/* $NetBSD: agp.c,v 1.4 2001/09/14 12:09:14 drochner Exp $ */ /*- * Copyright (c) 2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Frank van der Linden for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Helper functions for implementing chipset mini drivers. */ /* XXXfvdl get rid of this one. */ extern struct cfdriver agp_cd; cdev_decl(agp); int agpmatch(struct device *, struct cfdata *, void *); void agpattach(struct device *, struct device *, void *); struct cfattach agp_ca = { sizeof(struct agp_softc), agpmatch, agpattach }; static int agp_info_user(struct agp_softc *, agp_info *); static int agp_setup_user(struct agp_softc *, agp_setup *); static int agp_allocate_user(struct agp_softc *, agp_allocate *); static int agp_deallocate_user(struct agp_softc *, int); static int agp_bind_user(struct agp_softc *, agp_bind *); static int agp_unbind_user(struct agp_softc *, agp_unbind *); static int agpdev_match(struct pci_attach_args *); int agpmatch(struct device *parent, struct cfdata *match, void *aux) { struct agp_phcb_attach_args *apa = aux; struct pci_attach_args *pa = &apa->apa_pci_args; switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_ALI: return agp_ali_match(parent, match, pa); case PCI_VENDOR_AMD: return agp_amd_match(parent, match, pa); case PCI_VENDOR_INTEL: if (agp_i810_bridgematch(pa)) return agp_i810_match(parent, match, pa); return agp_intel_match(parent, match, pa); case PCI_VENDOR_SIS: return agp_sis_match(parent, match, pa); case PCI_VENDOR_VIATECH: return agp_via_match(parent, match, pa); default: return 0; } return (0); } static int agp_max[][2] = { {0, 0}, {32, 4}, {64, 28}, {128, 96}, {256, 204}, {512, 440}, {1024, 942}, {2048, 1920}, {4096, 3932} }; #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) void agpattach(struct device *parent, struct device *self, void *aux) { struct agp_phcb_attach_args *apa = aux; struct pci_attach_args *pa = &apa->apa_pci_args; struct agp_softc *sc = (void *)self; int memsize, i, ret; sc->as_dmat = pa->pa_dmat; sc->as_pc = pa->pa_pc; sc->as_tag = pa->pa_tag; sc->as_id = pa->pa_id; /* * Work out an upper bound for agp memory allocation. This * uses a heurisitc table from the Linux driver. */ memsize = ptoa(physmem) >> 20; for (i = 0; i < agp_max_size; i++) { if (memsize <= agp_max[i][0]) break; } if (i == agp_max_size) i = agp_max_size - 1; sc->as_maxmem = agp_max[i][1] << 20U; /* * The lock is used to prevent re-entry to * agp_generic_bind_memory() since that function can sleep. */ lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0); TAILQ_INIT(&sc->as_memory); switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_ALI: ret = agp_ali_attach(parent, self, pa); break; case PCI_VENDOR_AMD: ret = agp_amd_attach(parent, self, pa); break; case PCI_VENDOR_INTEL: if (agp_i810_bridgematch(pa)) ret = agp_i810_attach(parent, self, pa); else ret = agp_intel_attach(parent, self, pa); break; case PCI_VENDOR_SIS: ret = agp_sis_attach(parent, self, pa); break; case PCI_VENDOR_VIATECH: ret = agp_via_attach(parent, self, pa); break; default: panic("agpattach: bad chipset detection"); } if (ret == 0) printf(": aperture at 0x%lx, size 0x%lx\n", (unsigned long)sc->as_apaddr, (unsigned long)AGP_GET_APERTURE(sc)); else sc->as_chipc = NULL; } int agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc) { /* * Find and map the aperture. */ if (pci_mapreg_map(pa, AGP_APBASE, PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR, &sc->as_apt, &sc->as_aph, &sc->as_apaddr, &sc->as_apsize) != 0) { printf("%s: can't map aperture space\n", sc->as_dev.dv_xname); return ENXIO; } return 0; } struct agp_gatt * agp_alloc_gatt(struct agp_softc *sc) { u_int32_t apsize = AGP_GET_APERTURE(sc); u_int32_t entries = apsize >> AGP_PAGE_SHIFT; struct agp_gatt *gatt; int dummyseg; gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); if (!gatt) return NULL; gatt->ag_entries = entries; if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual, &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0) return NULL; gatt->ag_size = entries * sizeof(u_int32_t); memset(gatt->ag_virtual, 0, gatt->ag_size); agp_flush_cache(); return gatt; } void agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) { agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1); free(gatt, M_AGP); } int agp_generic_detach(struct agp_softc *sc) { lockmgr(&sc->as_lock, LK_DRAIN, 0); agp_flush_cache(); return 0; } static int