/* $NetBSD: subr_kobj.c,v 1.44 2011/08/13 21:04:06 christos Exp $ */ /*- * Copyright (c) 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software developed for The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1998-2000 Doug Rabson * Copyright (c) 2004 Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Kernel loader for ELF objects. * * TODO: adjust kmem_alloc() calls to avoid needless fragmentation. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.44 2011/08/13 21:04:06 christos Exp $"); #include "opt_modular.h" #include #ifdef MODULAR #include #include #include #include #include #include #include static int kobj_relocate(kobj_t, bool); static int kobj_checksyms(kobj_t, bool); static void kobj_error(const char *, int, kobj_t, const char *, ...) __printflike(4, 5); static void kobj_jettison(kobj_t); static void kobj_free(kobj_t, void *, size_t); static void kobj_close(kobj_t); static int kobj_read_mem(kobj_t, void **, size_t, off_t, bool); static void kobj_close_mem(kobj_t); extern struct vm_map *module_map; /* * kobj_load_mem: * * Load an object already resident in memory. If size is not -1, * the complete size of the object is known. */ int kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size) { kobj_t ko; ko = kmem_zalloc(sizeof(*ko), KM_SLEEP); if (ko == NULL) { return ENOMEM; } ko->ko_type = KT_MEMORY; kobj_setname(ko, name); ko->ko_source = base; ko->ko_memsize = size; ko->ko_read = kobj_read_mem; ko->ko_close = kobj_close_mem; *kop = ko; return kobj_load(ko); } /* * kobj_close: * * Close an open ELF object. */ static void kobj_close(kobj_t ko) { if (ko->ko_source == NULL) { return; } ko->ko_close(ko); ko->ko_source = NULL; } static void kobj_close_mem(kobj_t ko) { return; } /* * kobj_load: * * Load an ELF object and prepare to link into the running kernel * image. */ int kobj_load(kobj_t ko) { Elf_Ehdr *hdr; Elf_Shdr *shdr; Elf_Sym *es; vaddr_t mapbase; size_t mapsize; int error; int symtabindex; int symstrindex; int nsym; int pb, rl, ra; int alignmask; int i, j; void *addr; KASSERT(ko->ko_type != KT_UNSET); KASSERT(ko->ko_source != NULL); shdr = NULL; mapsize = 0; error = 0; hdr = NULL; /* * Read the elf header from the file. */ error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) { kobj_error(__func__, __LINE__, ko, "not an ELF object"); error = ENOEXEC; goto out; } if (hdr->e_ident[EI_VERSION] != EV_CURRENT || hdr->e_version != EV_CURRENT) { kobj_error(__func__, __LINE__, ko, "unsupported file version %d", hdr->e_ident[EI_VERSION]); error = ENOEXEC; goto out; } if (hdr->e_type != ET_REL) { kobj_error(__func__, __LINE__, ko, "unsupported file type %d", hdr->e_type); error = ENOEXEC; goto out; } switch (hdr->e_machine) { #if ELFSIZE == 32 ELF32_MACHDEP_ID_CASES #elif ELFSIZE == 64 ELF64_MACHDEP_ID_CASES #else #error not defined #endif default: kobj_error(__func__, __LINE__, ko, "unsupported machine %d", hdr->e_machine); error = ENOEXEC; goto out; } ko->ko_nprogtab = 0; ko->ko_shdr = 0; ko->ko_nrel = 0; ko->ko_nrela = 0; /* * Allocate and read in the section header. */ ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize; if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) { kobj_error(__func__, __LINE__, ko, "bad sizes"); error = ENOEXEC; goto out; } error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } ko->ko_shdr = shdr; /* * Scan the section header for information and table sizing. */ nsym = 0; symtabindex = -1; symstrindex = -1; for (i = 0; i < hdr->e_shnum; i++) { switch (shdr[i].sh_type) { case SHT_PROGBITS: case SHT_NOBITS: ko->ko_nprogtab++; break; case SHT_SYMTAB: nsym++; symtabindex = i; symstrindex = shdr[i].sh_link; break; case SHT_REL: ko->ko_nrel++; break; case SHT_RELA: ko->ko_nrela++; break; case SHT_STRTAB: break; } } if (ko->ko_nprogtab == 0) { kobj_error(__func__, __LINE__, ko, "file has no contents"); error = ENOEXEC; goto out; } if (nsym != 1) { /* Only allow one symbol table for now */ kobj_error(__func__, __LINE__, ko, "file has no valid symbol table"); error = ENOEXEC; goto out; } if (symstrindex < 0 || symstrindex > hdr->e_shnum || shdr[symstrindex].sh_type != SHT_STRTAB) { kobj_error(__func__, __LINE__, ko, "file has invalid symbol strings"); error = ENOEXEC; goto out; } /* * Allocate space for tracking the load chunks. */ if (ko->ko_nprogtab != 0) { ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab * sizeof(*ko->ko_progtab), KM_SLEEP); if (ko->ko_progtab == NULL) { error = ENOMEM; kobj_error(__func__, __LINE__, ko, "out of memory"); goto out; } } if (ko->ko_nrel != 0) { ko->ko_reltab = kmem_zalloc(ko->ko_nrel * sizeof(*ko->ko_reltab), KM_SLEEP); if (ko->ko_reltab == NULL) { error = ENOMEM; kobj_error(__func__, __LINE__, ko, "out of memory"); goto out; } } if (ko->ko_nrela != 0) { ko->ko_relatab = kmem_zalloc(ko->ko_nrela * sizeof(*ko->ko_relatab), KM_SLEEP); if (ko->ko_relatab == NULL) { error = ENOMEM; kobj_error(__func__, __LINE__, ko, "out of memory"); goto out; } } if (symtabindex == -1) { kobj_error(__func__, __LINE__, ko, "lost symbol table index"); goto out; } /* * Allocate space for and load the symbol table. */ ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym); if (ko->ko_symcnt == 0) { kobj_error(__func__, __LINE__, ko, "no symbol table"); goto out; } error = ko->ko_read(ko, (void **)&ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym), shdr[symtabindex].sh_offset, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } /* * Allocate space for and load the symbol strings. */ ko->ko_strtabsz = shdr[symstrindex].sh_size; if (ko->ko_strtabsz == 0) { kobj_error(__func__, __LINE__, ko, "no symbol strings"); goto out; } error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz, shdr[symstrindex].sh_offset, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } /* * Adjust module symbol namespace, if necessary (e.g. with rump) */ error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt, &ko->ko_strtab, &ko->ko_strtabsz); if (error != 0) { kobj_error(__func__, __LINE__, ko, "renamespace failed %d", error); goto out; } /* * Do we have a string table for the section names? */ if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 && shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) { ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size; error = ko->ko_read(ko, (void **)&ko->ko_shstrtab, shdr[hdr->e_shstrndx].sh_size, shdr[hdr->e_shstrndx].sh_offset, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } } /* * Size up code/data(progbits) and bss(nobits). */ alignmask = 0; mapbase = 0; for (i = 0; i < hdr->e_shnum; i++) { switch (shdr[i].sh_type) { case SHT_PROGBITS: case SHT_NOBITS: if (mapbase == 0) mapbase = shdr[i].sh_offset; alignmask = shdr[i].sh_addralign - 1; mapsize += alignmask; mapsize &= ~alignmask; mapsize += shdr[i].sh_size; break; } } /* * We know how much space we need for the text/data/bss/etc. * This stuff needs to be in a single chunk so that profiling etc * can get the bounds and gdb can associate offsets with modules. */ if (mapsize == 0) { kobj_error(__func__, __LINE__, ko, "no text/data/bss"); goto out; } if (ko->ko_type == KT_MEMORY) { mapbase += (vaddr_t)ko->ko_source; } else { mapbase = uvm_km_alloc(module_map, round_page(mapsize), 0, UVM_KMF_WIRED | UVM_KMF_EXEC); if (mapbase == 0) { kobj_error(__func__, __LINE__, ko, "out of memory"); error = ENOMEM; goto out; } } ko->ko_address = mapbase; ko->ko_size = mapsize; /* * Now load code/data(progbits), zero bss(nobits), allocate space * for and load relocs */ pb = 0; rl = 0; ra = 0; alignmask = 0; for (i = 0; i < hdr->e_shnum; i++) { switch (shdr[i].sh_type) { case SHT_PROGBITS: case SHT_NOBITS: alignmask = shdr[i].sh_addralign - 1; if (ko->ko_type == KT_MEMORY) { addr = (void *)(shdr[i].sh_offset + (vaddr_t)ko->ko_source); if (((vaddr_t)addr & alignmask) != 0) { kobj_error(__func__, __LINE__, ko, "section %d not aligned", i); goto out; } } else { mapbase += alignmask; mapbase &= ~alignmask; addr = (void *)mapbase; mapbase += shdr[i].sh_size; } ko->ko_progtab[pb].addr = addr; if (shdr[i].sh_type == SHT_PROGBITS) { ko->ko_progtab[pb].name = "<>"; error = ko->ko_read(ko, &addr, shdr[i].sh_size, shdr[i].sh_offset, false); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } } else if (ko->ko_type == KT_MEMORY && shdr[i].sh_size != 0) { kobj_error(__func__, __LINE__, ko, "non-loadable BSS " "section in pre-loaded module"); error = EINVAL; goto out; } else { ko->ko_progtab[pb].name = "<>"; memset(addr, 0, shdr[i].sh_size); } ko->ko_progtab[pb].size = shdr[i].sh_size; ko->ko_progtab[pb].sec = i; if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) { ko->ko_progtab[pb].name = ko->ko_shstrtab + shdr[i].sh_name; } /* Update all symbol values with the offset. */ for (j = 0; j < ko->ko_symcnt; j++) { es = &ko->ko_symtab[j]; if (es->st_shndx != i) { continue; } es->st_value += (Elf_Addr)addr; } pb++; break; case SHT_REL: ko->ko_reltab[rl].size = shdr[i].sh_size; ko->ko_reltab[rl].size -= shdr[i].sh_size % sizeof(Elf_Rel); if (ko->ko_reltab[rl].size != 0) { ko->ko_reltab[rl].nrel = shdr[i].sh_size / sizeof(Elf_Rel); ko->ko_reltab[rl].sec = shdr[i].sh_info; error = ko->ko_read(ko, (void **)&ko->ko_reltab[rl].rel, ko->ko_reltab[rl].size, shdr[i].sh_offset, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } } rl++; break; case SHT_RELA: ko->ko_relatab[ra].size = shdr[i].sh_size; ko->ko_relatab[ra].size -= shdr[i].sh_size % sizeof(Elf_Rela); if (ko->ko_relatab[ra].size != 0) { ko->ko_relatab[ra].nrela = shdr[i].sh_size / sizeof(Elf_Rela); ko->ko_relatab[ra].sec = shdr[i].sh_info; error = ko->ko_read(ko, (void **)&ko->ko_relatab[ra].rela, shdr[i].sh_size, shdr[i].sh_offset, true); if (error != 0) { kobj_error(__func__, __LINE__, ko, "read failed %d", error); goto out; } } ra++; break; default: break; } } if (pb != ko->ko_nprogtab) { panic("lost progbits"); } if (rl != ko->ko_nrel) { panic("lost rel"); } if (ra != ko->ko_nrela) { panic("lost rela"); } if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) { panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n", (long)mapbase, (long)ko->ko_address, (long)mapsize, (long)ko->ko_address + mapsize); } /* * Perform local relocations only. Relocations relating to global * symbols will be done by kobj_affix(). */ error = kobj_checksyms(ko, false); if (error == 0) { error = kobj_relocate(ko, true); } out: if (hdr != NULL) { kobj_free(ko, hdr, sizeof(*hdr)); } kobj_close(ko); if (error != 0) { kobj_unload(ko); } return error; } /* * kobj_unload: * * Unload an object previously loaded by kobj_load(). */ void kobj_unload(kobj_t ko) { int error; kobj_close(ko); kobj_jettison(ko); /* * Notify MD code that a module has been unloaded. */ if (ko->ko_loaded) { error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, false); if (error != 0) kobj_error(__func__, __LINE__, ko, "machine dependent deinit failed %d", error); } if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) { uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size), UVM_KMF_WIRED); } if (ko->ko_ksyms == true) { ksyms_modunload(ko->ko_name); } if (ko->ko_symtab != NULL) { kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym)); } if (ko->ko_strtab != NULL) { kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz); } if (ko->ko_progtab != NULL) { kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab * sizeof(*ko->ko_progtab)); ko->ko_progtab = NULL; } if (ko->ko_shstrtab) { kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz); ko->ko_shstrtab = NULL; } kmem_free(ko, sizeof(*ko)); } /* * kobj_stat: * * Return size and load address of an object. */ int kobj_stat(kobj_t ko, vaddr_t *address, size_t *size) { if (address != NULL) { *address = ko->ko_address; } if (size != NULL) { *size = ko->ko_size; } return 0; } /* * kobj_affix: * * Set an object's name and perform global relocs. May only be * called after the module and any requisite modules are loaded. */ int kobj_affix(kobj_t ko, const char *name) { int error; KASSERT(ko->ko_ksyms == false); KASSERT(ko->ko_loaded == false); kobj_setname(ko, name); /* Cache addresses of undefined symbols. */ error = kobj_checksyms(ko, true); /* Now do global relocations. */ if (error == 0) error = kobj_relocate(ko, false); /* * Now that we know the name, register the symbol table. * Do after global relocations because ksyms will pack * the table. */ if (error == 0) { ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz); ko->ko_ksyms = true; } /* Jettison unneeded memory post-link. */ kobj_jettison(ko); /* * Notify MD code that a module has been loaded. * * Most architectures use this opportunity to flush their caches. */ if (error == 0) { error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true); if (error != 0) kobj_error(__func__, __LINE__, ko, "machine dependent init failed %d", error); ko->ko_loaded = true; } /* If there was an error, destroy the whole object. */ if (error != 0) { kobj_unload(ko); } return error; } /* * kobj_find_section: * * Given a section name, search the loaded object and return * virtual address if present and loaded. */ int kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size) { int i; KASSERT(ko->ko_progtab != NULL); for (i = 0; i < ko->ko_nprogtab; i++) { if (strcmp(ko->ko_progtab[i].name, name) == 0) { if (addr != NULL) { *addr = ko->ko_progtab[i].addr; } if (size != NULL) { *size = ko->ko_progtab[i].size; } return 0; } } return ENOENT; } /* * kobj_jettison: * * Release object data not needed after performing relocations. */ static void kobj_jettison(kobj_t ko) { int i; if (ko->ko_reltab != NULL) { for (i = 0; i < ko->ko_nrel; i++) { if (ko->ko_reltab[i].rel) { kobj_free(ko, ko->ko_reltab[i].rel, ko->ko_reltab[i].size); } } kobj_free(ko, ko->ko_reltab, ko->ko_nrel * sizeof(*ko->ko_reltab)); ko->ko_reltab = NULL; ko->ko_nrel = 0; } if (ko->ko_relatab != NULL) { for (i = 0; i < ko->ko_nrela; i++) { if (ko->ko_relatab[i].rela) { kobj_free(ko, ko->ko_relatab[i].rela, ko->ko_relatab[i].size); } } kobj_free(ko, ko->ko_relatab, ko->ko_nrela * sizeof(*ko->ko_relatab)); ko->ko_relatab = NULL; ko->ko_nrela = 0; } if (ko->ko_shdr != NULL) { kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz); ko->ko_shdr = NULL; } } /* * kobj_sym_lookup: * * Symbol lookup function to be used when the symbol index * is known (ie during relocation). */ uintptr_t kobj_sym_lookup(kobj_t ko, uintptr_t symidx) { const Elf_Sym *sym; const char *symbol; /* Don't even try to lookup the symbol if the index is bogus. */ if (symidx >= ko->ko_symcnt) return 0; sym = ko->ko_symtab + symidx; /* Quick answer if there is a definition included. */ if (sym->st_shndx != SHN_UNDEF) { return (uintptr_t)sym->st_value; } /* If we get here, then it is undefined and needs a lookup. */ switch (ELF_ST_BIND(sym->st_info)) { case STB_LOCAL: /* Local, but undefined? huh? */ kobj_error(__func__, __LINE__, ko, "local symbol undefined"); return 0; case STB_GLOBAL: /* Relative to Data or Function name */ symbol = ko->ko_strtab + sym->st_name; /* Force a lookup failure if the symbol name is bogus. */ if (*symbol == 0) { kobj_error(__func__, __LINE__, ko, "bad symbol name"); return 0; } return (uintptr_t)sym->st_value; case STB_WEAK: kobj_error(__func__, __LINE__, ko, "weak symbols not supported"); return 0; default: return 0; } } /* * kobj_findbase: * * Return base address of the given section. */ static uintptr_t kobj_findbase(kobj_t ko, int sec) { int i; for (i = 0; i < ko->ko_nprogtab; i++) { if (sec == ko->ko_progtab[i].sec) { return (uintptr_t)ko->ko_progtab[i].addr; } } return 0; } /* * kobj_checksyms: * * Scan symbol table for duplicates or resolve references to * exernal symbols. */ static int kobj_checksyms(kobj_t ko, bool undefined) { unsigned long rval; Elf_Sym *sym, *ms; const char *name; int error; error = 0; for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) { /* Check validity of the symbol. */ if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL || sym->st_name == 0) continue; if (undefined != (sym->st_shndx == SHN_UNDEF)) { continue; } /* * Look it up. Don't need to lock, as it is known that * the symbol tables aren't going to change (we hold * module_lock). */ name = ko->ko_strtab + sym->st_name; if (ksyms_getval_unlocked(NULL, name, &rval, KSYMS_EXTERN) != 0) { if (undefined) { kobj_error(__func__, __LINE__, ko, "symbol `%s' not found", name); error = ENOEXEC; } continue; } /* Save values of undefined globals. */ if (undefined) { sym->st_value = (Elf_Addr)rval; continue; } /* Check (and complain) about differing values. */ if (sym->st_value == rval) { continue; } if (strcmp(name, "_bss_start") == 0 || strcmp(name, "__bss_start") == 0 || strcmp(name, "_bss_end__") == 0 || strcmp(name, "__bss_end__") == 0 || strcmp(name, "_edata") == 0 || strcmp(name, "_end") == 0 || strcmp(name, "__end") == 0 || strcmp(name, "__end__") == 0 || strncmp(name, "__start_link_set_", 17) == 0 || strncmp(name, "__stop_link_set_", 16)) { continue; } kobj_error(__func__, __LINE__, ko, "global symbol `%s' redefined", name); error = ENOEXEC; } return error; } /* * kobj_relocate: * * Resolve relocations for the loaded object. */ static int kobj_relocate(kobj_t ko, bool local) { const Elf_Rel *rellim; const Elf_Rel *rel; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *sym; uintptr_t base; int i, error; uintptr_t symidx; /* * Perform relocations without addend if there are any. */ for (i = 0; i < ko->ko_nrel; i++) { rel = ko->ko_reltab[i].rel; if (rel == NULL) { continue; } rellim = rel + ko->ko_reltab[i].nrel; base = kobj_findbase(ko, ko->ko_reltab[i].sec); if (base == 0) { panic("lost base for e_reltab"); } for (; rel < rellim; rel++) { symidx = ELF_R_SYM(rel->r_info); if (symidx >= ko->ko_symcnt) { continue; } sym = ko->ko_symtab + symidx; if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) { continue; } error = kobj_reloc(ko, base, rel, false, local); if (error != 0) { return ENOENT; } } } /* * Perform relocations with addend if there are any. */ for (i = 0; i < ko->ko_nrela; i++) { rela = ko->ko_relatab[i].rela; if (rela == NULL) { continue; } relalim = rela + ko->ko_relatab[i].nrela; base = kobj_findbase(ko, ko->ko_relatab[i].sec); if (base == 0) { panic("lost base for e_relatab"); } for (; rela < relalim; rela++) { symidx = ELF_R_SYM(rela->r_info); if (symidx >= ko->ko_symcnt) { continue; } sym = ko->ko_symtab + symidx; if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) { continue; } error = kobj_reloc(ko, base, rela, true, local); if (error != 0) { return ENOENT; } } } return 0; } /* * kobj_error: * * Utility function: log an error. */ static void kobj_error(const char *fname, int lnum, kobj_t ko, const char *fmt, ...) { va_list ap; printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf("\n"); } static int kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off, bool allocate) { void *base = *basep; int error; if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) { kobj_error(__func__, __LINE__, ko, "preloaded object short"); error = EINVAL; base = NULL; } else if (allocate) { base = (uint8_t *)ko->ko_source + off; error = 0; } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) { kobj_error(__func__, __LINE__, ko, "object not aligned"); kobj_error(__func__, __LINE__, ko, "source=%p base=%p off=%d " "size=%zd", ko->ko_source, base, (int)off, size); error = EINVAL; } else { /* Nothing to do. Loading in-situ. */ error = 0; } if (allocate) *basep = base; return error; } /* * kobj_free: * * Utility function: free memory if it was allocated from the heap. */ static void kobj_free(kobj_t ko, void *base, size_t size) { if (ko->ko_type != KT_MEMORY) kmem_free(base, size); } extern char module_base[]; void kobj_setname(kobj_t ko, const char *name) { const char *d = name, *dots = ""; size_t len, dlen; for (char *s = module_base; *d == *s; d++, s++) continue; if (d == name) name = ""; else name = "%M"; dlen = strlen(d); len = dlen + strlen(name); if (len >= sizeof(ko->ko_name)) { len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */ if (dlen >= len) { d += len; dots = "/..."; } } snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d); } #else /* MODULAR */ int kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size) { return ENOSYS; } void kobj_unload(kobj_t ko) { panic("not modular"); } int kobj_stat(kobj_t ko, vaddr_t *base, size_t *size) { return ENOSYS; } int kobj_affix(kobj_t ko, const char *name) { panic("not modular"); } int kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size) { panic("not modular"); } void kobj_setname(kobj_t ko, const char *name) { panic("not modular"); } #endif /* MODULAR */