/* $NetBSD: xdr.c,v 1.27 2003/07/26 19:24:50 salo Exp $ */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #include #if defined(LIBC_SCCS) && !defined(lint) #if 0 static char *sccsid = "@(#)xdr.c 1.35 87/08/12"; static char *sccsid = "@(#)xdr.c 2.1 88/07/29 4.0 RPCSRC"; #else __RCSID("$NetBSD: xdr.c,v 1.27 2003/07/26 19:24:50 salo Exp $"); #endif #endif /* * xdr.c, Generic XDR routines implementation. * * Copyright (C) 1986, Sun Microsystems, Inc. * * These are the "generic" xdr routines used to serialize and de-serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #include "namespace.h" #include #include #include #include #include #include #include #ifdef __weak_alias __weak_alias(xdr_bool,_xdr_bool) __weak_alias(xdr_bytes,_xdr_bytes) __weak_alias(xdr_char,_xdr_char) __weak_alias(xdr_enum,_xdr_enum) __weak_alias(xdr_free,_xdr_free) __weak_alias(xdr_hyper,_xdr_hyper) __weak_alias(xdr_int,_xdr_int) __weak_alias(xdr_int16_t,_xdr_int16_t) __weak_alias(xdr_int32_t,_xdr_int32_t) __weak_alias(xdr_int64_t,_xdr_int64_t) __weak_alias(xdr_long,_xdr_long) __weak_alias(xdr_longlong_t,_xdr_longlong_t) __weak_alias(xdr_netobj,_xdr_netobj) __weak_alias(xdr_opaque,_xdr_opaque) __weak_alias(xdr_short,_xdr_short) __weak_alias(xdr_string,_xdr_string) __weak_alias(xdr_u_char,_xdr_u_char) __weak_alias(xdr_u_hyper,_xdr_u_hyper) __weak_alias(xdr_u_int,_xdr_u_int) __weak_alias(xdr_u_int16_t,_xdr_u_int16_t) __weak_alias(xdr_u_int32_t,_xdr_u_int32_t) __weak_alias(xdr_u_int64_t,_xdr_u_int64_t) __weak_alias(xdr_u_long,_xdr_u_long) __weak_alias(xdr_u_longlong_t,_xdr_u_longlong_t) __weak_alias(xdr_u_short,_xdr_u_short) __weak_alias(xdr_union,_xdr_union) __weak_alias(xdr_void,_xdr_void) __weak_alias(xdr_wrapstring,_xdr_wrapstring) #endif /* * constants specific to the xdr "protocol" */ #define XDR_FALSE ((long) 0) #define XDR_TRUE ((long) 1) #define LASTUNSIGNED ((u_int) 0-1) /* * for unit alignment */ static const char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 }; /* * Free a data structure using XDR * Not a filter, but a convenient utility nonetheless */ void xdr_free(proc, objp) xdrproc_t proc; char *objp; { XDR x; x.x_op = XDR_FREE; (*proc)(&x, objp); } /* * XDR nothing */ bool_t xdr_void(/* xdrs, addr */) /* XDR *xdrs; */ /* caddr_t addr; */ { return (TRUE); } /* * XDR integers */ bool_t xdr_int(xdrs, ip) XDR *xdrs; int *ip; { long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(ip != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *ip; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *ip = (int) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR unsigned integers */ bool_t xdr_u_int(xdrs, up) XDR *xdrs; u_int *up; { u_long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(up != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *up; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *up = (u_int) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR long integers * same as xdr_u_long - open coded to save a proc call! */ bool_t xdr_long(xdrs, lp) XDR *xdrs; long *lp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(lp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: return (XDR_PUTLONG(xdrs, lp)); case XDR_DECODE: return (XDR_GETLONG(xdrs, lp)); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR unsigned long integers * same as xdr_long - open coded to save a proc call! */ bool_t xdr_u_long(xdrs, ulp) XDR *xdrs; u_long *ulp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(ulp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: return (XDR_PUTLONG(xdrs, (long *)ulp)); case XDR_DECODE: return (XDR_GETLONG(xdrs, (long *)ulp)); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR 32-bit integers * same as xdr_u_int32_t - open coded to save a proc call! */ bool_t xdr_int32_t(xdrs, int32_p) XDR *xdrs; int32_t *int32_p; { long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(int32_p != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *int32_p; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *int32_p = (int32_t) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR unsigned 32-bit integers * same as xdr_int32_t - open coded to save a proc call! */ bool_t xdr_u_int32_t(xdrs, u_int32_p) XDR *xdrs; u_int32_t *u_int32_p; { u_long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(u_int32_p != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *u_int32_p; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *u_int32_p = (u_int32_t) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR short integers */ bool_t xdr_short(xdrs, sp) XDR *xdrs; short *sp; { long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(sp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *sp; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *sp = (short) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR unsigned short integers */ bool_t xdr_u_short(xdrs, usp) XDR *xdrs; u_short *usp; { u_long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(usp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *usp; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *usp = (u_short) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR 16-bit integers */ bool_t xdr_int16_t(xdrs, int16_p) XDR *xdrs; int16_t *int16_p; { long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(int16_p != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *int16_p; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *int16_p = (int16_t) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR unsigned 16-bit integers */ bool_t xdr_u_int16_t(xdrs, u_int16_p) XDR *xdrs; u_int16_t *u_int16_p; { u_long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(u_int16_p != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *u_int16_p; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *u_int16_p = (u_int16_t) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR a char */ bool_t xdr_char(xdrs, cp) XDR *xdrs; char *cp; { int i; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(cp != NULL); i = (*cp); if (!xdr_int(xdrs, &i)) { return (FALSE); } *cp = i; return (TRUE); } /* * XDR an unsigned char */ bool_t xdr_u_char(xdrs, cp) XDR *xdrs; u_char *cp; { u_int u; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(cp != NULL); u = (*cp); if (!xdr_u_int(xdrs, &u)) { return (FALSE); } *cp = u; return (TRUE); } /* * XDR booleans */ bool_t xdr_bool(xdrs, bp) XDR *xdrs; bool_t *bp; { long lb; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(bp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: lb = *bp ? XDR_TRUE : XDR_FALSE; return (XDR_PUTLONG(xdrs, &lb)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &lb)) { return (FALSE); } *bp = (lb == XDR_FALSE) ? FALSE : TRUE; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR enumerations */ bool_t xdr_enum(xdrs, ep) XDR *xdrs; enum_t *ep; { long l; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(ep != NULL); switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *ep; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *ep = (enum_t) l; return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR opaque data * Allows the specification of a fixed size sequence of opaque bytes. * cp points to the opaque object and cnt gives the byte length. */ bool_t xdr_opaque(xdrs, cp, cnt) XDR *xdrs; caddr_t cp; u_int cnt; { u_int rndup; static int crud[BYTES_PER_XDR_UNIT]; _DIAGASSERT(xdrs != NULL); /* * if no data we are done */ if (cnt == 0) return (TRUE); _DIAGASSERT(cp != NULL); /* * round byte count to full xdr units */ rndup = cnt % BYTES_PER_XDR_UNIT; if (rndup > 0) rndup = BYTES_PER_XDR_UNIT - rndup; if (xdrs->x_op == XDR_DECODE) { if (!XDR_GETBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_GETBYTES(xdrs, (caddr_t)(void *)crud, rndup)); } if (xdrs->x_op == XDR_ENCODE) { if (!XDR_PUTBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_PUTBYTES(xdrs, xdr_zero, rndup)); } if (xdrs->x_op == XDR_FREE) { return (TRUE); } return (FALSE); } /* * XDR counted bytes * *cpp is a pointer to the bytes, *sizep is the count. * If *cpp is NULL maxsize bytes are allocated */ bool_t xdr_bytes(xdrs, cpp, sizep, maxsize) XDR *xdrs; char **cpp; u_int *sizep; u_int maxsize; { char *sp; /* sp is the actual string pointer */ u_int nodesize; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(cpp != NULL); _DIAGASSERT(sizep != NULL); sp = *cpp; /* * first deal with the length since xdr bytes are counted */ if (! xdr_u_int(xdrs, sizep)) { return (FALSE); } nodesize = *sizep; if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) { return (FALSE); } /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return (TRUE); } if (sp == NULL) { *cpp = sp = mem_alloc(nodesize); } if (sp == NULL) { warnx("xdr_bytes: out of memory"); return (FALSE); } /* FALLTHROUGH */ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, nodesize)); case XDR_FREE: if (sp != NULL) { mem_free(sp, nodesize); *cpp = NULL; } return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * Implemented here due to commonality of the object. */ bool_t xdr_netobj(xdrs, np) XDR *xdrs; struct netobj *np; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(np != NULL); return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ)); } /* * XDR a descriminated union * Support routine for discriminated unions. * You create an array of xdrdiscrim structures, terminated with * an entry with a null procedure pointer. The routine gets * the discriminant value and then searches the array of xdrdiscrims * looking for that value. It calls the procedure given in the xdrdiscrim * to handle the discriminant. If there is no specific routine a default * routine may be called. * If there is no specific or default routine an error is returned. */ bool_t xdr_union(xdrs, dscmp, unp, choices, dfault) XDR *xdrs; enum_t *dscmp; /* enum to decide which arm to work on */ char *unp; /* the union itself */ const struct xdr_discrim *choices; /* [value, xdr proc] for each arm */ xdrproc_t dfault; /* default xdr routine */ { enum_t dscm; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(dscmp != NULL); _DIAGASSERT(unp != NULL); _DIAGASSERT(choices != NULL); /* dfault may be NULL */ /* * we deal with the discriminator; it's an enum */ if (! xdr_enum(xdrs, dscmp)) { return (FALSE); } dscm = *dscmp; /* * search choices for a value that matches the discriminator. * if we find one, execute the xdr routine for that value. */ for (; choices->proc != NULL_xdrproc_t; choices++) { if (choices->value == dscm) return ((*(choices->proc))(xdrs, unp)); } /* * no match - execute the default xdr routine if there is one */ return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault)(xdrs, unp)); } /* * Non-portable xdr primitives. * Care should be taken when moving these routines to new architectures. */ /* * XDR null terminated ASCII strings * xdr_string deals with "C strings" - arrays of bytes that are * terminated by a NULL character. The parameter cpp references a * pointer to storage; If the pointer is null, then the necessary * storage is allocated. The last parameter is the max allowed length * of the string as specified by a protocol. */ bool_t xdr_string(xdrs, cpp, maxsize) XDR *xdrs; char **cpp; u_int maxsize; { char *sp; /* sp is the actual string pointer */ u_int size; u_int nodesize; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(cpp != NULL); sp = *cpp; /* * first