agpdev_match(struct pci_attach_args *pa) { if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) return 1; return 0; } int agp_generic_enable(struct agp_softc *sc, u_int32_t mode) { struct pci_attach_args pa; pcireg_t tstatus, mstatus; pcireg_t command; int rq, sba, fw, rate, capoff; if (pci_find_device(&pa, agpdev_match) == 0 || pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, &capoff, NULL) == 0) { printf("%s: can't find display\n", sc->as_dev.dv_xname); return ENXIO; } tstatus = pci_conf_read(sc->as_pc, sc->as_tag, sc->as_capoff + AGP_STATUS); mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, capoff + AGP_STATUS); /* Set RQ to the min of mode, tstatus and mstatus */ rq = AGP_MODE_GET_RQ(mode); if (AGP_MODE_GET_RQ(tstatus) < rq) rq = AGP_MODE_GET_RQ(tstatus); if (AGP_MODE_GET_RQ(mstatus) < rq) rq = AGP_MODE_GET_RQ(mstatus); /* Set SBA if all three can deal with SBA */ sba = (AGP_MODE_GET_SBA(tstatus) & AGP_MODE_GET_SBA(mstatus) & AGP_MODE_GET_SBA(mode)); /* Similar for FW */ fw = (AGP_MODE_GET_FW(tstatus) & AGP_MODE_GET_FW(mstatus) & AGP_MODE_GET_FW(mode)); /* Figure out the max rate */ rate = (AGP_MODE_GET_RATE(tstatus) & AGP_MODE_GET_RATE(mstatus) & AGP_MODE_GET_RATE(mode)); if (rate & AGP_MODE_RATE_4x) rate = AGP_MODE_RATE_4x; else if (rate & AGP_MODE_RATE_2x) rate = AGP_MODE_RATE_2x; else rate = AGP_MODE_RATE_1x; /* Construct the new mode word and tell the hardware */ command = AGP_MODE_SET_RQ(0, rq); command = AGP_MODE_SET_SBA(command, sba); command = AGP_MODE_SET_FW(command, fw); command = AGP_MODE_SET_RATE(command, rate); command = AGP_MODE_SET_AGP(command, 1); pci_conf_write(sc->as_pc, sc->as_tag, sc->as_capoff + AGP_COMMAND, command); pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); return 0; } struct agp_memory * agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) { struct agp_memory *mem; if ((size & (AGP_PAGE_SIZE - 1)) != 0) return 0; if (sc->as_allocated + size > sc->as_maxmem) return 0; if (type != 0) { printf("agp_generic_alloc_memory: unsupported type %d\n", type); return 0; } mem = malloc(sizeof *mem, M_AGP, M_WAITOK); if (mem == NULL) return NULL; if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { free(mem, M_AGP); return NULL; } mem->am_id = sc->as_nextid++; mem->am_size = size; mem->am_type = 0; mem->am_physical = 0; mem->am_offset = 0; mem->am_is_bound = 0; TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); sc->as_allocated += size; return mem; } int agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) { if (mem->am_is_bound) return EBUSY; sc->as_allocated -= mem->am_size; TAILQ_REMOVE(&sc->as_memory, mem, am_link); bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); free(mem, M_AGP); return 0; } int agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, off_t offset) { off_t i, k; bus_size_t done, j; int error; bus_dma_segment_t *segs, *seg; bus_addr_t pa; int contigpages, nseg; lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0); if (mem->am_is_bound) { printf("%s: memory already bound\n", sc->as_dev.dv_xname); lockmgr(&sc->as_lock, LK_RELEASE, 0); return EINVAL; } if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { printf("%s: binding memory at bad offset %#lx\n", sc->as_dev.dv_xname, (unsigned long) offset); lockmgr(&sc->as_lock, LK_RELEASE, 0); return EINVAL; } /* * XXXfvdl * The memory here needs to be directly accessable from the * AGP video card, so it should be allocated using bus_dma. * However, it need not be contiguous, since individual pages * are translated using the GATT. * * Using a large chunk of contiguous memory may get in the way * of other subsystems that may need one, so we try to be friendly * and ask for allocation in chunks of a minimum of 8 pages * of contiguous memory on average, falling back to 4, 2 and 1 * if really needed. Larger chunks are preferred, since allocating * a bus_dma_segment per page would be overkill. */ for (contigpages = 8; contigpages > 0; contigpages >>= 1) { nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); if (segs == NULL) return NULL; if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, segs, nseg, &mem->am_nseg, BUS_DMA_WAITOK) != 0) { free(segs, M_AGP); continue; } if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); free(segs, M_AGP); continue; } if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); free(segs, M_AGP); continue; } mem->am_dmaseg = segs; break; } if (contigpages == 