/* $NetBSD: rt2661.c,v 1.26 2009/09/05 14:19:30 tsutsui Exp $ */ /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */ /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */ /*- * Copyright (c) 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2561, RT2561S and RT2661 chipset driver * http://www.ralinktech.com/ */ #include __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.26 2009/09/05 14:19:30 tsutsui Exp $"); #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RAL_DEBUG #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0) int rt2661_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static int rt2661_alloc_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *, int); static void rt2661_reset_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *); static void rt2661_free_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *); static int rt2661_alloc_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *, int); static void rt2661_reset_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *); static void rt2661_free_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *); static struct ieee80211_node * rt2661_node_alloc(struct ieee80211_node_table *); static int rt2661_media_change(struct ifnet *); static void rt2661_next_scan(void *); static void rt2661_iter_func(void *, struct ieee80211_node *); static void rt2661_updatestats(void *); static void rt2661_newassoc(struct ieee80211_node *, int); static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state, int); static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); static void rt2661_tx_intr(struct rt2661_softc *); static void rt2661_tx_dma_intr(struct rt2661_softc *, struct rt2661_tx_ring *); static void rt2661_rx_intr(struct rt2661_softc *); static void rt2661_mcu_beacon_expire(struct rt2661_softc *); static void rt2661_mcu_wakeup(struct rt2661_softc *); static void rt2661_mcu_cmd_intr(struct rt2661_softc *); int rt2661_intr(void *); #if NBPFILTER > 0 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *); #endif static int rt2661_ack_rate(struct ieee80211com *, int); static uint16_t rt2661_txtime(int, int, uint32_t); static uint8_t rt2661_plcp_signal(int); static void rt2661_setup_tx_desc(struct rt2661_softc *, struct rt2661_tx_desc *, uint32_t, uint16_t, int, int, const bus_dma_segment_t *, int, int); static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, struct ieee80211_node *); static struct mbuf * rt2661_get_rts(struct rt2661_softc *, struct ieee80211_frame *, uint16_t); static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, struct ieee80211_node *, int); static void rt2661_start(struct ifnet *); static void rt2661_watchdog(struct ifnet *); static int rt2661_reset(struct ifnet *); static int rt2661_ioctl(struct ifnet *, u_long, void *); static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t); static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t); static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t); static void rt2661_select_antenna(struct rt2661_softc *); static void rt2661_enable_mrr(struct rt2661_softc *); static void rt2661_set_txpreamble(struct rt2661_softc *); static void rt2661_set_basicrates(struct rt2661_softc *, const struct ieee80211_rateset *); static void rt2661_select_band(struct rt2661_softc *, struct ieee80211_channel *); static void rt2661_set_chan(struct rt2661_softc *, struct ieee80211_channel *); static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *); static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *); static void rt2661_update_promisc(struct rt2661_softc *); #if 0 static int rt2661_wme_update(struct ieee80211com *); #endif static void rt2661_updateslot(struct ifnet *); static void rt2661_set_slottime(struct rt2661_softc *); static const char * rt2661_get_rf(int); static void rt2661_read_eeprom(struct rt2661_softc *); static int rt2661_bbp_init(struct rt2661_softc *); static int rt2661_init(struct ifnet *); static void rt2661_stop(struct ifnet *, int); static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *, int); static void rt2661_rx_tune(struct rt2661_softc *); #ifdef notyet static void rt2661_radar_start(struct rt2661_softc *); static int rt2661_radar_stop(struct rt2661_softc *); #endif static int rt2661_prepare_beacon(struct rt2661_softc *); static void rt2661_enable_tsf_sync(struct rt2661_softc *); static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset rt2661_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset rt2661_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset rt2661_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct { uint32_t reg; uint32_t val; } rt2661_def_mac[] = { RT2661_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2661_def_bbp[] = { RT2661_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2661_rf5225_1[] = { RT2661_RF5225_1 }, rt2661_rf5225_2[] = { RT2661_RF5225_2 }; int rt2661_attach(void *xsc, int id) { struct rt2661_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; uint32_t val; int error, i, ntries; sc->sc_id = id; sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 15; callout_init(&sc->scan_ch, 0); callout_init(&sc->amrr_ch, 0); /* wait for NIC to initialize */ for (ntries = 0; ntries < 1000; ntries++) { if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) break; DELAY(1000); } if (ntries == 1000) { aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n"); return EIO; } /* retrieve RF rev. no and various other things from EEPROM */ rt2661_read_eeprom(sc); aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val, rt2661_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n"); goto fail1; } error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n"); goto fail2; } error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n"); goto fail3; } error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n"); goto fail4; } error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n"); goto