/* $NetBSD: if_tlp_pci.c,v 1.20 1999/09/30 17:48:25 thorpej Exp $ */ /*- * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * PCI bus front-end for the Digital Semiconductor ``Tulip'' (21x4x) * Ethernet controller family driver. */ #include "opt_inet.h" #include "opt_ns.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #ifdef INET #include #include #endif #ifdef NS #include #include #endif #include #include #include #include #include #include #include #include /* * PCI configuration space registers used by the Tulip. */ #define TULIP_PCI_IOBA 0x10 /* i/o mapped base */ #define TULIP_PCI_MMBA 0x14 /* memory mapped base */ #define TULIP_PCI_CFDA 0x40 /* configuration driver area */ #define CFDA_SLEEP 0x80000000 /* sleep mode */ struct tulip_pci_softc { struct tulip_softc sc_tulip; /* real Tulip softc */ /* PCI-specific goo. */ void *sc_ih; /* interrupt handle */ pci_chipset_tag_t sc_pc; /* our PCI chipset */ pcitag_t sc_pcitag; /* our PCI tag */ int sc_flags; /* flags; see below */ LIST_HEAD(, tulip_pci_softc) sc_intrslaves; LIST_ENTRY(tulip_pci_softc) sc_intrq; /* Our {ROM,interrupt} master. */ struct tulip_pci_softc *sc_master; }; /* sc_flags */ #define TULIP_PCI_SHAREDINTR 0x01 /* interrupt is shared */ #define TULIP_PCI_SLAVEINTR 0x02 /* interrupt is slave */ #define TULIP_PCI_SHAREDROM 0x04 /* ROM is shared */ #define TULIP_PCI_SLAVEROM 0x08 /* slave of shared ROM */ int tlp_pci_match __P((struct device *, struct cfdata *, void *)); void tlp_pci_attach __P((struct device *, struct device *, void *)); struct cfattach tlp_pci_ca = { sizeof(struct tulip_pci_softc), tlp_pci_match, tlp_pci_attach, }; const struct tulip_pci_product { u_int32_t tpp_vendor; /* PCI vendor ID */ u_int32_t tpp_product; /* PCI product ID */ tulip_chip_t tpp_chip; /* base Tulip chip type */ int tpp_pmreg; /* power management register offset */ } tlp_pci_products[] = { #ifdef TLP_MATCH_21040 { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21040, TULIP_CHIP_21040, 0 }, #endif #ifdef TLP_MATCH_21041 { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21041, TULIP_CHIP_21041, 0 }, #endif #ifdef TLP_MATCH_21140 { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21140, TULIP_CHIP_21140, 0 }, #endif #ifdef TLP_MATCH_21142 { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21142, TULIP_CHIP_21142, 0 }, #endif { PCI_VENDOR_LITEON, PCI_PRODUCT_LITEON_82C168, TULIP_CHIP_82C168, 0 }, /* * Note: This is like a MX98725 with Wake-On-LAN and a * 128-bit multicast hash table. */ { PCI_VENDOR_LITEON, PCI_PRODUCT_LITEON_82C115, TULIP_CHIP_82C115, 0x48 }, { PCI_VENDOR_MACRONIX, PCI_PRODUCT_MACRONIX_MX98713, TULIP_CHIP_MX98713, 0 }, { PCI_VENDOR_MACRONIX, PCI_PRODUCT_MACRONIX_MX987x5, TULIP_CHIP_MX98715, 0x48 }, { PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100TX, TULIP_CHIP_MX98713, 0 }, { PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F, TULIP_CHIP_WB89C840F, 0 }, { PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX, TULIP_CHIP_WB89C840F, 0 }, #if 0 { PCI_VENDOR_DAVICOM, PCI_PRODUCT_DAVICOM_DM9102, TULIP_CHIP_DM9102, 0 }, #endif { PCI_VENDOR_ADMTEK, PCI_PRODUCT_ADMTEK_AL981, TULIP_CHIP_AL981, 0xc4 }, #if 0 { PCI_VENDOR_ASIX, PCI_PRODUCT_ASIX_AX88140A, TULIP_CHIP_AX88140, 0 }, #endif { 0, 0, TULIP_CHIP_INVALID, 0 }, }; struct tlp_pci_quirks { void (*tpq_func) __P((struct tulip_pci_softc *, const u_int8_t *)); u_int8_t tpq_oui[3]; }; void