/* $NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 */ #include __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $"); #ifdef DEBUG # define vndebug(vp, str) do { \ if (VTOI(vp)->i_flag & IN_CLEANING) \ DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ VTOI(vp)->i_number, (str), op)); \ } while(0) #else # define vndebug(vp, str) #endif #define ivndebug(vp, str) \ DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) #if defined(_KERNEL_OPT) #include "opt_ddb.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); extern int count_lock_queue(void); extern struct simplelock vnode_free_list_slock; /* XXX */ extern struct simplelock bqueue_slock; /* XXX */ static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); static void lfs_super_aiodone(struct buf *); static void lfs_cluster_aiodone(struct buf *); static void lfs_cluster_callback(struct buf *); /* * Determine if it's OK to start a partial in this segment, or if we need * to go on to a new segment. */ #define LFS_PARTIAL_FITS(fs) \ ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ fragstofsb((fs), (fs)->lfs_frag)) int lfs_match_fake(struct lfs *, struct buf *); void lfs_newseg(struct lfs *); /* XXX ondisk32 */ void lfs_shellsort(struct buf **, int32_t *, int, int); void lfs_supercallback(struct buf *); void lfs_updatemeta(struct segment *); void lfs_writesuper(struct lfs *, daddr_t); int lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int dirops); int lfs_allclean_wakeup; /* Cleaner wakeup address. */ int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ int lfs_dirvcount = 0; /* # active dirops */ /* Statistics Counters */ int lfs_dostats = 1; struct lfs_stats lfs_stats; /* op values to lfs_writevnodes */ #define VN_REG 0 #define VN_DIROP 1 #define VN_EMPTY 2 #define VN_CLEAN 3 /* * XXX KS - Set modification time on the Ifile, so the cleaner can * read the fs mod time off of it. We don't set IN_UPDATE here, * since we don't really need this to be flushed to disk (and in any * case that wouldn't happen to the Ifile until we checkpoint). */ void lfs_imtime(struct lfs *fs) { struct timespec ts; struct inode *ip; ASSERT_MAYBE_SEGLOCK(fs); TIMEVAL_TO_TIMESPEC(&time, &ts); ip = VTOI(fs->lfs_ivnode); ip->i_ffs1_mtime = ts.tv_sec; ip->i_ffs1_mtimensec = ts.tv_nsec; } /* * Ifile and meta data blocks are not marked busy, so segment writes MUST be * single threaded. Currently, there are two paths into lfs_segwrite, sync() * and getnewbuf(). They both mark the file system busy. Lfs_vflush() * explicitly marks the file system busy. So lfs_segwrite is safe. I think. */ #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp) #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL int lfs_vflush(struct vnode *vp) { struct inode *ip; struct lfs *fs; struct segment *sp; struct buf *bp, *nbp, *tbp, *tnbp; int error, s; int flushed; #if 0 int redo; #endif ip = VTOI(vp); fs = VFSTOUFS(vp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (ip->i_flag & IN_CLEANING) { ivndebug(vp,"vflush/in_cleaning"); LFS_CLR_UINO(ip, IN_CLEANING); LFS_SET_UINO(ip, IN_MODIFIED); /* * Toss any cleaning buffers that have real counterparts * to avoid losing new data. */ s = splbio(); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (!LFS_IS_MALLOC_BUF(bp)) continue; /* * Look for pages matching the range covered * by cleaning blocks. It's okay if more dirty * pages appear, so long as none disappear out * from under us. */ if (bp->b_lblkno > 0 && vp->v_type == VREG && vp != fs->lfs_ivnode) { struct vm_page *pg; voff_t off; simple_lock(&vp->v_interlock); for (off = lblktosize(fs, bp->b_lblkno); off < lblktosize(fs, bp->b_lblkno + 1); off += PAGE_SIZE) { pg = uvm_pagelookup(&vp->v_uobj, off); if (pg == NULL) continue; if ((pg->flags & PG_CLEAN) == 0 || pmap_is_modified(pg)) { fs->lfs_avail += btofsb(fs, bp->b_bcount); wakeup(&fs->lfs_avail); lfs_freebuf(fs, bp); bp = NULL; goto nextbp; } } simple_unlock(&vp->v_interlock); } for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; tbp = tnbp) { tnbp = LIST_NEXT(tbp, b_vnbufs); if (tbp->b_vp == bp->b_vp && tbp->b_lblkno == bp->b_lblkno && tbp != bp) { fs->lfs_avail += btofsb(fs, bp->b_bcount); wakeup(&fs->lfs_avail); lfs_freebuf(fs, bp); bp = NULL; break; } } nextbp: ; } splx(s); } /* If the node is being written, wait until that is done */ simple_lock(&vp->v_interlock); s = splbio(); if (WRITEINPROG(vp)) { ivndebug(vp,"vflush/writeinprog"); ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock); } splx(s); simple_unlock(&vp->v_interlock); /* Protect against VXLOCK deadlock in vinvalbuf() */ lfs_seglock(fs, SEGM_SYNC); /* If we're supposed to flush a freed inode, just toss it */ /* XXX - seglock, so these buffers can't be gathered, right? */ if (ip->i_mode == 0) { DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", ip->i_number)); s = splbio(); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_flags & B_DELWRI) { /* XXX always true? */ fs->lfs_avail += btofsb(fs, bp->b_bcount); wakeup(&fs->lfs_avail); } /* Copied from lfs_writeseg */ if (bp->b_flags & B_CALL) { biodone(bp); } else { bremfree(bp); LFS_UNLOCK_BUF(bp); bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_GATHERED); bp->b_flags |= B_DONE; reassignbuf(bp, vp); brelse(bp); } } splx(s); LFS_CLR_UINO(ip, IN_CLEANING); LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); ip->i_flag &= ~IN_ALLMOD; DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", ip->i_number)); lfs_segunlock(fs); return 0; } SET_FLUSHING(fs,vp); if (fs->lfs_nactive > LFS_MAX_ACTIVE || (fs->lfs_sp->seg_flags & SEGM_CKP)) { error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); CLR_FLUSHING(fs,vp); lfs_segunlock(fs); return error; } sp = fs->lfs_sp; flushed = 0; if (VPISEMPTY(vp)) { lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); ++flushed; } else if ((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { ivndebug(vp,"vflush/clean"); lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); ++flushed; } else if (lfs_dostats) { if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) ++lfs_stats.vflush_invoked; ivndebug(vp,"vflush"); } #ifdef DIAGNOSTIC if (vp->v_flag & VDIROP) { DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n")); /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */ } if (vp->v_usecount < 0) { printf("usecount=%ld\n", (long)vp->v_usecount); panic("lfs_vflush: usecount<0"); } #endif #if 1 do { do { if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) lfs_writefile(fs, sp, vp); } while (lfs_writeinode(fs, sp, ip)); } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); #else if (flushed && vp != fs->lfs_ivnode) lfs_writeseg(fs, sp); else do { simple_lock(&fs->lfs_interlock); fs->lfs_flags &= ~LFS_IFDIRTY; simple_unlock(&fs->lfs_interlock); lfs_writefile(fs, sp, vp); redo = lfs_writeinode(fs, sp, ip); redo += lfs_writeseg(fs, sp); simple_lock(&fs->lfs_interlock); redo += (fs->lfs_flags & LFS_IFDIRTY); simple_unlock(&fs->lfs_interlock); } while (redo && vp == fs->lfs_ivnode); #endif if (lfs_dostats) { ++lfs_stats.nwrites; if (sp->seg_flags & SEGM_SYNC) ++lfs_stats.nsync_writes; if (sp->seg_flags & SEGM_CKP) ++lfs_stats.ncheckpoints; } /* * If we were called from somewhere that has already held the seglock * (e.g., lfs_markv()), the lfs_segunlock will not wait for * the write to complete because we are still locked. * Since lfs_vflush() must return the vnode with no dirty buffers, * we must explicitly wait, if that is the case. * * We compare the iocount against 1, not 0, because it is * artificially incremented by lfs_seglock(). */ simple_lock(&fs->lfs_interlock); if (fs->lfs_seglock > 1) { while (fs->lfs_iocount > 1) (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_vflush", 0, &fs->lfs_interlock); } simple_unlock(&fs->lfs_interlock); lfs_segunlock(fs); /* Wait for these buffers to be recovered by aiodoned */ s = splbio(); simple_lock(&global_v_numoutput_slock); while (vp->v_numoutput > 0) { vp->v_flag |= VBWAIT; ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0, &global_v_numoutput_slock); } simple_unlock(&global_v_numoutput_slock); splx(s); CLR_FLUSHING(fs,vp); return (0); } int lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) { struct inode *ip; struct vnode *vp, *nvp; int inodes_written = 0, only_cleaning; ASSERT_SEGLOCK(fs); #ifndef LFS_NO_BACKVP_HACK /* BEGIN HACK */ #define VN_OFFSET \ (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp) #define BACK_VP(VP) \ ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET)) #define BEG_OF_VLIST \ ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \ - VN_OFFSET)) /* Find last vnode. */ loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp && LIST_NEXT(vp, v_mntvnodes) != NULL; vp = LIST_NEXT(vp, v_mntvnodes)); for (; vp && vp != BEG_OF_VLIST; vp = nvp) { nvp = BACK_VP(vp); #else loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { nvp = LIST_NEXT(vp, v_mntvnodes); #endif /* * If the vnode that we are about to sync is no longer * associated with this mount point, start over. */ if (vp->v_mount != mp) { DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n")); /* * After this, pages might be busy * due to our own previous putpages. * Start actual segment write here to avoid deadlock. */ (void)lfs_writeseg(fs, sp); goto loop; } if (vp->v_type == VNON) { continue; } ip = VTOI(vp); if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) { vndebug(vp,"dirop"); continue; } if (op == VN_EMPTY && !VPISEMPTY(vp)) { vndebug(vp,"empty"); continue; } if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM && vp != fs->lfs_flushvp && !(ip->i_flag & IN_CLEANING)) { vndebug(vp,"cleaning"); continue; } if (lfs_vref(vp)) { vndebug(vp,"vref"); continue; } only_cleaning = 0; /* * Write the inode/file if dirty and it's not the IFILE. */ if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); if (ip->i_number != LFS_IFILE_INUM) { lfs_writefile(fs, sp, vp); if (!VPISEMPTY(vp)) { if (WRITEINPROG(vp)) { ivndebug(vp,"writevnodes/write2"); } else if (!(ip->i_flag & IN_ALLMOD)) { LFS_SET_UINO(ip, IN_MODIFIED); } } (void) lfs_writeinode(fs, sp, ip); inodes_written++; } } if (lfs_clean_vnhead && only_cleaning) lfs_vunref_head(vp); else lfs_vunref(vp); } return inodes_written; } /* * Do a checkpoint. */ int lfs_segwrite(struct mount *mp, int flags) { struct buf *bp; struct inode *ip; struct lfs *fs; struct segment *sp; struct vnode *vp; SEGUSE *segusep; int do_ckp, did_ckp, error, s; unsigned n, segleft, maxseg, sn, i, curseg; int writer_set = 0; int dirty; int redo; fs = VFSTOUFS(mp)->um_lfs; ASSERT_MAYBE_SEGLOCK(fs); if (fs->lfs_ronly) return EROFS; lfs_imtime(fs); /* * Allocate a segment structure and enough space to hold pointers to * the maximum possible number of buffers which can be described in a * single summary block. */ do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE; lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); sp = fs->lfs_sp; /* * If lfs_flushvp is non-NULL, we are called from lfs_vflush, * in which case we have to flush *all* buffers off of this vnode. * We don't care about other nodes, but write any non-dirop nodes * anyway in anticipation of another getnewvnode(). * * If we're cleaning we only write cleaning and ifile blocks, and * no dirops, since otherwise we'd risk corruption in a crash. */ if (sp->seg_flags & SEGM_CLEAN) lfs_writevnodes(fs, mp, sp, VN_CLEAN); else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { lfs_writevnodes(fs, mp, sp, VN_REG); if (!fs->lfs_dirops || !fs->lfs_flushvp) { error = lfs_writer_enter(fs, "lfs writer"); if (error) { DLOG((DLOG_SEG, "segwrite mysterious error\n")); /* XXX why not segunlock? */ pool_put(&fs->lfs_bpppool, sp->bpp); sp->bpp = NULL; pool_put(&fs->lfs_segpool, sp); sp = fs->lfs_sp = NULL; return (error); } writer_set = 1; lfs_writevnodes(fs, mp, sp, VN_DIROP); ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); } } /* * If we are doing a checkpoint, mark everything since the * last checkpoint as no longer ACTIVE. */ if (do_ckp) { segleft = fs->lfs_nseg; curseg = 0; for (n = 0; n < fs->lfs_segtabsz; n++) { dirty = 0; if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) panic("lfs_segwrite: ifile read"); segusep = (SEGUSE *)bp->b_data; maxseg = min(segleft, fs->lfs_sepb); for (i = 0; i < maxseg; i++) { sn = curseg + i; if (sn != dtosn(fs, fs->lfs_curseg) && segusep->su_flags & SEGUSE_ACTIVE) { segusep->su_flags &= ~SEGUSE_ACTIVE; --fs->lfs_nactive; ++dirty; } fs->lfs_suflags[fs->lfs_activesb][sn] = segusep->su_flags; if (fs->lfs_version > 1) ++segusep; else segusep = (SEGUSE *) ((SEGUSE_V1 *)segusep + 1); } if (dirty) error = LFS_BWRITE_LOG(bp); /* Ifile */ else brelse(bp); segleft -= fs->lfs_sepb; curseg += fs->lfs_sepb; } } LOCK_ASSERT(LFS_SEGLOCK_HELD(fs)); did_ckp = 0; if (do_ckp || fs->lfs_doifile) { vp = fs->lfs_ivnode; vn_lock(vp, LK_EXCLUSIVE); do { #ifdef DEBUG LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); #endif simple_lock(&fs->lfs_interlock); fs->lfs_flags &= ~LFS_IFDIRTY; simple_unlock(&fs->lfs_interlock); ip = VTOI(vp); if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) lfs_writefile(fs, sp, vp); if (ip->i_flag & IN_ALLMOD) ++did_ckp; redo = lfs_writeinode(fs, sp, ip); redo += lfs_writeseg(fs, sp); simple_lock(&fs->lfs_interlock); redo += (fs->lfs_flags & LFS_IFDIRTY); simple_unlock(&fs->lfs_interlock); } while (redo && do_ckp); /* * Unless we are unmounting, the Ifile may continue to have * dirty blocks even after a checkpoint, due to changes to * inodes' atime. If we're checkpointing, it's "impossible" * for other parts of the Ifile to be dirty after the loop * above, since we hold the segment lock. */ s = splbio(); if (LIST_EMPTY(&vp->v_dirtyblkhd)) { LFS_CLR_UINO(ip, IN_ALLMOD); } #ifdef DIAGNOSTIC else if (do_ckp) { int do_panic = 0; LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { if (bp->b_lblkno < fs->lfs_cleansz + fs->lfs_segtabsz && !