fail5; } error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n"); goto fail6; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rt2661_init; ifp->if_stop = rt2661_stop; ifp->if_ioctl = rt2661_ioctl; ifp->if_start = rt2661_start; ifp->if_watchdog = rt2661_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_HOSTAP | /* HostAP mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WPA; /* 802.11i */ if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } if_attach(ifp); ieee80211_ifattach(ic); ic->ic_node_alloc = rt2661_node_alloc; ic->ic_newassoc = rt2661_newassoc; ic->ic_updateslot = rt2661_updateslot; ic->ic_reset = rt2661_reset; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rt2661_newstate; ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + sizeof(sc->sc_txtap), &sc->sc_drvbpf); sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t)); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t)); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT); #endif ieee80211_announce(ic); if (pmf_device_register(&sc->sc_dev, NULL, NULL)) pmf_class_network_register(&sc->sc_dev, ifp); else aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n"); return 0; fail6: rt2661_free_tx_ring(sc, &sc->mgtq); fail5: rt2661_free_tx_ring(sc, &sc->txq[3]); fail4: rt2661_free_tx_ring(sc, &sc->txq[2]); fail3: rt2661_free_tx_ring(sc, &sc->txq[1]); fail2: rt2661_free_tx_ring(sc, &sc->txq[0]); fail1: return ENXIO; } int rt2661_detach(void *xsc) { struct rt2661_softc *sc = xsc; struct ifnet *ifp = &sc->sc_if; callout_stop(&sc->scan_ch); callout_stop(&sc->amrr_ch); pmf_device_deregister(&sc->sc_dev); ieee80211_ifdetach(&sc->sc_ic); if_detach(ifp); rt2661_free_tx_ring(sc, &sc->txq[0]); rt2661_free_tx_ring(sc, &sc->txq[1]); rt2661_free_tx_ring(sc, &sc->txq[2]); rt2661_free_tx_ring(sc, &sc->txq[3]); rt2661_free_tx_ring(sc, &sc->mgtq); rt2661_free_rx_ring(sc, &sc->rxq); return 0; } static int rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, int count) { int i, nsegs, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = ring->stat = 0; error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1, count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, count * RT2661_TX_DESC_SIZE, (void **)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n"); goto fail; } memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE); ring->physaddr = ring->map->dm_segs->ds_addr; ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, M_NOWAIT); if (ring->data == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } memset(ring->data, 0, count * sizeof (struct rt2661_tx_data)); for (i = 0; i < count; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: rt2661_free_tx_ring(sc, ring); return error; } static void rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) { struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = ring->stat = 0; } static void rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) { struct rt2661_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, ring->count * RT2661_TX_DESC_SIZE); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } free(ring->data, M_DEVBUF); } } static int rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, int count) { struct rt2661_rx_desc *desc; struct rt2661_rx_data *data; int i, nsegs, error; ring->count = count; ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1, count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n"); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, count * RT2661_RX_DESC_SIZE, (void **)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n"); goto fail; } memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE); ring->physaddr = ring->map->dm_segs->ds_addr; ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, M_NOWAIT); if (ring->data == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ memset(ring->data, 0, count * sizeof (struct rt2661_rx_data)); for (i = 0; i < count; i++) { desc = &sc->rxq.desc[i]; data = &sc->rxq.data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not create DMA map\n"); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map"); goto fail; } desc->physaddr = htole32(data->map->dm_segs->ds_addr); desc->flags = htole32(RT2661_RX_BUSY); } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; fail: rt2661_free_rx_ring(sc, ring); return error; } static void rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) ring->desc[i].flags = htole32(RT2661_RX_BUSY); bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } static void rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) { struct rt2661_rx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc, ring->count * RT2661_RX_DESC_SIZE); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } free(ring->data, M_DEVBUF); } } static struct ieee80211_node * rt2661_node_alloc(struct ieee80211_node_table *nt) { struct rt2661_node *rn; rn = malloc(sizeof (struct rt2661_node), M_80211_NODE, M_NOWAIT | M_ZERO); return (rn != NULL) ? &rn->ni : NULL; } static int rt2661_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2661_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ static void rt2661_next_scan(void *arg) { struct rt2661_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ic); splx(s); } /* * This function is called for each neighbor node. */ static void rt2661_iter_func(void *arg, struct ieee80211_node *ni) { struct rt2661_softc *sc = arg; struct rt2661_node *rn = (struct rt2661_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn); } /* * This function is called periodically (every 500ms) in RUN state to update * various settings like rate control statistics or Rx sensitivity. */ static void rt2661_updatestats(void *arg) { struct rt2661_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) rt2661_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg); /* update rx sensitivity every 1 sec */ if (++sc->ncalls & 1) rt2661_rx_tune(sc); splx(s); callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc); } static