tlp_pci_dec_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_znyx_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_smc_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_cogent_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_accton_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); const struct tlp_pci_quirks tlp_pci_21040_quirks[] = { { tlp_pci_znyx_21040_quirks, { 0x00, 0xc0, 0x95 } }, { tlp_pci_smc_21040_quirks, { 0x00, 0x00, 0xc0 } }, { tlp_pci_cogent_21040_quirks, { 0x00, 0x00, 0x92 } }, { tlp_pci_accton_21040_quirks, { 0x00, 0x00, 0xe8 } }, { NULL, { 0, 0, 0 } } }; const struct tlp_pci_quirks tlp_pci_21041_quirks[] = { { tlp_pci_dec_quirks, { 0x08, 0x00, 0x2b } }, { tlp_pci_dec_quirks, { 0x00, 0x00, 0xf8 } }, { NULL, { 0, 0, 0 } } }; void tlp_pci_asante_21140_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); const struct tlp_pci_quirks tlp_pci_21140_quirks[] = { { tlp_pci_dec_quirks, { 0x08, 0x00, 0x2b } }, { tlp_pci_dec_quirks, { 0x00, 0x00, 0xf8 } }, { tlp_pci_asante_21140_quirks, { 0x00, 0x00, 0x94 } }, { NULL, { 0, 0, 0 } } }; const char *tlp_pci_chip_names[] = TULIP_CHIP_NAMES; int tlp_pci_shared_intr __P((void *)); const struct tulip_pci_product *tlp_pci_lookup __P((const struct pci_attach_args *)); void tlp_pci_get_quirks __P((struct tulip_pci_softc *, const u_int8_t *, const struct tlp_pci_quirks *)); void tlp_pci_check_slaved __P((struct tulip_pci_softc *, int, int)); const struct tulip_pci_product * tlp_pci_lookup(pa) const struct pci_attach_args *pa; { const struct tulip_pci_product *tpp; for (tpp = tlp_pci_products; tlp_pci_chip_names[tpp->tpp_chip] != NULL; tpp++) { if (PCI_VENDOR(pa->pa_id) == tpp->tpp_vendor && PCI_PRODUCT(pa->pa_id) == tpp->tpp_product) return (tpp); } return (NULL); } void tlp_pci_get_quirks(psc, enaddr, tpq) struct tulip_pci_softc *psc; const u_int8_t *enaddr; const struct tlp_pci_quirks *tpq; { for (; tpq->tpq_func != NULL; tpq++) { if (tpq->tpq_oui[0] == enaddr[0] && tpq->tpq_oui[1] == enaddr[1] && tpq->tpq_oui[2] == enaddr[2]) { (*tpq->tpq_func)(psc, enaddr); return; } } } void tlp_pci_check_slaved(psc, shared, slaved) struct tulip_pci_softc *psc; int shared, slaved; { extern struct cfdriver tlp_cd; struct tulip_pci_softc *cur, *best = NULL; struct tulip_softc *sc = &psc->sc_tulip; int i; /* * First of all, find the lowest pcidev numbered device on our * bus marked as shared. That should be our master. */ for (i = 0; i < tlp_cd.cd_ndevs; i++) { if ((cur = tlp_cd.cd_devs[i]) == NULL) continue; if (cur->sc_tulip.sc_dev.dv_parent != sc->sc_dev.dv_parent) continue; if ((cur->sc_flags & shared) == 0) continue; if (cur == psc) continue; if (best == NULL || best->sc_tulip.sc_devno > cur->sc_tulip.sc_devno) best = cur; } if (best != NULL) { psc->sc_master = best; psc->sc_flags |= (shared | slaved); } } int tlp_pci_match(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pci_attach_args *pa = aux; if (tlp_pci_lookup(pa) != NULL) return (10); /* beat if_de.c */ return (0); } void tlp_pci_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct tulip_pci_softc *psc = (void *) self; struct tulip_softc *sc = &psc->sc_tulip; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; int ioh_valid, memh_valid, i, j; const struct tulip_pci_product *tpp; u_int8_t enaddr[ETHER_ADDR_LEN]; u_int32_t val; pcireg_t reg; sc->sc_devno = pa->pa_device; psc->sc_pc = pa->pa_pc; psc->sc_pcitag = pa->pa_tag; LIST_INIT(&psc->sc_intrslaves); tpp = tlp_pci_lookup(pa); if (tpp == NULL) { printf("\n"); panic("tlp_pci_attach: impossible"); } sc->sc_chip = tpp->tpp_chip; /* * By default, Tulip registers are 8 bytes long (4 bytes * followed by a 4 byte pad). */ sc->sc_regshift = 3; /* * Get revision info, and set some chip-specific variables. */ sc->sc_rev = PCI_REVISION(pa->pa_class); switch (sc->sc_chip) { case TULIP_CHIP_21140: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_21140A; break; case TULIP_CHIP_21142: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_21143; break; case TULIP_CHIP_82C168: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_82C169; break; case TULIP_CHIP_MX98713: if (sc->sc_rev >= 0x10) sc->sc_chip = TULIP_CHIP_MX98713A; break; case TULIP_CHIP_MX98715: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_MX98715A; if (sc->sc_rev >= 0x30) sc->sc_chip = TULIP_CHIP_MX98725; break; case TULIP_CHIP_WB89C840F: sc->sc_regshift = 2; break; case TULIP_CHIP_AX88140: if (sc->sc_rev >= 0x10) sc->sc_chip = TULIP_CHIP_AX88141; break; default: /* Nothing. */ } printf(": %s Ethernet, pass %d.%d\n", tlp_pci_chip_names[sc->sc_chip], (sc->sc_rev >> 4) & 0xf, sc->sc_rev & 0xf); switch (sc->sc_chip) { case TULIP_CHIP_21040: if (sc->sc_rev < 0x20) { printf("%s: 21040 must be at least pass 2.0\n", sc->sc_dev.dv_xname); return; } break; case TULIP_CHIP_21140: if (sc->sc_rev < 0x11) { printf("%s: 21140 must be at least pass 1.1\n", sc->sc_dev.dv_xname); return; } break; default: /* Nothing. */ } /* * Check to see if the device is in power-save mode, and * being it out if necessary. */ switch (sc->sc_chip) { case TULIP_CHIP_21140: case TULIP_CHIP_21140A: case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98725: /* * Clear the "sleep mode" bit in the CFDA register. */ reg = pci_conf_read(pc, pa->pa_tag, TULIP_PCI_CFDA); if (reg & CFDA_SLEEP) pci_conf_write(pc, pa->pa_tag, TULIP_PCI_CFDA, reg & ~CFDA_SLEEP); break; default: /* Nothing. */ } if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) { if (tpp->tpp_pmreg == 0) { printf("%s: don't know location of PMCSR for this " "chip\n", sc->sc_dev.dv_xname); return; } reg = pci_conf_read(pc, pa->pa_tag, tpp->tpp_pmreg) & 0x3; if (reg == 3) { /* * The card has lost all configuration data in * this state, so punt. */ printf("%s: unable to wake up from power state D3\n", sc->sc_dev.dv_xname); return; } if (reg != 0) { printf("%s: waking up from power state D%d\n", sc->sc_dev.dv_xname, reg); pci_conf_write(pc, pa->pa_tag, tpp->tpp_pmreg, 0); } } /* * Map the device. */ ioh_valid = (pci_mapreg_map(pa, TULIP_PCI_IOBA, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); memh_valid = (pci_mapreg_map(pa, TULIP_PCI_MMBA, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); if (memh_valid) { sc->sc_st = memt; sc->sc_sh = memh; } else if (ioh_valid) { sc->sc_st = iot; sc->sc_sh = ioh; } else { printf(": unable to map device registers\n"); return; } sc->sc_dmat = pa->pa_dmat; /* * Make sure bus mastering is enabled. */ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* * Get the cacheline size. */ sc->sc_cacheline = PCI_CACHELINE(pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG)); /* * Read the contents of the Ethernet Address ROM/SROM. */ memset(sc->sc_srom, 0, sizeof(sc->sc_srom)); switch (sc->sc_chip) { case TULIP_CHIP_21040: TULIP_WRITE(sc, CSR_MIIROM, MIIROM_SROMCS); for (i = 0; i < sizeof(sc->sc_srom); i++) { for (j = 0; j < 10000; j++) { val = TULIP_READ(sc, CSR_MIIROM); if ((val & MIIROM_DN) == 0) break; } sc->sc_srom[i] = val & MIIROM_DATA; } break; case TULIP_CHIP_82C168: case TULIP_CHIP_82C169: { u_int16_t *rombuf = (u_int16_t *)sc->sc_srom; /* * The Lite-On PNIC stores the Ethernet address in * the first 3 words of the EEPROM. EEPROM access * is not like the other Tulip chips. */ for (i = 0; i < 3; i++) { TULIP_WRITE(sc, CSR_PNIC_SROMCTL, PNIC_SROMCTL_READ | i); for (j = 0; j < 500; j++) { delay(2); val = TULIP_READ(sc, CSR_MIIROM); if ((val & PNIC_MIIROM_BUSY) == 0) break; } if (val & PNIC_MIIROM_BUSY) { printf("%s: EEPROM timed out\n", sc->sc_dev.dv_xname); return; } rombuf[i] = bswap16(val & PNIC_MIIROM_DATA); } break; } default: tlp_read_srom(sc, 0, sizeof(sc->sc_srom) >> 1, sc->sc_srom); #if 0 printf("SROM CONTENTS:"); for (i = 0; i < sizeof(sc->sc_srom); i++) { if ((i % 8) == 0) printf("\n\t"); printf("0x%02x ", sc->sc_srom[i]); } printf("\n"); #endif } /* * Deal with chip/board quirks. This includes setting up * the mediasw, and extracting the Ethernet address from * the rombuf. */ switch (sc->sc_chip) { case TULIP_CHIP_21040: /* Check for a slaved ROM on a multi-port board. */ tlp_pci_check_slaved(psc, TULIP_PCI_SHAREDROM, TULIP_PCI_SLAVEROM); if (psc->sc_flags & TULIP_PCI_SLAVEROM) memcpy(sc->sc_srom, psc->sc_master->sc_tulip.sc_srom, sizeof(sc->sc_srom)); /* * Parse the Ethernet Address ROM. */ if (tlp_parse_old_srom(sc, enaddr) == 0) { printf("%s: unable to decode Ethernet Address ROM\n", sc->sc_dev.dv_xname); return; } /* * If we have a slaved ROM, adjust the Ethernet address. */ if (psc->sc_flags & TULIP_PCI_SLAVEROM) enaddr[5] += sc->sc_devno - psc->sc_master->sc_tulip.sc_devno; /* * All 21040 boards start out with the same * media switch. */ sc->sc_mediasw = &tlp_21040_mediasw; /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21040_quirks); break; case TULIP_CHIP_21041: /* Check for a slaved ROM on a multi-port board. */ tlp_pci_check_slaved(psc, TULIP_PCI_SHAREDROM, TULIP_PCI_SLAVEROM); if (psc->sc_flags & TULIP_PCI_SLAVEROM) memcpy(sc->sc_srom, psc->sc_master->sc_tulip.sc_srom, sizeof(sc->sc_srom)); /* Check for new format SROM. */ if (tlp_isv_srom_enaddr(sc, enaddr) == 0) { /* * Not an ISV SROM; try the old DEC Ethernet Address * ROM format. */ if (tlp_parse_old_srom(sc, enaddr) == 0) { printf("%s: unable to decode Ethernet " "Address ROM\n", sc->sc_dev.dv_xname); return; } } /* * All 21041 boards use the same media switch; they all * work basically the same! Yippee! */ sc->sc_mediasw = &tlp_21041_mediasw; /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21041_quirks); break; case TULIP_CHIP_21140: case TULIP_CHIP_21140A: /* Check for new format SROM. */ if (tlp_isv_srom_enaddr(sc, enaddr) == 0) { /* * Not an ISV SROM; try the old DEC Ethernet Address * ROM format. */ if (tlp_parse_old_srom(sc, enaddr) == 0) { printf("%s: unable to decode Ethernet " "Address ROM\n", sc->sc_dev.dv_xname); return; } } else { /* * We start out with the 2114x ISV media switch. * When we search for quirks, we may change to * a different switch. */ sc->sc_mediasw = &tlp_2114x_isv_mediasw; } /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21140_quirks); /* * Bail out now if we can't deal with this board. */ if (sc->sc_mediasw == NULL) goto cant_cope; break; case TULIP_CHIP_82C168: case TULIP_CHIP_82C169: /* * Lite-On PNIC's Ethernet address is the first 6 * bytes of its EEPROM. */ memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); /* * Lite-On PNICs always use the same mediasw; we * select MII