0) { lockmgr(&sc->as_lock, LK_RELEASE, 0); return ENOMEM; } /* * Bind the individual pages and flush the chipset's * TLB. */ done = 0; for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { seg = &mem->am_dmamap->dm_segs[i]; /* * Install entries in the GATT, making sure that if * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not * aligned to PAGE_SIZE, we don't modify too many GATT * entries. */ for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; j += AGP_PAGE_SIZE) { pa = seg->ds_addr + j; AGP_DPF("binding offset %#lx to pa %#lx\n", (unsigned long)(offset + done + j), (unsigned long)pa); error = AGP_BIND_PAGE(sc, offset + done + j, pa); if (error) { /* * Bail out. Reverse all the mappings * and unwire the pages. */ for (k = 0; k < done + j; k += AGP_PAGE_SIZE) AGP_UNBIND_PAGE(sc, offset + k); bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); free(mem->am_dmaseg, M_AGP); lockmgr(&sc->as_lock, LK_RELEASE, 0); return error; } } done += seg->ds_len; } /* * Flush the cpu cache since we are providing a new mapping * for these pages. */ agp_flush_cache(); /* * Make sure the chipset gets the new mappings. */ AGP_FLUSH_TLB(sc); mem->am_offset = offset; mem->am_is_bound = 1; lockmgr(&sc->as_lock, LK_RELEASE, 0); return 0; } int agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) { int i; lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0); if (!mem->am_is_bound) { printf("%s: memory is not bound\n", sc->as_dev.dv_xname); lockmgr(&sc->as_lock, LK_RELEASE, 0); return EINVAL; } /* * Unbind the individual pages and flush the chipset's * TLB. Unwire the pages so they can be swapped. */ for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) AGP_UNBIND_PAGE(sc, mem->am_offset + i); agp_flush_cache(); AGP_FLUSH_TLB(sc); bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); free(mem->am_dmaseg, M_AGP); mem->am_offset = 0; mem->am_is_bound = 0; lockmgr(&sc->as_lock, LK_RELEASE, 0); return 0; } /* Helper functions for implementing user/kernel api */ static int agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) { if (sc->as_state != AGP_ACQUIRE_FREE) return EBUSY; sc->as_state = state; return 0; } static int agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) { struct agp_memory *mem; if (sc->as_state == AGP_ACQUIRE_FREE) return 0; if (sc->as_state != state) return EBUSY; /* * Clear out the aperture and free any outstanding memory blocks. */ TAILQ_FOREACH(mem, &sc->as_memory, am_link) { if (mem->am_is_bound) { printf("agp_release_helper: mem %d is bound\n", mem->am_id); AGP_UNBIND_MEMORY(sc, mem); } } sc->as_state = AGP_ACQUIRE_FREE; return 0; } static struct agp_memory * agp_find_memory(struct agp_softc *sc, int id) { struct agp_memory *mem; AGP_DPF("searching for memory block %d\n", id); TAILQ_FOREACH(mem, &sc->as_memory, am_link) { AGP_DPF("considering memory block %d\n", mem->am_id); if (mem->am_id == id) return mem; } return 0; } /* Implementation of the userland ioctl api */ static int agp_info_user(struct agp_softc *sc, agp_info *info) { memset(info, 0, sizeof *info); info->bridge_id = sc->as_id; if (sc->as_capoff != 0) info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, sc->as_capoff + AGP_STATUS); else info->agp_mode = 0; /* i810 doesn't have real AGP */ info->aper_base = sc->as_apaddr; info->aper_size = AGP_GET_APERTURE(sc) >> 20; info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; return 0; } static int agp_setup_user(struct agp_softc *sc, agp_setup *setup) { return AGP_ENABLE(sc, setup->agp_mode); } static int agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) { struct agp_memory *mem; mem = AGP_ALLOC_MEMORY(sc, alloc->type, alloc->pg_count << AGP_PAGE_SHIFT); if (mem) { alloc->key = mem->am_id; alloc->physical = mem->am_physical; return 0; } else { return ENOMEM; } } static int agp_deallocate_user(struct agp_softc *sc, int id) { struct agp_memory *mem = agp_find_memory(sc, id); if (mem) { AGP_FREE_MEMORY(sc, mem); return 0; } else { return ENOENT; } } static int agp_bind_user(struct agp_softc *sc, agp_bind *bind) { struct agp_memory *mem = agp_find_memory(sc, bind->key); if (!mem) return ENOENT; return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); } static int agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) { struct agp_memory *mem = agp_find_memory(sc, unbind->key); if (!mem) return ENOENT; return AGP_UNBIND_MEMORY(sc, mem); } int agpopen(dev_t dev, int