void rt2661_newassoc(struct ieee80211_node *ni, int isnew) { struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc; int i; ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; } static int rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rt2661_softc *sc = ic->ic_ifp->if_softc; enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t tmp; ostate = ic->ic_state; callout_stop(&sc->scan_ch); switch (nstate) { case IEEE80211_S_INIT: callout_stop(&sc->amrr_ch); if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2661_TXRX_CSR9); RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); } break; case IEEE80211_S_SCAN: rt2661_set_chan(sc, ic->ic_curchan); callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: rt2661_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_RUN: rt2661_set_chan(sc, ic->ic_curchan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2661_set_slottime(sc); rt2661_enable_mrr(sc); rt2661_set_txpreamble(sc); rt2661_set_basicrates(sc, &ni->ni_rates); rt2661_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) rt2661_prepare_beacon(sc); if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ rt2661_newassoc(ni, 1); } if (ic->ic_opmode != IEEE80211_M_MONITOR) { sc->ncalls = 0; sc->avg_rssi = -95; /* reset EMA */ callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc); rt2661_enable_tsf_sync(sc); } break; } return sc->sc_newstate(ic, nstate, arg); } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2661_EEPROM_CTL(sc, 0); RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); RT2661_EEPROM_CTL(sc, RT2661_S); /* write start bit (1) */ RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); /* write READ opcode (10) */ RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2661_EEPROM_CTL(sc, RT2661_S | (((addr >> n) & 1) << RT2661_SHIFT_D)); RT2661_EEPROM_CTL(sc, RT2661_S | (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); } RT2661_EEPROM_CTL(sc, RT2661_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); tmp = RAL_READ(sc, RT2661_E2PROM_CSR); val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; RT2661_EEPROM_CTL(sc, RT2661_S); } RT2661_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, 0); RT2661_EEPROM_CTL(sc, RT2661_C); return val; } static void rt2661_tx_intr(struct rt2661_softc *sc) { struct ifnet *ifp = &sc->sc_if; struct rt2661_tx_ring *txq; struct rt2661_tx_data *data; struct rt2661_node *rn; uint32_t val; int qid, retrycnt; for (;;) { val = RAL_READ(sc, RT2661_STA_CSR4); if (!(val & RT2661_TX_STAT_VALID)) break; /* retrieve the queue in which this frame was sent */ qid = RT2661_TX_QID(val); txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; /* retrieve rate control algorithm context */ data = &txq->data[txq->stat]; rn = (struct rt2661_node *)data->ni; /* if no frame has been sent, ignore */ if (rn == NULL) continue; switch (RT2661_TX_RESULT(val)) { case RT2661_TX_SUCCESS: retrycnt = RT2661_TX_RETRYCNT(val); DPRINTFN(10, ("data frame sent successfully after " "%d retries\n", retrycnt)); rn->amn.amn_txcnt++; if (retrycnt > 0) rn->amn.amn_retrycnt++; ifp->if_opackets++; break; case RT2661_TX_RETRY_FAIL: DPRINTFN(9, ("sending data frame failed (too much " "retries)\n")); rn->amn.amn_txcnt++; rn->amn.amn_retrycnt++; ifp->if_oerrors++; break; default: /* other failure */ aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val); ifp->if_oerrors++; } ieee80211_free_node(data->ni); data->ni = NULL; DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat)); txq->queued--; if (++txq->stat >= txq->count) /* faster than % count */ txq->stat = 0; } sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; rt2661_start(ifp); } static void rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) { struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; for (;;) { desc = &txq->desc[txq->next]; data = &txq->data[txq->next]; bus_dmamap_sync(sc->sc_dmat, txq->map, txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if ((le32toh(desc->flags) & RT2661_TX_BUSY) || !(le32toh(desc->flags) & RT2661_TX_VALID)) break; bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; /* node reference is released in rt2661_tx_intr() */ /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2661_TX_VALID); bus_dmamap_sync(sc->sc_dmat, txq->map, txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next)); if (++txq->next >= txq->count) /* faster than % count */ txq->next = 0; } } static void rt2661_rx_intr(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct rt2661_rx_desc *desc; struct rt2661_rx_data *data; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int error, rssi; for (;;) { desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if (le32toh(desc->flags) & RT2661_RX_BUSY) break; if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled TXRX_CSR0. */ DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", le32toh(desc->flags))); ifp->if_ierrors++; goto skip; } if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load it * before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the old * mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_xname(&sc->sc_dev)); } /* physical address may have changed */ desc->physaddr = htole32(data->map->dm_segs->ds_addr); ifp->if_ierrors++; goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; desc->physaddr = htole32(data->map->dm_segs->ds_addr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_rate = rt2661_rxrate(desc); tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq); tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags); tap->wr_antsignal = desc->rssi; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* send the frame to the 802.11 layer */ ieee80211_input(ic, m, ni, desc->rssi, 0); /*- * Keep track of the average RSSI using an Exponential Moving * Average (EMA) of 8 Wilder's days: * avg = (1 / N) x rssi + ((N - 1) / N) x avg */ rssi = rt2661_get_rssi(sc, desc->rssi); sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8; /* node is no longer needed */ ieee80211_free_node(ni); skip: desc->flags |= htole32(RT2661_RX_BUSY); bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; } /* * In HostAP mode, ieee80211_input() will enqueue packets in if_snd * without calling if_start(). */ if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE)) rt2661_start(ifp); } /* * This function is called in HostAP or IBSS modes when it's time to send a * new beacon (every ni_intval milliseconds). */ static void rt2661_mcu_beacon_expire(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (sc->sc_flags & RT2661_UPDATE_SLOT) { sc->sc_flags &= ~RT2661_UPDATE_SLOT; sc->sc_flags |= RT2661_SET_SLOTTIME; } else if (sc->sc_flags & RT2661_SET_SLOTTIME) { sc->sc_flags &= ~RT2661_SET_SLOTTIME; rt2661_set_slottime(sc); } if (ic->ic_curmode == IEEE80211_MODE_11G) { /* update ERP Information Element */ RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp); RAL_RW_BARRIER_1(sc, sc->erp_csr); } DPRINTFN(15, ("beacon expired\n")); } static void rt2661_mcu_wakeup(struct rt2661_softc *sc) { RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); /* send wakeup command to MCU */ rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); } static void rt2661_mcu_cmd_intr(struct rt2661_softc *sc) { RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); } int rt2661_intr(void *arg) { struct rt2661_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; uint32_t r1, r2; int rv = 0; /* don't re-enable interrupts if we're shutting down */ if (!(ifp->if_flags & IFF_RUNNING)) { /* disable MAC and MCU interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); return 0; } for (;;) { r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0) break; RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); rv = 1; if (r1 & RT2661_MGT_DONE) rt2661_tx_dma_intr(sc, &sc->mgtq); if (r1 & RT2661_RX_DONE) rt2661_rx_intr(sc); if (r1 & RT2661_TX0_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[0]); if (r1 & RT2661_TX1_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[1]); if (r1 & RT2661_TX2_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[2]); if (r1 & RT2661_TX3_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[3]); if (r1 & RT2661_TX_DONE) rt2661_tx_intr(sc); if (r2 & RT2661_MCU_CMD_DONE) rt2661_mcu_cmd_intr(sc); if (r2 & RT2661_MCU_BEACON_EXPIRE) rt2661_mcu_beacon_expire(sc); if (r2 & RT2661_MCU_WAKEUP) rt2661_mcu_wakeup(sc); } return rv; } /* quickly determine if a given rate is CCK or OFDM */ #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ /* * This function is only used by the Rx radiotap code. It returns the rate at * which a given frame was received. */ #if NBPFILTER > 0 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *desc) { if (le32toh(desc->flags) & RT2661_RX_OFDM) { /* reverse function of rt2661_plcp_signal */ switch (desc->rate & 0xf) { case 0xb: return 12; case 0xf: return 18; case 0xa: return 24; case 0xe: return 36; case 0x9: return 48; case 0xd: return 72; case 0x8: return 96; case 0xc: return 108; } } else { if (desc->rate == 10) return 2; if (desc->rate == 20) return 4; if (desc->rate == 55) return 11; if (desc->rate == 110) return 22; } return 2; /* should not get there */ } #endif /* * Return the expected ack rate for a frame transmitted at rate `rate'. * XXX: this should depend on the destination node basic rate set. */ static int rt2661_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ static uint16_t rt2661_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RAL_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11g-2003, pp. 44 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return txtime; } static uint8_t rt2661_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } static void rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate, const bus_dma_segment_t *segs, int nsegs, int ac) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int i, remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->xflags = htole16(xflags); desc->xflags |= htole16(nsegs << 13); desc->wme = htole16( RT2661_QID(ac) | RT2661_AIFSN(2) | RT2661_LOGCWMIN(4) | RT2661_LOGCWMAX(10)); /* * Remember in which queue this frame was sent. This field is driver * private data only. It will be made available by the NIC in STA_CSR4 * on Tx interrupts. */ desc->qid = ac; /* setup PLCP fields */ desc->plcp_signal = rt2661_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RAL_RATE_IS_OFDM(rate)) { desc->flags |= htole32(RT2661_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2661_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } /* RT2x61 supports scatter with up to 5 segments */ for (i = 0; i < nsegs; i++) { desc->addr[i] = htole32(segs[i].ds_addr); desc->len [i] = htole16(segs[i].ds_len); } desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); } static int rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct ieee80211_frame *wh; uint16_t dur; uint32_t flags = 0; int rate, error; desc = &sc->mgtq.desc[sc->mgtq.cur]; data = &sc->mgtq.data[sc->mgtq.cur]; /* send mgt frames at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq); tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } #endif data->m = m0; data->ni = ni; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2661_TX_NEED_ACK; dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + sc->sifs; *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to set timestamp in probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2661_TX_TIMESTAMP; } rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs, RT2661_QID_MGT); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map, sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->mgtq.cur, rate)); /* kick mgt */ sc->mgtq.queued++; sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); return 0; } /* * Build a RTS control frame. */ static struct mbuf * rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh, uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { sc->sc_ic.ic_stats.is_tx_nobuf++; aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n"); return NULL; } rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); return m; } static int rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct rt2661_tx_ring *txq = &sc->txq[ac]; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; struct mbuf *mnew; uint16_t dur; uint32_t flags = 0; int rate, useprot, error, tid; wh = mtod(m0, struct ieee80211_frame *); if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate]; } else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; rate &= IEEE80211_RATE_VAL; if (rate == 0) rate = 2; /* XXX should not happen */ if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* * Packet Bursting: backoff after ppb=8 frames to give other STAs a * chance to contend for the wireless medium. */ tid = WME_AC_TO_TID(M_WME_GETAC(m0)); if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7)) flags |= RT2661_TX_IFS_SIFS; /* * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange * for directed frames only when the length of the MPDU is greater * than the length threshold indicated by" ic_rtsthreshold. * * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of * type Data or an MMPDU". */ useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) && (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold || ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate))); if (useprot) { struct mbuf *m; int rtsrate, ackrate; rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; ackrate = rt2661_ack_rate(ic, rate); dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 3 * sc->sifs; m = rt2661_get_rts(sc, wh, dur); if (m == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate RTS " "frame\n"); m_freem(m0); return ENOBUFS; } desc = &txq->desc[txq->cur]; data = &txq->data[txq->cur]; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m); m_freem(m0); return error; } /* avoid multiple free() of the same node for each fragment */ ieee80211_ref_node(ni); data->m = m; data->ni = ni; rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK | RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, data->map->dm_segs, data->map->dm_nsegs, ac); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); txq->queued++; txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS; } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_COPY_PKTHDR(mnew, m0); if (m0->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } /* packet header have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq); tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } #endif data->m = m0; data->ni = ni; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2661_TX_NEED_ACK; dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate), ic->ic_flags) + sc->sifs; *(uint16_t *)wh->i_dur = htole16(dur); } rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs, ac); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, txq->cur, rate)); /* kick Tx */ txq->queued++; txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1); return 0; } static void rt2661_start(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni = NULL; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); if (m0 == NULL) break; ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (rt2661_tx_mgt(sc, m0, ni) != 0) break; } else { IF_POLL(&ifp->if_snd, m0); if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN) break; if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) { /* there is no place left in this ring */ ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0->m_len < sizeof (struct ether_header) && !(m0 = m_pullup(m0, sizeof (struct ether_header)))) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); ifp->if_oerrors++; continue; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); #endif m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (rt2661_tx_data(sc, m0, ni, 0) != 0) { if (ni != NULL) ieee80211_free_node(ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } static void rt2661_watchdog(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { aprint_error_dev(&sc->sc_dev, "device timeout\n"); rt2661_init(ifp); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(&sc->sc_ic); } /* * This function allows for fast channel switching in monitor mode (used by * kismet). In IBSS mode, we must explicitly reset the interface to * generate a new beacon frame. */ static int rt2661_reset(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_opmode != IEEE80211_M_MONITOR) return ENETRESET; rt2661_set_chan(sc, ic->ic_curchan); return 0; } static int rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) rt2661_update_promisc(sc); else rt2661_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) rt2661_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* XXX no h/w multicast filter? --dyoung */ if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ic, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2661_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2661_init(ifp); error = 0; } splx(s); return error; } static void rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { aprint_error_dev(&sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); } static uint8_t rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { aprint_error_dev(&sc->sc_dev, "could not read from BBP\n"); return 0; } val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; RAL_WRITE(sc, RT2661_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2661_PHY_CSR3); if (!