deal with the length since xdr strings are counted-strings */ switch (xdrs->x_op) { case XDR_FREE: if (sp == NULL) { return(TRUE); /* already free */ } /* FALLTHROUGH */ case XDR_ENCODE: size = strlen(sp); break; case XDR_DECODE: break; } if (! xdr_u_int(xdrs, &size)) { return (FALSE); } if (size > maxsize) { return (FALSE); } nodesize = size + 1; /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return (TRUE); } if (sp == NULL) *cpp = sp = mem_alloc(nodesize); if (sp == NULL) { warnx("xdr_string: out of memory"); return (FALSE); } sp[size] = 0; /* FALLTHROUGH */ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, size)); case XDR_FREE: mem_free(sp, nodesize); *cpp = NULL; return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * Wrapper for xdr_string that can be called directly from * routines like clnt_call */ bool_t xdr_wrapstring(xdrs, cpp) XDR *xdrs; char **cpp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(cpp != NULL); return xdr_string(xdrs, cpp, LASTUNSIGNED); } /* * NOTE: xdr_hyper(), xdr_u_hyper(), xdr_longlong_t(), and xdr_u_longlong_t() * are in the "non-portable" section because they require that a `long long' * be a 64-bit type. * * --thorpej@NetBSD.org, November 30, 1999 */ /* * XDR 64-bit integers */ bool_t xdr_int64_t(xdrs, llp) XDR *xdrs; int64_t *llp; { u_long ul[2]; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(llp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: ul[0] = (u_long)((u_int64_t)*llp >> 32) & 0xffffffff; ul[1] = (u_long)((u_int64_t)*llp) & 0xffffffff; if (XDR_PUTLONG(xdrs, (long *)&ul[0]) == FALSE) return (FALSE); return (XDR_PUTLONG(xdrs, (long *)&ul[1])); case XDR_DECODE: if (XDR_GETLONG(xdrs, (long *)&ul[0]) == FALSE) return (FALSE); if (XDR_GETLONG(xdrs, (long *)&ul[1]) == FALSE) return (FALSE); *llp = (int64_t) (((u_int64_t)ul[0] << 32) | ((u_int64_t)ul[1])); return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR unsigned 64-bit integers */ bool_t xdr_u_int64_t(xdrs, ullp) XDR *xdrs; u_int64_t *ullp; { u_long ul[2]; _DIAGASSERT(xdrs != NULL); _DIAGASSERT(ullp != NULL); switch (xdrs->x_op) { case XDR_ENCODE: ul[0] = (u_long)(*ullp >> 32) & 0xffffffff; ul[1] = (u_long)(*ullp) & 0xffffffff; if (XDR_PUTLONG(xdrs, (long *)&ul[0]) == FALSE) return (FALSE); return (XDR_PUTLONG(xdrs, (long *)&ul[1])); case XDR_DECODE: if (XDR_GETLONG(xdrs, (long *)&ul[0]) == FALSE) return (FALSE); if (XDR_GETLONG(xdrs, (long *)&ul[1]) == FALSE) return (FALSE); *ullp = (u_int64_t) (((u_int64_t)ul[0] << 32) | ((u_int64_t)ul[1])); return (TRUE); case XDR_FREE: return (TRUE); } /* NOTREACHED */ return (FALSE); } /* * XDR hypers */ bool_t xdr_hyper(xdrs, llp) XDR *xdrs; longlong_t *llp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(llp != NULL); /* * Don't bother open-coding this; it's a fair amount of code. Just * call xdr_int64_t(). */ return (xdr_int64_t(xdrs, (int64_t *)llp)); } /* * XDR unsigned hypers */ bool_t xdr_u_hyper(xdrs, ullp) XDR *xdrs; u_longlong_t *ullp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(ullp != NULL); /* * Don't bother open-coding this; it's a fair amount of code. Just * call xdr_u_int64_t(). */ return (xdr_u_int64_t(xdrs, (u_int64_t *)ullp)); } /* * XDR longlong_t's */ bool_t xdr_longlong_t(xdrs, llp) XDR *xdrs; longlong_t *llp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(llp != NULL); /* * Don't bother open-coding this; it's a fair amount of code. Just * call xdr_int64_t(). */ return (xdr_int64_t(xdrs, (int64_t *)llp)); } /* * XDR u_longlong_t's */ bool_t xdr_u_longlong_t(xdrs, ullp) XDR *xdrs; u_longlong_t *ullp; { _DIAGASSERT(xdrs != NULL); _DIAGASSERT(ullp != NULL); /* * Don't bother open-coding this; it's a fair amount of code. Just * call xdr_u_int64_t(). */ return (xdr_u_int64_t(xdrs, (u_int64_t *)ullp)); }