oflags, int devtype, struct proc *p) { struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); if (sc->as_chipc == NULL) return ENXIO; if (!sc->as_isopen) sc->as_isopen = 1; else return EBUSY; return 0; } int agpclose(dev_t dev, int fflag, int devtype, struct proc *p) { struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); /* * Clear the GATT and force release on last close */ if (sc->as_state == AGP_ACQUIRE_USER) agp_release_helper(sc, AGP_ACQUIRE_USER); sc->as_isopen = 0; return 0; } int agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p) { struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); if (sc == NULL) return ENODEV; if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) return EPERM; switch (cmd) { case AGPIOC_INFO: return agp_info_user(sc, (agp_info *) data); case AGPIOC_ACQUIRE: return agp_acquire_helper(sc, AGP_ACQUIRE_USER); case AGPIOC_RELEASE: return agp_release_helper(sc, AGP_ACQUIRE_USER); case AGPIOC_SETUP: return agp_setup_user(sc, (agp_setup *)data); case AGPIOC_ALLOCATE: return agp_allocate_user(sc, (agp_allocate *)data); case AGPIOC_DEALLOCATE: return agp_deallocate_user(sc, *(int *) data); case AGPIOC_BIND: return agp_bind_user(sc, (agp_bind *)data); case AGPIOC_UNBIND: return agp_unbind_user(sc, (agp_unbind *)data); } return EINVAL; } paddr_t agpmmap(dev_t dev, off_t offset, int prot) { struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); if (offset > AGP_GET_APERTURE(sc)) return -1; /* * XXX can't really use bus_dmamem_mmap here. */ return (sc->as_apaddr + offset) / PAGE_SIZE; } /* Implementation of the kernel api */ void * agp_find_device(int unit) { return device_lookup(&agp_cd, unit); } enum agp_acquire_state agp_state(void *devcookie) { struct agp_softc *sc = devcookie; return sc->as_state; } void agp_get_info(void *devcookie, struct agp_info *info) { struct agp_softc *sc = devcookie; info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, sc->as_capoff + AGP_STATUS); info->ai_aperture_base = sc->as_apaddr; info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ info->ai_aperture_vaddr = bus_space_vaddr(sc->as_apt, sc->as_aph); info->ai_memory_allowed = sc->as_maxmem; info->ai_memory_used = sc->as_allocated; } int agp_acquire(void *dev) { return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); } int agp_release(void *dev) { return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); } int agp_enable(void *dev, u_int32_t mode) { struct agp_softc *sc = dev; return AGP_ENABLE(sc, mode); } void *agp_alloc_memory(void *dev, int type, vsize_t bytes) { struct agp_softc *sc = dev; return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); } void agp_free_memory(void *dev, void *handle) { struct agp_softc *sc = dev; struct agp_memory *mem = (struct agp_memory *) handle; AGP_FREE_MEMORY(sc, mem); } int agp_bind_memory(void *dev, void *handle, off_t offset) { struct agp_softc *sc = dev; struct agp_memory *mem = (struct agp_memory *) handle; return AGP_BIND_MEMORY(sc, mem, offset); } int agp_unbind_memory(void *dev, void *handle) { struct agp_softc *sc = dev; struct agp_memory *mem = (struct agp_memory *) handle; return AGP_UNBIND_MEMORY(sc, mem); } void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) { struct agp_memory *mem = (struct agp_memory *) handle; mi->ami_size = mem->am_size; mi->ami_physical = mem->am_physical; mi->ami_offset = mem->am_offset; mi->ami_is_bound = mem->am_is_bound; } int agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr, bus_dma_segment_t *seg, int nseg, int *rseg) { int error, level = 0; if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) goto out; level++; if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, BUS_DMA_NOWAIT | flags)) != 0) goto out; level++; if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, BUS_DMA_NOWAIT, mapp)) != 0) goto out; level++; if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto out; *baddr = (*mapp)->dm_segs[0].ds_addr; return 0; out: switch (level) { case 3: bus_dmamap_destroy(tag, *mapp); /* FALLTHROUGH */ case 2: bus_dmamem_unmap(tag, *vaddr, size); /* FALLTHROUGH */ case 1: bus_dmamem_free(tag, seg, *rseg); break; default: break; } return error; } void agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, caddr_t vaddr, bus_dma_segment_t *seg, int nseg) { bus_dmamap_unload(tag, map); bus_dmamap_destroy(tag, map); bus_dmamem_unmap(tag, vaddr, size); bus_dmamem_free(tag, seg, nseg); }