(val & RT2661_BBP_BUSY)) return val & 0xff; DELAY(1); } aprint_error_dev(&sc->sc_dev, "could not read from BBP\n"); return 0; } static void rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { aprint_error_dev(&sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | (reg & 3); RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff)); } static int rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) { if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) return EIO; /* there is already a command pending */ RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); return 0; } static void rt2661_select_antenna(struct rt2661_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rt2661_bbp_read(sc, 4); bbp77 = rt2661_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); rt2661_bbp_write(sc, 4, bbp4); rt2661_bbp_write(sc, 77, bbp77); /* restore Rx filter */ RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rt2661_enable_mrr(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR4); tmp &= ~RT2661_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) tmp |= RT2661_MRR_CCK_FALLBACK; tmp |= RT2661_MRR_ENABLED; RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); } static void rt2661_set_txpreamble(struct rt2661_softc *sc) { uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR4); tmp &= ~RT2661_SHORT_PREAMBLE; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2661_SHORT_PREAMBLE; RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); } static void rt2661_set_basicrates(struct rt2661_softc *sc, const struct ieee80211_rateset *rs) { #define RV(r) ((r) & IEEE80211_RATE_VAL) uint32_t mask = 0; uint8_t rate; int i, j; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; if (!(rate & IEEE80211_RATE_BASIC)) continue; /* * Find h/w rate index. We know it exists because the rate * set has already been negotiated. */ for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++); mask |= 1 << j; } RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); DPRINTF(("Setting basic rate mask to 0x%x\n", mask)); #undef RV } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rt2661_bbp_write(sc, 17, bbp17); rt2661_bbp_write(sc, 96, bbp96); rt2661_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rt2661_bbp_write(sc, 75, 0x80); rt2661_bbp_write(sc, 86, 0x80); rt2661_bbp_write(sc, 88, 0x80); } rt2661_bbp_write(sc, 35, bbp35); rt2661_bbp_write(sc, 97, bbp97); rt2661_bbp_write(sc, 98, bbp98); tmp = RAL_READ(sc, RT2661_PHY_CSR0); tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2661_PA_PE_2GHZ; else tmp |= RT2661_PA_PE_5GHZ; RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); /* 802.11a uses a 16 microseconds short interframe space */ sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; } static void rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; int8_t power; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we've yet to select a channel, or we are switching from the * 2GHz band to the 5GHz band or vice-versa, BBP registers need to * be reprogrammed. */ if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) { rt2661_select_band(sc, c); rt2661_select_antenna(sc); } sc->sc_curchan = c; rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(200); rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(200); rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); /* enable smart mode for MIMO-capable RFs */ bbp3 = rt2661_bbp_read(sc, 3); bbp3 &= ~RT2661_SMART_MODE; if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) bbp3 |= RT2661_SMART_MODE; rt2661_bbp_write(sc, 3, bbp3); if (bbp94 != RT2661_BBPR94_DEFAULT) rt2661_bbp_write(sc, 94, bbp94); /* 5GHz radio needs a 1ms delay here */ if (IEEE80211_IS_CHAN_5GHZ(c)) DELAY(1000); } static void rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); } static void rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8 | 0xff << 16; RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); } static void rt2661_update_promisc(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ic.ic_ifp; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR0); tmp &= ~RT2661_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2661_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } #if 0 /* * Update QoS (802.11e) settings for each h/w Tx ring. */ static int rt2661_wme_update(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_ifp->if_softc; const struct wmeParams *wmep; wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; /* XXX: not sure about shifts. */ /* XXX: the reference driver plays with AC_VI settings too. */ /* update TxOp */ RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, wmep[WME_AC_BE].wmep_txopLimit << 16 | wmep[WME_AC_BK].wmep_txopLimit); RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, wmep[WME_AC_VI].wmep_txopLimit << 16 | wmep[WME_AC_VO].wmep_txopLimit); /* update CWmin */ RAL_WRITE(sc, RT2661_CWMIN_CSR, wmep[WME_AC_BE].wmep_logcwmin << 12 | wmep[WME_AC_BK].wmep_logcwmin << 8 | wmep[WME_AC_VI].wmep_logcwmin << 4 | wmep[WME_AC_VO].wmep_logcwmin); /* update CWmax */ RAL_WRITE(sc, RT2661_CWMAX_CSR, wmep[WME_AC_BE].wmep_logcwmax << 12 | wmep[WME_AC_BK].wmep_logcwmax << 8 | wmep[WME_AC_VI].wmep_logcwmax << 4 | wmep[WME_AC_VO].wmep_logcwmax); /* update Aifsn */ RAL_WRITE(sc, RT2661_AIFSN_CSR, wmep[WME_AC_BE].wmep_aifsn << 12 | wmep[WME_AC_BK].wmep_aifsn << 8 | wmep[WME_AC_VI].wmep_aifsn << 4 | wmep[WME_AC_VO].wmep_aifsn); return 0; } #endif static void rt2661_updateslot(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* * In HostAP mode, we defer setting of new slot time until * updated ERP Information Element has propagated to all * associated STAs. */ sc->sc_flags |= RT2661_UPDATE_SLOT; } else rt2661_set_slottime(sc); } static void rt2661_set_slottime(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = RAL_READ(sc, RT2661_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); DPRINTF(("setting slot time to %uus\n", slottime)); } static const char * rt2661_get_rf(int rev) { switch (rev) { case RT2661_RF_5225: return "RT5225"; case RT2661_RF_5325: return "RT5325 (MIMO XR)"; case RT2661_RF_2527: return "RT2527"; case RT2661_RF_2529: return "RT2529 (MIMO XR)"; default: return "unknown"; } } static void rt2661_read_eeprom(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int