vs. internal NWAY automatically. */ sc->sc_mediasw = &tlp_pnic_mediasw; break; case TULIP_CHIP_MX98713: /* * The Macronix MX98713 has an MII and GPIO, but no * internal Nway block. This chip is basically a * perfect 21140A clone, with the exception of the * a magic register frobbing in order to make the * interface function. */ if (tlp_isv_srom_enaddr(sc, enaddr)) { sc->sc_mediasw = &tlp_2114x_isv_mediasw; break; } /* FALLTHROUGH */ case TULIP_CHIP_82C115: /* * Yippee! The Lite-On 82C115 is a clone of * the MX98725 (the data sheet even says `MXIC' * on it)! Imagine that, a clone of a clone. * * The differences are really minimal: * * - Wake-On-LAN support * - 128-bit multicast hash table, rather than * the standard 512-bit hash table */ /* FALLTHROUGH */ case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98725: /* * The MX98713A has an MII as well as an internal Nway block, * but no GPIO. The MX98715 and MX98725 have an internal * Nway block only. * * The internal Nway block, unlike the Lite-On PNIC's, does * just that - performs Nway. Once autonegotiation completes, * we must program the GPR media information into the chip. * * The byte offset of the Ethernet address is stored at * offset 0x70. */ memcpy(enaddr, &sc->sc_srom[sc->sc_srom[0x70]], ETHER_ADDR_LEN); sc->sc_mediasw = &tlp_pmac_mediasw; break; case TULIP_CHIP_WB89C840F: /* * Winbond 89C840F's Ethernet address is the first * 6 bytes of its EEPROM. */ memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); /* * Winbond 89C840F has an MII attached to the SIO. */ sc->sc_mediasw = &tlp_sio_mii_mediasw; break; case TULIP_CHIP_AL981: /* * The ADMtek AL981's Ethernet address is located * at offset 8 of its EEPROM. */ memcpy(enaddr, &sc->sc_srom[8], ETHER_ADDR_LEN); /* * ADMtek AL981 has a built-in PHY accessed through * special registers. */ sc->sc_mediasw = &tlp_al981_mediasw; break; default: cant_cope: printf("%s: sorry, unable to handle your board\n", sc->sc_dev.dv_xname); return; } /* * Handle shared interrupts. */ if (psc->sc_flags & TULIP_PCI_SHAREDINTR) { if (psc->sc_master) psc->sc_flags |= TULIP_PCI_SLAVEINTR; else { tlp_pci_check_slaved(psc, TULIP_PCI_SHAREDINTR, TULIP_PCI_SLAVEINTR); if (psc->sc_master == NULL) psc->sc_master = psc; } LIST_INSERT_HEAD(&psc->sc_master->sc_intrslaves, psc, sc_intrq); } if (psc->sc_flags & TULIP_PCI_SLAVEINTR) { printf("%s: sharing interrupt with %s\n", sc->sc_dev.dv_xname, psc->sc_master->sc_tulip.sc_dev.dv_xname); } else { /* * Map and establish our interrupt. */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); psc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, (psc->sc_flags & TULIP_PCI_SHAREDINTR) ? tlp_pci_shared_intr : tlp_intr, sc); if (psc->sc_ih == NULL) { printf("%s: unable to establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); } /* * Finish off the attach. */ tlp_attach(sc, enaddr); } int tlp_pci_shared_intr(arg) void *arg; { struct tulip_pci_softc *master = arg, *slave; int rv = 0; for (slave = LIST_FIRST(&master->sc_intrslaves); slave != NULL; slave = LIST_NEXT(slave, sc_intrq)) rv |= tlp_intr(&slave->sc_tulip); return (rv); } void tlp_pci_dec_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * This isn't really a quirk-gathering device, really. We * just want to get the spiffy DEC board name from the SROM. */ strcpy(sc->sc_name, "DEC "); if (memcmp(&sc->sc_srom[29], "DE500", 5) == 0 || memcmp(&sc->sc_srom[29], "DE450", 5) == 0) memcpy(&sc->sc_name[4], &sc->sc_srom[29], 