(bp->b_flags & B_GATHERED)) { printf("ifile lbn %ld still dirty (flags %lx)\n", (long)bp->b_lblkno, (long)bp->b_flags); ++do_panic; } } if (do_panic) panic("dirty blocks"); } #endif splx(s); VOP_UNLOCK(vp, 0); } else { (void) lfs_writeseg(fs, sp); } /* Note Ifile no longer needs to be written */ fs->lfs_doifile = 0; if (writer_set) lfs_writer_leave(fs); /* * If we didn't write the Ifile, we didn't really do anything. * That means that (1) there is a checkpoint on disk and (2) * nothing has changed since it was written. * * Take the flags off of the segment so that lfs_segunlock * doesn't have to write the superblock either. */ if (do_ckp && !did_ckp) { sp->seg_flags &= ~SEGM_CKP; } if (lfs_dostats) { ++lfs_stats.nwrites; if (sp->seg_flags & SEGM_SYNC) ++lfs_stats.nsync_writes; if (sp->seg_flags & SEGM_CKP) ++lfs_stats.ncheckpoints; } lfs_segunlock(fs); return (0); } /* * Write the dirty blocks associated with a vnode. */ void lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) { struct buf *bp; struct finfo *fip; struct inode *ip; IFILE *ifp; int i, frag; ASSERT_SEGLOCK(fs); ip = VTOI(vp); if (sp->seg_bytes_left < fs->lfs_bsize || sp->sum_bytes_left < sizeof(struct finfo)) (void) lfs_writeseg(fs, sp); sp->sum_bytes_left -= FINFOSIZE; ++((SEGSUM *)(sp->segsum))->ss_nfinfo; if (vp->v_flag & VDIROP) ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); fip = sp->fip; fip->fi_nblocks = 0; fip->fi_ino = ip->i_number; LFS_IENTRY(ifp, fs, fip->fi_ino, bp); fip->fi_version = ifp->if_version; brelse(bp); if (sp->seg_flags & SEGM_CLEAN) { lfs_gather(fs, sp, vp, lfs_match_fake); /* * For a file being flushed, we need to write *all* blocks. * This means writing the cleaning blocks first, and then * immediately following with any non-cleaning blocks. * The same is true of the Ifile since checkpoints assume * that all valid Ifile blocks are written. */ if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) { lfs_gather(fs, sp, vp, lfs_match_data); /* * Don't call VOP_PUTPAGES: if we're flushing, * we've already done it, and the Ifile doesn't * use the page cache. */ } } else { lfs_gather(fs, sp, vp, lfs_match_data); /* * If we're flushing, we've already called VOP_PUTPAGES * so don't do it again. Otherwise, we want to write * everything we've got. */ if (!IS_FLUSHING(fs, vp)) { simple_lock(&vp->v_interlock); VOP_PUTPAGES(vp, 0, 0, PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); } } /* * It may not be necessary to write the meta-data blocks at this point, * as the roll-forward recovery code should be able to reconstruct the * list. * * We have to write them anyway, though, under two conditions: (1) the * vnode is being flushed (for reuse by vinvalbuf); or (2) we are * checkpointing. * * BUT if we are cleaning, we might have indirect blocks that refer to * new blocks not being written yet, in addition to fragments being * moved out of a cleaned segment. If that is the case, don't * write the indirect blocks, or the finfo will have a small block * in the middle of it! * XXX in this case isn't the inode size wrong too? */ frag = 0; if (sp->seg_flags & SEGM_CLEAN) { for (i = 0; i < NDADDR; i++) if (ip->i_lfs_fragsize[i] > 0 && ip->i_lfs_fragsize[i] < fs->lfs_bsize) ++frag; } #ifdef DIAGNOSTIC if (frag > 1) panic("lfs_writefile: more than one fragment!"); #endif if (IS_FLUSHING(fs, vp) || (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { lfs_gather(fs, sp, vp, lfs_match_indir); lfs_gather(fs, sp, vp, lfs_match_dindir); lfs_gather(fs, sp, vp, lfs_match_tindir); } fip = sp->fip; if (fip->fi_nblocks != 0) { sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE + sizeof(int32_t) * (fip->fi_nblocks)); sp->start_lbp = &sp->fip->fi_blocks[0]; } else { sp->sum_bytes_left += FINFOSIZE; --((SEGSUM *)(sp->segsum))->ss_nfinfo; } } int lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) { struct buf *bp, *ibp; struct ufs1_dinode *cdp; IFILE *ifp; SEGUSE *sup; daddr_t daddr; int32_t *daddrp; /* XXX ondisk32 */ ino_t ino; int error, i, ndx, fsb = 0; int redo_ifile = 0; struct timespec ts; int gotblk = 0; ASSERT_SEGLOCK(fs); if (!(ip->i_flag & IN_ALLMOD)) return (0); /* Allocate a new inode block if necessary. */ if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) { /* Allocate a new segment if necessary. */ if (sp->seg_bytes_left < fs->lfs_ibsize || sp->sum_bytes_left < sizeof(int32_t)) (void) lfs_writeseg(fs, sp); /* Get next inode block. */ daddr = fs->lfs_offset; fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); sp->ibp = *sp->cbpp++ = getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); gotblk++; /* Zero out inode numbers */ for (i = 0; i < INOPB(fs); ++i) ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 0; ++sp->start_bpp; fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); /* Set remaining space counters. */ sp->seg_bytes_left -= fs->lfs_ibsize; sp->sum_bytes_left -= sizeof(int32_t); ndx = fs->lfs_sumsize / sizeof(int32_t) - sp->ninodes / INOPB(fs) - 1; ((int32_t *)(sp->segsum))[ndx] = daddr; } /* Update the inode times and copy the inode onto the inode page. */ TIMEVAL_TO_TIMESPEC(&time, &ts); /* XXX kludge --- don't redirty the ifile just to put times on it */ if (ip->i_number != LFS_IFILE_INUM) LFS_ITIMES(ip, &ts, &ts, &ts); /* * If this is the Ifile, and we've already written the Ifile in this * partial segment, just overwrite it (it's not on disk yet) and * continue. * * XXX we know that the bp that we get the second time around has * already been gathered. */ if (ip->i_number == LFS_IFILE_INUM && sp->idp) { *(sp->idp) = *ip->i_din.ffs1_din; ip->i_lfs_osize = ip->i_size; return 0; } bp = sp->ibp; cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); *cdp = *ip->i_din.ffs1_din; /* * If we are cleaning, ensure that we don't write UNWRITTEN disk * addresses to disk; possibly revert the inode size. * XXX By not writing these blocks, we are making the lfs_avail * XXX count on disk wrong by the same amount. We should be * XXX able to "borrow" from lfs_avail and return it after the * XXX Ifile is written. See also in lfs_writeseg. */ if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { cdp->di_size = ip->i_lfs_osize; DLOG((DLOG_VNODE, "lfs_writeinode: cleansing ino %d (%d != %d)\n", ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks)); for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; daddrp++) { if (*daddrp == UNWRITTEN) { DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); *daddrp = 0; } } } else { /* If all blocks are goig to disk, update the "size on disk" */ ip->i_lfs_osize = ip->i_size; } if (ip->i_flag & IN_CLEANING) LFS_CLR_UINO(ip, IN_CLEANING); else { /* XXX IN_ALLMOD */ LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) LFS_CLR_UINO(ip, IN_MODIFIED); else DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, " "eff=%d\n", ip->i_number, ip->i_ffs1_blocks, ip->i_lfs_effnblks)); } if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ sp->idp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); if (gotblk) { LFS_LOCK_BUF(bp); brelse(bp); } /* Increment inode count in segment summary block. */ ++((SEGSUM *)(sp->segsum))->ss_ninos; /* If this page is full, set flag to allocate a new page. */ if (++sp->ninodes % INOPB(fs) == 0) sp->ibp = NULL; /* * If updating the ifile, update the super-block. Update the disk * address and access times for this inode in the ifile. */ ino = ip->i_number; if (ino == LFS_IFILE_INUM) { daddr = fs->lfs_idaddr; fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); } else { LFS_IENTRY(ifp, fs, ino, ibp); daddr = ifp->if_daddr; ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; error = LFS_BWRITE_LOG(ibp); /* Ifile */ } /* * The inode's last address should not be in the current partial * segment, except under exceptional circumstances (lfs_writevnodes * had to start over, and in the meantime more blocks were written * to a vnode). Both inodes will be accounted to this segment * in lfs_writeseg so we need to subtract the earlier version * here anyway. The segment count can temporarily dip below * zero here; keep track of how many duplicates we have in * "dupino" so we don't panic below. */ if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) { ++sp->ndupino; DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " "(ino %d daddr 0x%llx) ndupino=%d\n", ino, (long long)daddr, sp->ndupino)); } /* * Account the inode: it no longer belongs to its former segment, * though it will not belong to the new segment until that segment * is actually written. */ if (daddr != LFS_UNUSED_DADDR) { u_int32_t oldsn = dtosn(fs, daddr); #ifdef DIAGNOSTIC int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; #endif LFS_SEGENTRY(sup, fs, oldsn, bp); #ifdef DIAGNOSTIC if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino < sizeof (struct ufs1_dinode)) { printf("lfs_writeinode: negative bytes " "(segment %" PRIu32 " short by %d, " "oldsn=%" PRIu32 ", cursn=%" PRIu32 ", daddr=%" PRId64 ", su_nbytes=%u, " "ndupino=%d)\n", dtosn(fs, daddr), (int)sizeof (struct ufs1_dinode) * (1 - sp->ndupino) - sup->su_nbytes, oldsn, sp->seg_number, daddr, (unsigned int)sup->su_nbytes, sp->ndupino); panic("lfs_writeinode: negative bytes"); sup->su_nbytes = sizeof (struct ufs1_dinode); } #endif DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino)); sup->su_nbytes -= sizeof (struct ufs1_dinode); redo_ifile = (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); if (redo_ifile) { simple_lock(&fs->lfs_interlock); fs->lfs_flags |= LFS_IFDIRTY; simple_unlock(&fs->lfs_interlock); } LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ } return (redo_ifile); } int lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr) { struct lfs *fs; int version; int j, blksinblk; ASSERT_SEGLOCK(sp->fs); /* * If full, finish this segment. We may be doing I/O, so * release and reacquire the splbio(). */ #ifdef DIAGNOSTIC if (sp->vp == NULL) panic ("lfs_gatherblock: Null vp in segment"); #endif fs = sp->fs; blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || sp->seg_bytes_left < bp->b_bcount) { if (sptr) splx(*sptr); lfs_updatemeta(sp); version = sp->fip->fi_version; (void) lfs_writeseg(fs, sp); sp->fip->fi_version = version; sp->fip->fi_ino = VTOI(sp->vp)->i_number; /* Add the current file to the segment summary. */ ++((SEGSUM *)(sp->segsum))->ss_nfinfo; sp->sum_bytes_left -= FINFOSIZE; if (sptr) *sptr = splbio(); return (1); } if (bp->b_flags & B_GATHERED) { DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d," " lbn %" PRId64 "\n", sp->fip->fi_ino, bp->b_lblkno)); return (0); } /* Insert into the buffer list, update the FINFO block. */ bp->b_flags |= B_GATHERED; /* This block's accounting moves from lfs_favail to lfs_avail */ lfs_deregister_block(sp->vp, bp->b_lblkno); *sp->cbpp++ = bp; for (j = 0; j < blksinblk; j++) sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; sp->seg_bytes_left -= bp->b_bcount; return (0); } int lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *)) { struct buf *bp, *nbp; int s, count = 0; ASSERT_SEGLOCK(fs); KASSERT(sp->vp == NULL); sp->vp = vp; s = splbio(); #ifndef LFS_NO_BACKBUF_HACK /* This is a hack to see if ordering the blocks in LFS makes a difference. */ # define BUF_OFFSET \ (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp) # define BACK_BUF(BP) \ ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) # define BEG_OF_LIST \ ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) loop: /* Find last buffer. */ for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL; bp = LIST_NEXT(bp, b_vnbufs)) /* nothing */; for (; bp && bp != BEG_OF_LIST; bp = nbp) { nbp = BACK_BUF(bp); #else /* LFS_NO_BACKBUF_HACK */ loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); #endif /* LFS_NO_BACKBUF_HACK */ if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) { #ifdef DEBUG if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY) DLOG((DLOG_SEG, "lfs_gather: ifile lbn %" PRId64 " busy (%x)", bp->b_lblkno, bp->b_flags)); #endif continue; } if (vp->v_type == VBLK) { /* For block devices, just write the blocks. */ /* XXX Do we even need to do this? */ /* * Get the block before bwrite, * so we don't corrupt the free list */ bp->b_flags |= B_BUSY; bremfree(bp); bwrite(bp); } else { #ifdef DIAGNOSTIC # ifdef LFS_USE_B_INVAL if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) { DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 " is B_INVAL\n", bp->b_lblkno)); VOP_PRINT(bp->b_vp); } # endif /* LFS_USE_B_INVAL */ if (!(bp->b_flags & B_DELWRI)) panic("lfs_gather: bp not B_DELWRI"); if (!(bp->b_flags & B_LOCKED)) { DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 " blk %" PRId64 " not B_LOCKED\n", bp->b_lblkno, dbtofsb(fs, bp->b_blkno))); VOP_PRINT(bp->b_vp); panic("lfs_gather: bp not B_LOCKED"); } #endif if (lfs_gatherblock(sp, bp, &s)) { goto loop; } } count++; } splx(s); lfs_updatemeta(sp); KASSERT(sp->vp == vp); sp->vp = NULL; return count; } #if DEBUG # define DEBUG_OOFF(n) do { \ if (ooff == 0) { \ DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ ", was 0x0 (or %" PRId64 ")\n", \ (n), ip->i_number, lbn, ndaddr, daddr)); \ } \ } while (0) #else # define DEBUG_OOFF(n) #endif /* * Change the given block's address to ndaddr, finding its previous * location using ufs_bmaparray(). * * Account for this change in the segment table. * * called with sp == NULL by roll-forwarding code. */ void lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size) { SEGUSE *sup; struct buf *bp; struct indir a[NIADDR + 2], *ap; struct inode *ip; daddr_t daddr, ooff; int num, error; int bb, osize, obb; ASSERT_SEGLOCK(fs); KASSERT(sp == NULL || sp->vp == vp); ip = VTOI(vp); error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); if (error) panic("lfs_updatemeta: ufs_bmaparray returned %d", error); daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */ KASSERT(daddr <= LFS_MAX_DADDR); if (daddr > 0) daddr = dbtofsb(fs, daddr); bb = fragstofsb(fs, numfrags(fs, size)); switch (num) { case 0: ooff = ip->i_ffs1_db[lbn]; DEBUG_OOFF(0); if (ooff == UNWRITTEN) ip->i_ffs1_blocks += bb; else { /* possible fragment truncation or extension */ obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); ip->i_ffs1_blocks += (bb - obb); } ip->i_ffs1_db[lbn] = ndaddr; break; case 1: ooff = ip->i_ffs1_ib[a[0].in_off]; DEBUG_OOFF(1); if (ooff == UNWRITTEN) ip->i_ffs1_blocks += bb; ip->i_ffs1_ib[a[0].in_off] = ndaddr; break; default: ap = &a[num - 1]; if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) panic("lfs_updatemeta: bread bno %" PRId64, ap->in_lbn); /* XXX ondisk32 */ ooff = ((int32_t *)bp->b_data)[ap->in_off]; DEBUG_OOFF(num); if (ooff == UNWRITTEN) ip->i_ffs1_blocks += bb; /* XXX ondisk32 */ ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; (void) VOP_BWRITE(bp); } KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); /* * Though we'd rather it couldn't, this *can* happen right now * if cleaning blocks and regular blocks coexist. */ /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ /* * Update segment usage information, based on old size * and location. */ if (daddr > 0) { u_int32_t oldsn = dtosn(fs, daddr); #ifdef DIAGNOSTIC int ndupino; if (sp && sp->seg_number == oldsn) { ndupino = sp->ndupino; } else { ndupino = 0; } #endif KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg); if (lbn >= 0 && lbn < NDADDR) osize = ip->i_lfs_fragsize[lbn]; else osize = fs->lfs_bsize; LFS_SEGENTRY(sup, fs, oldsn, bp); #ifdef DIAGNOSTIC if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino < osize) { printf("lfs_updatemeta: negative bytes " "(segment %" PRIu32 " short by %" PRId64 ")\n", dtosn(fs, daddr), (int64_t)osize - (sizeof (struct ufs1_dinode) * ndupino + sup->su_nbytes)); printf("lfs_updatemeta: ino %d, lbn %" PRId64 ", addr = 0x%" PRIx64 "\n", ip->i_number, lbn, daddr); printf("lfs_updatemeta: ndupino=%d\n", ndupino); panic("lfs_updatemeta: negative bytes"); sup->su_nbytes = osize - sizeof (struct ufs1_dinode) * ndupino; } #endif DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 " db 0x%" PRIx64 "\n", dtosn(fs, daddr), osize, ip->i_number, lbn, daddr)); sup->su_nbytes -= osize; if (!(bp->b_flags & B_GATHERED)) { simple_lock(&fs->lfs_interlock); fs->lfs_flags |= LFS_IFDIRTY; simple_unlock(&fs->lfs_interlock); } LFS_WRITESEGENTRY(sup, fs, oldsn, bp); } /* * Now that this block has a new address, and its old * segment no longer owns it, we can forget about its * old size. */ if (lbn >= 0 && lbn < NDADDR) ip->i_lfs_fragsize[lbn] = size; } /* * Update the metadata that points to the blocks listed in the FINFO * array. */ void lfs_updatemeta(struct segment *sp) { struct buf *sbp; struct lfs *fs; struct vnode *vp; daddr_t lbn; int i, nblocks, num; int bb; int bytesleft, size; ASSERT_SEGLOCK(sp->fs); vp = sp->vp; nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; KASSERT(nblocks >= 0); KASSERT(vp != NULL); if (nblocks == 0) return; /* * This count may be high due to oversize blocks from lfs_gop_write. * Correct for this. (XXX we should be able to keep track of these.) */ fs = sp->fs; for (i = 0; i < nblocks; i++) { if (sp->start_bpp[i] == NULL) { DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); nblocks = i; break; } num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); nblocks -= num - 1; } KASSERT(vp->v_type == VREG || nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); KASSERT(nblocks == sp->cbpp - sp->start_bpp); /* * Sort the blocks. * * We have to sort even if the blocks come from the * cleaner, because there might be other pending blocks on the * same inode...and if we don't sort, and there are fragments * present, blocks may be written in the wrong place. */ lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); /* * Record the length of the last block in case it's a fragment. * If there are indirect blocks present, they sort last. An * indirect block will be lfs_bsize and its presence indicates * that you cannot have fragments. * * XXX This last is a lie. A cleaned fragment can coexist with * XXX a later indirect block. This will continue to be * XXX true until lfs_markv is fixed to do everything with * XXX fake blocks (including fake inodes and fake indirect blocks). */ sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & fs->lfs_bmask) + 1; /* * Assign disk addresses, and update references to the logical * block and the segment usage information. */ for (i = nblocks; i--; ++sp->start_bpp) { sbp = *sp->start_bpp; lbn = *sp->start_lbp; KASSERT(sbp->b_lblkno == lbn); sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); /* * If we write a frag in the wrong place, the cleaner won't * be able to correctly identify its size later, and the * segment will be uncleanable. (Even worse, it will assume * that the indirect block that actually ends the list * is of a smaller size!) */ if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) panic("lfs_updatemeta: fragment is not last block"); /* * For each subblock in this possibly oversized block, * update its address on disk. */ KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); KASSERT(vp == sbp->b_vp); for (bytesleft = sbp->b_bcount; bytesleft > 0; bytesleft -= fs->lfs_bsize) { size = MIN(bytesleft, fs->lfs_bsize); bb = fragstofsb(fs, numfrags(fs, size)); lbn = *sp->start_lbp++; lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, size); fs->lfs_offset += bb; } } } /* * Start a new partial segment. * * Return 1 when we entered to a new segment. * Otherwise, return 0. */ int lfs_initseg(struct lfs *fs) { struct segment *sp = fs->lfs_sp; SEGSUM *ssp; struct buf *sbp; /* buffer for SEGSUM */ int repeat = 0; /* return value */ ASSERT_SEGLOCK(fs); /* Advance to the next segment. */ if (!LFS_PARTIAL_FITS(fs)) { SEGUSE *sup; struct buf *bp; /* lfs_avail eats the remaining space */ fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg); /* Wake up any cleaning procs waiting on this file system. */ wakeup(&lfs_allclean_wakeup); wakeup(&fs->lfs_nextseg); lfs_newseg(fs); repeat = 1; fs->lfs_offset = fs->lfs_curseg; sp->seg_number = dtosn(fs, fs->lfs_curseg); sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); /* * If the segment contains a superblock, update the offset * and summary address to skip over it. */ LFS_SEGENTRY(sup, fs, sp->seg_number, bp); if (sup->su_flags & SEGUSE_SUPERBLOCK) { fs->lfs_offset += btofsb(fs, LFS_SBPAD); sp->seg_bytes_left -= LFS_SBPAD; } brelse(bp); /* Segment zero could also contain the labelpad */ if (fs->lfs_version > 1 && sp->seg_number == 0 && fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start; sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start); } } else { sp->seg_number = dtosn(fs, fs->lfs_curseg); sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg)); } fs->lfs_lastpseg = fs->lfs_offset; /* Record first address of this partial segment */ if (sp->seg_flags & SEGM_CLEAN) { fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { /* "1" is the artificial inc in lfs_seglock */ simple_lock(&fs->lfs_interlock); while (fs->lfs_iocount > 1) { ltsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0, &fs->lfs_interlock); } simple_unlock(&fs->lfs_interlock); fs->lfs_cleanind = 0; } } sp->fs = fs; sp->ibp = NULL; sp->idp = NULL; sp->ninodes = 0; sp->ndupino = 0; sp->cbpp = sp->bpp; /* Get a new buffer for SEGSUM */ sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); /* ... and enter it into the buffer list. */ *sp->cbpp = sbp; sp->cbpp++; fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); sp->start_bpp = sp->cbpp; /* Set point to SEGSUM, initialize it. */ ssp = sp->segsum = sbp->b_data; memset(ssp, 0, fs->lfs_sumsize); ssp->ss_next = fs->lfs_nextseg; ssp->ss_nfinfo = ssp->ss_ninos = 0; ssp->ss_magic = SS_MAGIC; /* Set pointer to first FINFO, initialize it. */ sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs)); sp->fip->fi_nblocks = 0; sp->start_lbp = &sp->fip->fi_blocks[0]; sp->fip->fi_lastlength = 0; sp->seg_bytes_left -= fs->lfs_sumsize; sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); return (repeat); } /* * Return the next segment to write. */ void lfs_newseg(struct lfs *fs) { CLEANERINFO *cip; SEGUSE *sup; struct buf *bp; int curseg, isdirty, sn; ASSERT_SEGLOCK(fs); LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", dtosn(fs, fs->lfs_nextseg))); sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; sup->su_nbytes = 0; sup->su_nsums = 0; sup->su_ninos = 0; LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); LFS_CLEANERINFO(cip, fs, bp); --cip->clean; ++cip->dirty; fs->lfs_nclean = cip->clean; LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); fs->lfs_lastseg = fs->lfs_curseg; fs->lfs_curseg = fs->lfs_nextseg; for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { sn = (sn + 1) % fs->lfs_nseg; if (sn == curseg) panic("lfs_nextseg: no clean segments"); LFS_SEGENTRY(sup, fs, sn, bp); isdirty = sup->su_flags & SEGUSE_DIRTY; /* Check SEGUSE_EMPTY as we go along */ if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY)) LFS_WRITESEGENTRY(sup, fs, sn, bp); else brelse(bp); if (!isdirty) break; } ++fs->lfs_nactive; fs->lfs_nextseg = sntod(fs, sn); if (lfs_dostats) { ++lfs_stats.segsused; } } static struct buf * lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n) { struct lfs_cluster *cl; struct buf **bpp, *bp; int s; ASSERT_SEGLOCK(fs); cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); memset(cl, 0, sizeof(*cl)); cl->fs = fs; cl->bpp = bpp; cl->bufcount = 0; cl->bufsize = 0; /* If this segment is being written synchronously, note that */ if (fs->lfs_sp->seg_flags & SEGM_SYNC) { cl->flags |= LFS_CL_SYNC; cl->seg = fs->lfs_sp; ++cl->seg->seg_iocount; } /* Get an empty buffer header, or maybe one with something on it */ s = splbio(); bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */ splx(s); memset(bp, 0, sizeof(*bp)); BUF_INIT(bp); bp->b_flags = B_BUSY | B_CALL; bp->b_dev = NODEV; bp->b_blkno = bp->b_lblkno = addr; bp->b_iodone = lfs_cluster_callback; bp->b_private = cl; bp->b_vp = vp; return bp; } int lfs_writeseg(struct lfs *fs, struct segment *sp) { struct buf **bpp, *bp, *cbp, *newbp; SEGUSE *sup; SEGSUM *ssp; int i, s; int do_again, nblocks, byteoffset; size_t el_size; struct lfs_cluster *cl; u_short ninos; struct vnode *devvp; char *p = NULL; struct vnode *vp; int32_t *daddrp; /* XXX ondisk32 */ int changed; u_int32_t sum; ASSERT_SEGLOCK(fs); /* * If there are no buffers other than the segment summary to write * and it is not a checkpoint, don't do anything. On a checkpoint, * even if there aren't any buffers, you need to write the superblock. */ if ((nblocks = sp->cbpp - sp->bpp) == 1) return (0); devvp = VTOI(fs->lfs_ivnode)->i_devvp; /* Update the segment usage information. */ LFS_SEGENTRY(sup, fs, sp->seg_number, bp); /* Loop through all blocks, except the segment summary. */ for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { if ((*bpp)->b_vp != devvp) { sup->su_nbytes += (*bpp)->b_bcount; DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" " lbn %" PRId64 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount, VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, (*bpp)->b_blkno)); } } ssp = (SEGSUM *)sp->segsum; ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), ssp->ss_ninos)); sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); /* sup->su_nbytes += fs->lfs_sumsize; */ if (fs->lfs_version == 1) sup->su_olastmod = time.tv_sec; else sup->su_lastmod = time.tv_sec; sup->su_ninos += ninos; ++sup->su_nsums; fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos * fs->lfs_ibsize)); fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); do_again = !(bp->b_flags & B_GATHERED); LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ /* * Mark blocks B_BUSY, to prevent then from being changed between * the checksum computation and the actual write. * * If we are cleaning, check indirect blocks for UNWRITTEN, and if * there are any, replace them with copies that have UNASSIGNED * instead. */ for (bpp = sp->bpp, i = nblocks - 1; i--;) { ++bpp; bp = *bpp; if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */ bp->b_flags |= B_BUSY; continue; } simple_lock(&bp->b_interlock); s = splbio(); while (bp->b_flags & B_BUSY) { DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" " data summary corruption for ino %d, lbn %" PRId64 "\n", VTOI(bp->b_vp)->i_number, bp->b_lblkno)); bp->b_flags |= B_WANTED; ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0, &bp->b_interlock); splx(s); s = splbio(); } bp->b_flags |= B_BUSY; splx(s); simple_unlock(&bp->b_interlock); /* * Check and replace indirect block UNWRITTEN bogosity. * XXX See comment in lfs_writefile. */ if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && VTOI(bp->b_vp)->i_ffs1_blocks != VTOI(bp->b_vp)->i_lfs_effnblks) { DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n", VTOI(bp->b_vp)->i_number, VTOI(bp->b_vp)->i_lfs_effnblks, VTOI(bp->b_vp)->i_ffs1_blocks)); /* Make a copy we'll make changes to */ newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, bp->b_bcount, LFS_NB_IBLOCK); newbp->b_blkno = bp->b_blkno; memcpy(newbp->b_data, bp->b_data, newbp->b_bcount); changed = 0; /* XXX ondisk32 */ for (daddrp = (int32_t *)(newbp->b_data); daddrp < (int32_t *)(newbp->b_data + newbp->b_bcount); daddrp++) { if (*daddrp == UNWRITTEN) { ++changed; *daddrp = 0; } } /* * Get rid of the old buffer. Don't mark it clean, * though, if it still has dirty data on it. */ if (changed) { DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" " bp = %p newbp = %p\n", changed, bp, newbp)); *bpp = newbp; bp->b_flags &= ~(B_ERROR | B_GATHERED); if (bp->b_flags & B_CALL) { DLOG((DLOG_SEG, "lfs_writeseg: " "indir bp should not be B_CALL\n")); s = splbio(); biodone(bp); splx(s); bp = NULL; } else { /* Still on free list, leave it there */ s = splbio(); bp->b_flags &= ~B_BUSY; if (bp->b_flags & B_WANTED) wakeup(bp); splx(s); /* * We have to re-decrement lfs_avail * since this block is going to come * back around to us in the next * segment. */ fs->lfs_avail -= btofsb(fs, bp->b_bcount); } } else { lfs_freebuf(fs, newbp); } } } /* * Compute checksum across data and then across summary; the first * block (the summary block) is skipped. Set the create time here * so that it's guaranteed to be later than the inode mod times. */ sum = 0; if (fs->lfs_version == 1) el_size = sizeof(u_long); else el_size = sizeof(u_int32_t); for (bpp = sp->bpp, i = nblocks - 1; i--; ) { ++bpp; /* Loop through gop_write cluster blocks */ for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; byteoffset += fs->lfs_bsize) { #ifdef LFS_USE_B_INVAL if (((*bpp)->b_flags & (B_CALL | B_INVAL)) == (B_CALL | B_INVAL)) { if (copyin((caddr_t)(*bpp)->b_saveaddr + byteoffset, dp, el_size)) { panic("lfs_writeseg: copyin failed [1]:" " ino %d blk %" PRId64, VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno); } } else #endif /* LFS_USE_B_INVAL */ { sum = lfs_cksum_part( (*bpp)->b_data + byteoffset, el_size, sum); } } } if (fs->lfs_version == 1) ssp->ss_ocreate = time.tv_sec; else { ssp->ss_create = time.tv_sec; ssp->ss_serial = ++fs->lfs_serial; ssp->ss_ident = fs->lfs_ident; } ssp->ss_datasum = lfs_cksum_fold(sum); ssp->ss_sumsum = cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); simple_lock(&fs->lfs_interlock); fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize)); simple_unlock(&fs->lfs_interlock); /* * When we simply write the blocks we lose a rotation for every block * written. To avoid this problem, we cluster the buffers into a * chunk and write the chunk. MAXPHYS is the largest size I/O * devices can handle, use that for the size of the chunks. * * Blocks that are already clusters (from GOP_WRITE), however, we * don't bother to copy into other clusters. */ #define CHUNKSIZE MAXPHYS if (devvp == NULL) panic("devvp is NULL"); for (bpp = sp->bpp, i = nblocks; i;) { cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); cl = cbp->b_private; cbp->b_flags |= B_ASYNC | B_BUSY; cbp->b_bcount = 0; #if defined(DEBUG) && defined(DIAGNOSTIC) if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t)) { panic("lfs_writeseg: real bpp overwrite"); } if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { panic("lfs_writeseg: theoretical bpp overwrite"); } #endif /* * Construct the cluster. */ simple_lock(&fs->lfs_interlock); ++fs->lfs_iocount; simple_unlock(&fs->lfs_interlock); while (i && cbp->b_bcount < CHUNKSIZE) { bp = *bpp; if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) break; if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) break; /* Clusters from GOP_WRITE are expedited */ if (bp->b_bcount > fs->lfs_bsize) { if (cbp->b_bcount > 0) /* Put in its own buffer */ break; else { cbp->b_data = bp->b_data; } } else if (cbp->b_bcount == 0) { p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, LFS_NB_CLUSTER); cl->flags |= LFS_CL_MALLOC; } #ifdef DIAGNOSTIC if (dtosn(fs, dbtofsb(fs, bp->b_blkno + btodb(bp->b_bcount - 1))) != sp->seg_number) { printf("blk size %d daddr %" PRIx64 " not in seg %d\n", bp->b_bcount, bp->b_blkno, sp->seg_number); panic("segment overwrite"); } #endif #ifdef LFS_USE_B_INVAL /* * Fake buffers from the cleaner are marked as B_INVAL. * We need to copy the data from user space rather than * from the buffer indicated. * XXX == what do I do on an error? */ if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) { if (copyin(bp->b_saveaddr, p, bp->b_bcount)) panic("lfs_writeseg: " "copyin failed [2]"); } else #endif /* LFS_USE_B_INVAL */ if (cl->flags & LFS_CL_MALLOC) { /* copy data into our cluster. */ memcpy(p, bp->b_data, bp->b_bcount); p += bp->b_bcount; } cbp->b_bcount += bp->b_bcount; cl->bufsize += bp->b_bcount; bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE); cl->bpp[cl->bufcount++] = bp; vp = bp->b_vp; s = splbio(); reassignbuf(bp, vp); V_INCR_NUMOUTPUT(vp); splx(s); bpp++; i--; } if (fs->lfs_sp->seg_flags & SEGM_SYNC) BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); else BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); s = splbio(); V_INCR_NUMOUTPUT(devvp); splx(s); VOP_STRATEGY(devvp, cbp); curproc->p_stats->p_ru.ru_oublock++; } if (lfs_dostats) { ++lfs_stats.psegwrites; lfs_stats.blocktot += nblocks - 1; if (fs->lfs_sp->seg_flags & SEGM_SYNC) ++lfs_stats.psyncwrites; if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { ++lfs_stats.pcleanwrites; lfs_stats.cleanblocks += nblocks - 1; } } return (lfs_initseg(fs) || do_again); } void lfs_writesuper(struct lfs *fs, daddr_t daddr) { struct buf *bp; int s; struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; ASSERT_MAYBE_SEGLOCK(fs); #ifdef DIAGNOSTIC KASSERT(fs->lfs_magic == LFS_MAGIC); #endif /* * If we can write one superblock while another is in * progress, we risk not having a complete checkpoint if we crash. * So, block here if a superblock write is in progress. */ simple_lock(&fs->lfs_interlock); s = splbio(); while (fs->lfs_sbactive) { ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, &fs->lfs_interlock); } fs->lfs_sbactive = daddr; splx(s); simple_unlock(&fs->lfs_interlock); /* Set timestamp of this version of the superblock */ if (fs->lfs_version == 1) fs->lfs_otstamp = time.tv_sec; fs->lfs_tstamp = time.tv_sec; /* Checksum the superblock and copy it into a buffer. */ fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); bp = lfs_newbuf(fs, devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs)); *(struct dlfs *)bp->b_data = fs->lfs_dlfs; bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); bp->b_iodone = lfs_supercallback; if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); else BIO_SETPRIO(bp, BPRIO_TIMELIMITED); curproc->p_stats->p_ru.ru_oublock++; s = splbio(); V_INCR_NUMOUTPUT(bp->b_vp); splx(s); simple_lock(&fs->lfs_interlock); ++fs->lfs_iocount; simple_unlock(&fs->lfs_interlock); VOP_STRATEGY(devvp, bp); } /* * Logical block number match routines used when traversing the dirty block * chain. */ int lfs_match_fake(struct lfs *fs, struct buf *bp) { ASSERT_SEGLOCK(fs); return LFS_IS_MALLOC_BUF(bp); } #if 0 int lfs_match_real(struct lfs *fs, struct buf *bp) { ASSERT_SEGLOCK(fs); return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); } #endif int lfs_match_data(struct lfs *fs, struct buf *bp) { ASSERT_SEGLOCK(fs); return (bp->b_lblkno >= 0); } int lfs_match_indir(struct lfs *fs, struct buf *bp) { daddr_t lbn; ASSERT_SEGLOCK(fs); lbn = bp->b_lblkno; return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); } int lfs_match_dindir(struct lfs *fs, struct buf *bp) { daddr_t lbn; ASSERT_SEGLOCK(fs); lbn = bp->b_lblkno; return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); } int lfs_match_tindir(struct lfs *fs, struct buf *bp) { daddr_t lbn; ASSERT_SEGLOCK(fs); lbn = bp->b_lblkno; return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); } /* * XXX - The only buffers that are going to hit these functions are the * segment write blocks, or the segment summaries, or the superblocks. * * All of the above are created by lfs_newbuf, and so do not need to be * released via brelse. */ void lfs_callback(struct buf *bp) { struct lfs *fs; fs = bp->b_private; ASSERT_NO_SEGLOCK(fs); lfs_freebuf(fs, bp); } static void lfs_super_aiodone(struct buf *bp) { struct lfs *fs; fs = bp->b_private; ASSERT_NO_SEGLOCK(fs); simple_lock(&fs->lfs_interlock); fs->lfs_sbactive = 0; if (--fs->lfs_iocount <= 1) wakeup(&fs->lfs_iocount); simple_unlock(&fs->lfs_interlock); wakeup(&fs->lfs_sbactive); lfs_freebuf(fs, bp); } static void lfs_cluster_aiodone(struct buf *bp) { struct lfs_cluster *cl; struct lfs *fs; struct buf *tbp, *fbp; struct vnode *vp, *devvp; struct inode *ip; int s, error=0; if (bp->b_flags & B_ERROR) error = bp->b_error; cl = bp->b_private; fs = cl->fs; devvp = VTOI(fs->lfs_ivnode)->i_devvp; ASSERT_NO_SEGLOCK(fs); /* Put the pages back, and release the buffer */ while (cl->bufcount--) { tbp = cl->bpp[cl->bufcount]; KASSERT(tbp->b_flags & B_BUSY); if (error) { tbp->b_flags |= B_ERROR; tbp->b_error = error; } /* * We're done with tbp. If it has not been re-dirtied since * the cluster was written, free it. Otherwise, keep it on * the locked list to be written again. */ vp = tbp->b_vp; tbp->b_flags &= ~B_GATHERED; LFS_BCLEAN_LOG(fs, tbp); if (!