i; /* read MAC address */ val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); /* XXX: test if different from 0xffff? */ sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF(("RF revision=%d\n", sc->rf_rev)); val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna)); val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* adjust RSSI correction for external low-noise amplifier */ if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); if ((val >> 8) != 0xff) sc->rfprog = (val >> 8) & 0x3; if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq)); /* read Tx power for all a/b/g channels */ for (i = 0; i < 19; i++) { val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ DPRINTF(("Channel=%d Tx power=%d\n", rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2])); sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ DPRINTF(("Channel=%d Tx power=%d\n", rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1])); } /* read vendor-specific BBP values */ for (i = 0; i < 16; i++) { val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); if (val == 0 || val == 0xffff) continue; /* skip invalid entries */ sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val)); } } static int rt2661_bbp_init(struct rt2661_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; uint8_t val; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { val = rt2661_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; DELAY(100); } if (ntries == 100) { aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(rt2661_def_bbp); i++) { rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, rt2661_def_bbp[i].val); } /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0) continue; rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; #undef N } static int rt2661_init(struct ifnet *ifp) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; const char *name = NULL; /* make lint happy */ uint8_t *ucode; size_t size; uint32_t tmp, star[3]; int i, ntries; firmware_handle_t fh; /* for CardBus, power on the socket */ if (!(sc->sc_flags & RT2661_ENABLED)) { if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { aprint_error_dev(&sc->sc_dev, "could not enable device\n"); return EIO; } sc->sc_flags |= RT2661_ENABLED; } rt2661_stop(ifp, 0); if (!(sc->sc_flags & RT2661_FWLOADED)) { switch (sc->sc_id) { case PCI_PRODUCT_RALINK_RT2561: name = "ral-rt2561"; break; case PCI_PRODUCT_RALINK_RT2561S: name = "ral-rt2561s"; break; case PCI_PRODUCT_RALINK_RT2661: name = "ral-rt2661"; break; } if (firmware_open("ral", name, &fh) != 0) { aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name); rt2661_stop(ifp, 1); return EIO; } size = firmware_get_size(fh); if (!(ucode = firmware_malloc(size))) { aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n"); firmware_close(fh); rt2661_stop(ifp, 1); return ENOMEM; } if (firmware_read(fh, 0, ucode, size) != 0) { aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name); firmware_free(ucode, 0); firmware_close(fh); rt2661_stop(ifp, 1); return EIO; } if (rt2661_load_microcode(sc, ucode, size) != 0) { aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n"); firmware_free(ucode, 0); firmware_close(fh); rt2661_stop(ifp, 1); return EIO; } firmware_free(ucode, 0); firmware_close(fh); sc->sc_flags |= RT2661_FWLOADED; } /* initialize Tx rings */ RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); /* initialize Mgt ring */ RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); /* initialize Rx ring */ RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); /* initialize Tx rings sizes */ RAL_WRITE(sc, RT2661_TX_RING_CSR0, RT2661_TX_RING_COUNT << 24 | RT2661_TX_RING_COUNT << 16 | RT2661_TX_RING_COUNT << 8 | RT2661_TX_RING_COUNT); RAL_WRITE(sc, RT2661_TX_RING_CSR1, RT2661_TX_DESC_WSIZE << 16 | RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ RT2661_MGT_RING_COUNT); /* initialize Rx rings */ RAL_WRITE(sc, RT2661_RX_RING_CSR, RT2661_RX_DESC_BACK << 16 | RT2661_RX_DESC_WSIZE << 8 | RT2661_RX_RING_COUNT); /* XXX: some magic here */ RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); /* load base address of Rx ring */ RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); /* initialize MAC registers to default values */ for (i = 0; i < N(rt2661_def_mac); i++) RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); rt2661_set_macaddr(sc, ic->ic_myaddr); /* set host ready */ RAL_WRITE(sc, RT2661_MAC_CSR1, 3); RAL_WRITE(sc, RT2661_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 1000; ntries++) { if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) break; DELAY(1000); } if (ntries == 1000) { printf("timeout waiting for BBP/RF to wakeup\n"); rt2661_stop(ifp, 1); return EIO; } if (rt2661_bbp_init(sc) != 0) { rt2661_stop(ifp, 1); return EIO; } /* select default channel */ sc->sc_curchan = ic->ic_curchan; rt2661_select_band(sc, sc->sc_curchan); rt2661_select_antenna(sc); rt2661_set_chan(sc, sc->sc_curchan); /* update Rx filter */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | RT2661_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2661_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2661_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); /* clear STA registers */ RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star)); /* initialize ASIC */ RAL_WRITE(sc, RT2661_MAC_CSR1, 4); /* clear any pending interrupt */ RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); /* kick Rx */ RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) { if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; #undef N } static void rt2661_stop(struct ifnet *ifp, int disable) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* abort Tx (for all 5 Tx rings) */ RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); /* disable Rx (value remains after reset!) */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); /* reset ASIC */ RAL_WRITE(sc, RT2661_MAC_CSR1, 