__); #endif if (child == NULL) { /* No sub-driver. Just reset it. */ uint8_t reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* * Now safe to install interrupt handlers. */ if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc)) panic("%s: interrupt vector busy", __func__); zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL, (void (*)(void *))zsc_intr_soft, zsc); /* XXX; evcnt_attach() ? */ /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splzs(); /* interrupt vector */ zs_write_reg(cs, 2, ia->ia_intr); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } static int zs_print(void *aux, const char *name) { struct zsc_attach_args *args = aux; if (name != NULL) aprint_normal("%s: ", name); if (args->channel != -1) aprint_normal(" channel %d", args->channel); return UNCONF; } /* * For x68k-port, we don't use autovectored interrupt. * We do not need to look at all of the zs chips. */ static int zshard(void *arg) { struct zsc_softc *zsc = arg; int rval; int s; /* * Actually, zs hardware ipl is 5. * Here we disable all interrupts to shorten the zshard * handling time. Otherwise, too many characters are * dropped. */ s = splhigh(); rval = zsc_intr_hard(zsc); /* We are at splzs here, so no need to lock. */ if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) softint_schedule(zsc->zsc_softintr_cookie); return (rval); } /* * Compute the current baud rate given a ZS channel. */ static int zs_get_speed(struct zs_chanstate *cs) { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */) { int tconst, real_bps; if (bps == 0) return (0); #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); #if 0 /* XXX */ /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); #else /* * Since our PCLK has somewhat strange value, * we have to allow tolerance here. */ if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst) return (EINVAL); #endif cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(struct zs_chanstate *cs, int cflag /* bits per second */) { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ uint8_t zs_read_reg(struct zs_chanstate *cs, uint8_t reg) { uint8_t val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val) { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } uint8_t zs_read_csr(struct zs_chanstate *cs) { uint8_t val; val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_csr(struct zs_chanstate *cs, uint8_t val) { *cs->cs_reg_csr = val; ZS_DELAY(); } uint8_t zs_read_data(struct zs_chanstate *cs) { uint8_t val; val = *cs->cs_reg_data; ZS_DELAY(); return val; } void zs_write_data(struct zs_chanstate *cs, uint8_t val) { *cs->cs_reg_data = val; ZS_DELAY(); } /**************************************************************** * Console support functions (x68k specific!) * Note: this code is allowed to know about the layout of * the chip registers, and uses that to keep things simple. * XXX - I think I like the mvme167 code better. -gwr ****************************************************************/ /* * Handle user request to enter kernel debugger. */ void zs_abort(struct zs_chanstate *cs) { int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); #ifdef DDB Debugger(); #else printf("BREAK!!\n"); #endif } #if NZSTTY > 0 #include cons_decl(zs); static int zs_getc(void); static void zs_putc(int); static struct zs_chanstate zscn_cs; /* * Polled input char. */ static int zs_getc(void) { int s, c, rr0; s = splzs(); /* Wait for a character to arrive. */ do { rr0 = zs_read_csr(&zscn_cs); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zs_read_data(&zscn_cs); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ static void zs_putc(int c) { int s, rr0; s = splzs(); /* Wait for transmitter to become ready. */ do { rr0 = zs_read_csr(&zscn_cs); } while ((rr0 & ZSRR0_TX_READY) == 0); zs_write_data(&zscn_cs, c); splx(s); } void zscninit(struct consdev *cn) { volatile struct zschan *cnchan = (volatile void *)INTIO_ADDR(ZSCN_PHYSADDR); int s; memset(&zscn_cs, 0, sizeof(struct zs_chanstate)); zscn_cs.cs_reg_csr = &cnchan->zc_csr; zscn_cs.cs_reg_data = &cnchan->zc_data; zscn_cs.cs_channel = 0; zscn_cs.cs_brg_clk = PCLK / 16; memcpy(zscn_cs.cs_preg, zs_init_reg, 16); zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */ zscn_cs.cs_preg[9] = 0; zs_set_speed(&zscn_cs, ZSCN_SPEED); s = splzs(); zs_loadchannelregs(&zscn_cs); splx(s); conschan = cnchan; } /* * Polled console input putchar. */ int zscngetc(dev_t dev) { return (zs_getc()); } /* * Polled console output putchar. */ void zscnputc(dev_t dev, int c) { zs_putc(c); } void zscnprobe(struct consdev *cd) { int maj; extern const struct cdevsw zstty_cdevsw; /* locate the major number */ maj = cdevsw_lookup_major(&zstty_cdevsw); /* XXX: minor number is 0 */ if (maj == -1) cd->cn_pri = CN_DEAD; else { #ifdef ZSCONSOLE cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */ #else cd->cn_pri = CN_NORMAL; #endif cd->cn_dev = makedev(maj, 0); } } void zscnpollc(dev_t dev, int on) { } #endif