(tbp->b_flags & B_CALL)) { KASSERT(tbp->b_flags & B_LOCKED); s = splbio(); simple_lock(&bqueue_slock); bremfree(tbp); simple_unlock(&bqueue_slock); if (vp) reassignbuf(tbp, vp); splx(s); tbp->b_flags |= B_ASYNC; /* for biodone */ } if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED) LFS_UNLOCK_BUF(tbp); if (tbp->b_flags & B_DONE) { DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", cl->bufcount, (long)tbp->b_flags)); } if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) { /* * A buffer from the page daemon. * We use the same iodone as it does, * so we must manually disassociate its * buffers from the vp. */ if (tbp->b_vp) { /* This is just silly */ s = splbio(); brelvp(tbp); tbp->b_vp = vp; splx(s); } /* Put it back the way it was */ tbp->b_flags |= B_ASYNC; /* Master buffers have B_AGE */ if (tbp->b_private == tbp) tbp->b_flags |= B_AGE; } s = splbio(); biodone(tbp); /* * If this is the last block for this vnode, but * there are other blocks on its dirty list, * set IN_MODIFIED/IN_CLEANING depending on what * sort of block. Only do this for our mount point, * not for, e.g., inode blocks that are attached to * the devvp. * XXX KS - Shouldn't we set *both* if both types * of blocks are present (traverse the dirty list?) */ simple_lock(&global_v_numoutput_slock); if (vp != devvp && vp->v_numoutput == 0 && (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { ip = VTOI(vp); DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", ip->i_number)); if (LFS_IS_MALLOC_BUF(fbp)) LFS_SET_UINO(ip, IN_CLEANING); else LFS_SET_UINO(ip, IN_MODIFIED); } simple_unlock(&global_v_numoutput_slock); splx(s); wakeup(vp); } /* Fix up the cluster buffer, and release it */ if (cl->flags & LFS_CL_MALLOC) lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); s = splbio(); pool_put(&bufpool, bp); /* XXX should use lfs_free? */ splx(s); /* Note i/o done */ if (cl->flags & LFS_CL_SYNC) { if (--cl->seg->seg_iocount == 0) wakeup(&cl->seg->seg_iocount); } simple_lock(&fs->lfs_interlock); #ifdef DIAGNOSTIC if (fs->lfs_iocount == 0) panic("lfs_cluster_aiodone: zero iocount"); #endif if (--fs->lfs_iocount <= 1) wakeup(&fs->lfs_iocount); simple_unlock(&fs->lfs_interlock); pool_put(&fs->lfs_bpppool, cl->bpp); cl->bpp = NULL; pool_put(&fs->lfs_clpool, cl); } static void lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) { /* reset b_iodone for when this is a single-buf i/o. */ bp->b_iodone = aiodone; simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */ TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist); wakeup(&uvm.aiodoned); simple_unlock(&uvm.aiodoned_lock); } static void lfs_cluster_callback(struct buf *bp) { lfs_generic_callback(bp, lfs_cluster_aiodone); } void lfs_supercallback(struct buf *bp) { lfs_generic_callback(bp, lfs_super_aiodone); } /* * Shellsort (diminishing increment sort) from Data Structures and * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; * see also Knuth Vol. 3, page 84. The increments are selected from * formula (8), page 95. Roughly O(N^3/2). */ /* * This is our own private copy of shellsort because we want to sort * two parallel arrays (the array of buffer pointers and the array of * logical block numbers) simultaneously. Note that we cast the array * of logical block numbers to a unsigned in this routine so that the * negative block numbers (meta data blocks) sort AFTER the data blocks. */ void lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) { static int __rsshell_increments[] = { 4, 1, 0 }; int incr, *incrp, t1, t2; struct buf *bp_temp; #ifdef DEBUG incr = 0; for (t1 = 0; t1 < nmemb; t1++) { for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { /* dump before panic */ printf("lfs_shellsort: nmemb=%d, size=%d\n", nmemb, size); incr = 0; for (t1 = 0; t1 < nmemb; t1++) { const struct buf *bp = bp_array[t1]; printf("bp[%d]: lbn=%" PRIu64 ", size=%" PRIu64 "\n", t1, (uint64_t)bp->b_bcount, (uint64_t)bp->b_lblkno); printf("lbns:"); for (t2 = 0; t2 * size < bp->b_bcount; t2++) { printf(" %" PRId32, lb_array[incr++]); } printf("\n"); } panic("lfs_shellsort: inconsistent input"); } } } #endif for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) for (t1 = incr; t1 < nmemb; ++t1) for (t2 = t1 - incr; t2 >= 0;) if ((u_int32_t)bp_array[t2]->b_lblkno > (u_int32_t)bp_array[t2 + incr]->b_lblkno) { bp_temp = bp_array[t2]; bp_array[t2] = bp_array[t2 + incr]; bp_array[t2 + incr] = bp_temp; t2 -= incr; } else break; /* Reform the list of logical blocks */ incr = 0; for (t1 = 0; t1 < nmemb; t1++) { for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { lb_array[incr++] = bp_array[t1]->b_lblkno + t2; } } } /* * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. */ int lfs_vref(struct vnode *vp) { ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs); /* * If we return 1 here during a flush, we risk vinvalbuf() not * being able to flush all of the pages from this vnode, which * will cause it to panic. So, return 0 if a flush is in progress. */ if (vp->v_flag & VXLOCK) { if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { return 0; } return (1); } return (vget(vp, 0)); } /* * This is vrele except that we do not want to VOP_INACTIVE this vnode. We * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. */ void lfs_vunref(struct vnode *vp) { ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs); /* * Analogous to lfs_vref, if the node is flushing, fake it. */ if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { return; } simple_lock(&vp->v_interlock); #ifdef DIAGNOSTIC if (vp->v_usecount <= 0) { printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number); printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag); printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount); panic("lfs_vunref: v_usecount < 0"); } #endif vp->v_usecount--; if (vp->v_usecount > 0) { simple_unlock(&vp->v_interlock); return; } /* * insert at tail of LRU list */ simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); else TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); simple_unlock(&vp->v_interlock); } /* * We use this when we have vnodes that were loaded in solely for cleaning. * There is no reason to believe that these vnodes will be referenced again * soon, since the cleaning process is unrelated to normal filesystem * activity. Putting cleaned vnodes at the tail of the list has the effect * of flushing the vnode LRU. So, put vnodes that were loaded only for * cleaning at the head of the list, instead. */ void lfs_vunref_head(struct vnode *vp) { ASSERT_SEGLOCK(VTOI(vp)->i_lfs); simple_lock(&vp->v_interlock); #ifdef DIAGNOSTIC if (vp->v_usecount == 0) { panic("lfs_vunref: v_usecount<0"); } #endif vp->v_usecount--; if (vp->v_usecount > 0) { simple_unlock(&vp->v_interlock); return; } /* * insert at head of LRU list */ simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); else TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); simple_unlock(&vp->v_interlock); }