3); RAL_WRITE(sc, RT2661_MAC_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); /* clear any pending interrupt */ RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); /* reset Tx and Rx rings */ rt2661_reset_tx_ring(sc, &sc->txq[0]); rt2661_reset_tx_ring(sc, &sc->txq[1]); rt2661_reset_tx_ring(sc, &sc->txq[2]); rt2661_reset_tx_ring(sc, &sc->txq[3]); rt2661_reset_tx_ring(sc, &sc->mgtq); rt2661_reset_rx_ring(sc, &sc->rxq); /* for CardBus, power down the socket */ if (disable && sc->sc_disable != NULL) { if (sc->sc_flags & RT2661_ENABLED) { (*sc->sc_disable)(sc); sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED); } } } static int rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size) { int ntries; /* reset 8051 */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); /* cancel any pending Host to MCU command */ RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); /* write 8051's microcode */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size); RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); /* kick 8051's ass */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); /* wait for 8051 to initialize */ for (ntries = 0; ntries < 500; ntries++) { if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) break; DELAY(100); } if (ntries == 500) { printf("timeout waiting for MCU to initialize\n"); return EIO; } return 0; } /* * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and * false CCA count. This function is called periodically (every seconds) when * in the RUN state. Values taken from the reference driver. */ static void rt2661_rx_tune(struct rt2661_softc *sc) { uint8_t bbp17; uint16_t cca; int lo, hi, dbm; /* * Tuning range depends on operating band and on the presence of an * external low-noise amplifier. */ lo = 0x20; if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) lo += 0x08; if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) lo += 0x10; hi = lo + 0x20; dbm = sc->avg_rssi; /* retrieve false CCA count since last call (clear on read) */ cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca)); if (dbm < -74) { /* very bad RSSI, tune using false CCA count */ bbp17 = sc->bbp17; /* current value */ hi -= 2 * (-74 - dbm); if (hi < lo) hi = lo; if (bbp17 > hi) bbp17 = hi; else if (cca > 512) bbp17 = min(bbp17 + 1, hi); else if (cca < 100) bbp17 = max(bbp17 - 1, lo); } else if (dbm < -66) { bbp17 = lo + 0x08; } else if (dbm < -58) { bbp17 = lo + 0x10; } else if (dbm < -35) { bbp17 = hi; } else { /* very good RSSI >= -35dBm */ bbp17 = 0x60; /* very low sensitivity */ } if (bbp17 != sc->bbp17) { DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17)); rt2661_bbp_write(sc, 17, bbp17); sc->bbp17 = bbp17; } } #ifdef notyet /* * Enter/Leave radar detection mode. * This is for 802.11h additional regulatory domains. */ static void rt2661_radar_start(struct rt2661_softc *sc) { uint32_t tmp; /* disable Rx */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); rt2661_bbp_write(sc, 82, 0x20); rt2661_bbp_write(sc, 83, 0x00); rt2661_bbp_write(sc, 84, 0x40); /* save current BBP registers values */ sc->bbp18 = rt2661_bbp_read(sc, 18); sc->bbp21 = rt2661_bbp_read(sc, 21); sc->bbp22 = rt2661_bbp_read(sc, 22); sc->bbp16 = rt2661_bbp_read(sc, 16); sc->bbp17 = rt2661_bbp_read(sc, 17); sc->bbp64 = rt2661_bbp_read(sc, 64); rt2661_bbp_write(sc, 18, 0xff); rt2661_bbp_write(sc, 21, 0x3f); rt2661_bbp_write(sc, 22, 0x3f); rt2661_bbp_write(sc, 16, 0xbd); rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); rt2661_bbp_write(sc, 64, 0x21); /* restore Rx filter */ RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); } static int rt2661_radar_stop(struct rt2661_softc *sc) { uint8_t bbp66; /* read radar detection result */ bbp66 = rt2661_bbp_read(sc, 66); /* restore BBP registers values */ rt2661_bbp_write(sc, 16, sc->bbp16); rt2661_bbp_write(sc, 17, sc->bbp17); rt2661_bbp_write(sc, 18, sc->bbp18); rt2661_bbp_write(sc, 21, sc->bbp21); rt2661_bbp_write(sc, 22, sc->bbp22); rt2661_bbp_write(sc, 64, sc->bbp64); return bbp66 == 1; } #endif static int rt2661_prepare_beacon(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct rt2661_tx_desc desc; struct mbuf *m0; struct ieee80211_beacon_offsets bo; int rate; m0 = ieee80211_beacon_alloc(ic, ni, &bo); if (m0 == NULL) { aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n"); return ENOBUFS; } /* send beacons at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); /* copy the first 24 bytes of Tx descriptor into NIC memory */ RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); /* * Store offset of ERP Information Element so that we can update it * dynamically when the slot time changes. * XXX: this is ugly since it depends on how net80211 builds beacon * frames but ieee80211_beacon_alloc() doesn't store offsets for us. */ if (ic->ic_curmode == IEEE80211_MODE_11G) { sc->erp_csr = RT2661_HW_BEACON_BASE0 + 24 + sizeof (struct ieee80211_frame) + 8 + 2 + 2 + 2 + ni->ni_esslen + 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) + 2 + 1 + ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) + 2; } return 0; } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static void rt2661_enable_tsf_sync(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; if (ic->ic_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); } tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= ic->ic_bss->ni_intval * 16; tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2661_TSF_MODE(1); else tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); } /* * Retrieve the "Received Signal Strength Indicator" from the raw values * contained in Rx descriptors. The computation depends on which band the * frame was received. Correction values taken from the reference driver. */ static int rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) { int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; rssi = 2 * agc; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; }