8); } void tlp_pci_znyx_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; u_int16_t id = 0; /* * If we have a slaved ROM, just copy the bits from the master. * This is in case we fail the ROM ID check (older boards) and * need to fall back on Ethernet address model checking; that * will fail for slave chips. */ if (psc->sc_flags & TULIP_PCI_SLAVEROM) { strcpy(sc->sc_name, psc->sc_master->sc_tulip.sc_name); sc->sc_mediasw = psc->sc_master->sc_tulip.sc_mediasw; psc->sc_flags |= psc->sc_master->sc_flags & TULIP_PCI_SHAREDINTR; return; } if (sc->sc_srom[32] == 0x4a && sc->sc_srom[33] == 0x52) { id = sc->sc_srom[37] | (sc->sc_srom[36] << 8); switch (id) { zx312: case 0x0602: /* ZX312 */ strcpy(sc->sc_name, "ZNYX ZX312"); return; case 0x0622: /* ZX312T */ strcpy(sc->sc_name, "ZNYX ZX312T"); sc->sc_mediasw = &tlp_21040_tp_mediasw; return; zx314_inta: case 0x0701: /* ZX314 INTA */ psc->sc_flags |= TULIP_PCI_SHAREDINTR; /* FALLTHROUGH */ case 0x0711: /* ZX314 */ strcpy(sc->sc_name, "ZNYX ZX314"); psc->sc_flags |= TULIP_PCI_SHAREDROM; sc->sc_mediasw = &tlp_21040_tp_mediasw; return; zx315_inta: case 0x0801: /* ZX315 INTA */ psc->sc_flags |= TULIP_PCI_SHAREDINTR; /* FALLTHROUGH */ case 0x0811: /* ZX315 */ strcpy(sc->sc_name, "ZNYX ZX315"); psc->sc_flags |= TULIP_PCI_SHAREDROM; return; default: id = 0; } } /* * Deal with boards that have broken ROMs. */ if (id == 0) { if ((enaddr[3] & ~3) == 0xf0 && (enaddr[5] & 3) == 0x00) goto zx314_inta; if ((enaddr[3] & ~3) == 0xf4 && (enaddr[5] & 1) == 0x00) goto zx315_inta; if ((enaddr[3] & ~3) == 0xec) goto zx312; } strcpy(sc->sc_name, "ZNYX ZX31x"); } void tlp_pci_smc_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; u_int16_t id1, id2, ei; int auibnc = 0, utp = 0; char *cp; id1 = sc->sc_srom[0x60] | (sc->sc_srom[0x61] << 8); id2 = sc->sc_srom[0x62] | (sc->sc_srom[0x63] << 8); ei = sc->sc_srom[0x66] | (sc->sc_srom[0x67] << 8); strcpy(sc->sc_name, "SMC 8432"); cp = &sc->sc_name[8]; if ((id1 & 1) == 0) { *cp++ = 'B'; auibnc = 1; } if ((id1 & 0xff) > 0x32) { *cp++ = 'T'; utp = 1; } if ((id1 & 0x4000) == 0) { *cp++ = 'A'; auibnc = 1; } if (id2 == 0x15) { sc->sc_name[7] = '4'; *cp++ = '-'; *cp++ = 'C'; *cp++ = 'H'; *cp++ = ei ? '2' : '1'; } *cp = '\0'; if (utp != 0 && auibnc == 0) sc->sc_mediasw = &tlp_21040_tp_mediasw; else if (utp == 0 && auibnc != 0) sc->sc_mediasw = &tlp_21040_auibnc_mediasw; } void tlp_pci_cogent_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { strcpy(psc->sc_tulip.sc_name, "Cogent multi-port"); psc->sc_flags |= TULIP_PCI_SHAREDINTR|TULIP_PCI_SHAREDROM; } void tlp_pci_accton_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { strcpy(psc->sc_tulip.sc_name, "ACCTON EN1203"); } void tlp_pci_asante_21140_reset __P((struct tulip_softc *)); void tlp_pci_asante_21140_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * Some Asante boards don't use the ISV SROM format. For * those that don't, we initialize the GPIO direction bits, * and provide our own reset hook, which resets the MII. * * All of these boards use SIO-attached-MII media. */ if (sc->sc_mediasw == &tlp_2114x_isv_mediasw) return; strcpy(sc->sc_name, "Asante"); sc->sc_gp_dir = 0xbf; sc->sc_reset = tlp_pci_asante_21140_reset; sc->sc_mediasw = &tlp_sio_mii_mediasw; } void tlp_pci_asante_21140_reset(sc) struct tulip_softc *sc; { TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); TULIP_WRITE(sc, CSR_GPP, 0x8); delay(100); TULIP_WRITE(sc, CSR_GPP, 0); }