/* $NetBSD: if_le.c,v 1.35 1995/07/27 04:39:05 mycroft Exp $ */ /*- * Copyright (c) 1995 Charles M. Hannum. All rights reserved. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell and Rick Macklem. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_le.c 8.2 (Berkeley) 11/16/93 */ #include "bpfilter.h" #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include "isa.h" #include "pci.h" #if NISA > 0 #include #include #include #include #endif #if NPCI > 0 #include #include #endif #include #include #include char *card_type[] = {"unknown", "BICC Isolan", "NE2100", "DEPCA", "PCnet-ISA", "PCnet-PCI"}; #define LE_SOFTC(unit) lecd.cd_devs[unit] #define LE_DELAY(x) delay(x) int leprobe __P((struct device *, void *, void *)); int depca_probe __P((struct le_softc *, struct isa_attach_args *)); int ne2100_probe __P((struct le_softc *, struct isa_attach_args *)); int bicc_probe __P((struct le_softc *, struct isa_attach_args *)); int lance_probe __P((struct le_softc *)); void leattach __P((struct device *, struct device *, void *)); int leintr __P((void *)); int leintredge __P((void *)); struct cfdriver lecd = { NULL, "le", leprobe, leattach, DV_IFNET, sizeof(struct le_softc) }; integrate void lewrcsr(sc, port, val) struct le_softc *sc; u_int16_t port, val; { outw(sc->sc_rap, port); outw(sc->sc_rdp, val); } integrate u_int16_t lerdcsr(sc, port) struct le_softc *sc; u_int16_t port; { u_int16_t val; outw(sc->sc_rap, port); val = inw(sc->sc_rdp); return (val); } int leprobe(parent, match, aux) struct device *parent; void *match, *aux; { struct le_softc *sc = match; extern struct cfdriver isacd, pcicd; #if NISA > 0 if (parent->dv_cfdata->cf_driver == &isacd) { struct isa_attach_args *ia = aux; if (bicc_probe(sc, ia)) return (1); if (ne2100_probe(sc, ia)) return (1); if (depca_probe(sc, ia)) return (1); } #endif #if NPCI > 0 if (parent->dv_cfdata->cf_driver == &pcicd) { struct pci_attach_args *pa = aux; if (pa->pa_id == 0x20001022) return (1); } #endif return (0); } #if NISA > 0 int depca_probe(sc, ia) struct le_softc *sc; struct isa_attach_args *ia; { int iobase = ia->ia_iobase, port; u_long sum, rom_sum; u_char x; int i; sc->sc_rap = iobase + DEPCA_RAP; sc->sc_rdp = iobase + DEPCA_RDP; sc->sc_card = DEPCA; if (lance_probe(sc) == 0) return 0; outb(iobase + DEPCA_CSR, DEPCA_CSR_DUM); /* * Extract the physical MAC address from the ROM. * * The address PROM is 32 bytes wide, and we access it through * a single I/O port. On each read, it rotates to the next * position. We find the ethernet address by looking for a * particular sequence of bytes (0xff, 0x00, 0x55, 0xaa, 0xff, * 0x00, 0x55, 0xaa), and then reading the next 8 bytes (the * ethernet address and a checksum). * * It appears that the PROM can be at one of two locations, so * we just try both. */ port = iobase + DEPCA_ADP; for (i = 0; i < 32; i++) if (inb(port) == 0xff && inb(port) == 0x00 && inb(port) == 0x55 && inb(port) == 0xaa && inb(port) == 0xff && inb(port) == 0x00 && inb(port) == 0x55 && inb(port) == 0xaa) goto found; port = iobase + DEPCA_ADP + 1; for (i = 0; i < 32; i++) if (inb(port) == 0xff && inb(port) == 0x00 && inb(port) == 0x55 && inb(port) == 0xaa && inb(port) == 0xff && inb(port) == 0x00 && inb(port) == 0x55 && inb(port) == 0xaa) goto found; printf("%s: address not found\n", sc->sc_dev.dv_xname); return 0; found: for (i = 0; i < sizeof(sc->sc_arpcom.ac_enaddr); i++) sc->sc_arpcom.ac_enaddr[i] = inb(port); #if 0 sum = (sc->sc_arpcom.ac_enaddr[0] << 2) + (sc->sc_arpcom.ac_enaddr[1] << 10) + (sc->sc_arpcom.ac_enaddr[2] << 1) + (sc->sc_arpcom.ac_enaddr[3] << 9) + (sc->sc_arpcom.ac_enaddr[4] << 0) + (sc->sc_arpcom.ac_enaddr[5] << 8); sum = (sum & 0xffff) + (sum >> 16); sum = (sum & 0xffff) + (sum >> 16); rom_sum = inb(port); rom_sum |= inb(port) << 8; if (sum != rom_sum) { printf("%s: checksum mismatch; calculated %04x != read %04x", sc->sc_dev.dv_xname, sum, rom_sum); return 0; } #endif outb(iobase + DEPCA_CSR, DEPCA_CSR_NORMAL); ia->ia_iosize = 16; ia->ia_drq = DRQUNK; return 1; } int ne2100_probe(sc, ia) struct le_softc *sc; struct isa_attach_args *ia; { int iobase = ia->ia_iobase; int i; sc->sc_rap = iobase + NE2100_RAP; sc->sc_rdp = iobase + NE2100_RDP; sc->sc_card = NE2100; if (lance_probe(sc) == 0) return 0; /* * Extract the physical MAC address from the ROM. */ for (i = 0; i < sizeof(sc->sc_arpcom.ac_enaddr); i++) sc->sc_arpcom.ac_enaddr[i] = inb(iobase + i); ia->ia_iosize = 24; return 1; } int bicc_probe(sc, ia) struct le_softc *sc; struct isa_attach_args *ia; { int iobase = ia->ia_iobase; int i; sc->sc_rap = iobase + BICC_RAP; sc->sc_rdp = iobase + BICC_RDP; sc->sc_card = BICC; if (lance_probe(sc) == 0) return 0; /* * Extract the physical MAC address from the ROM. */ for (i = 0; i < sizeof(sc->sc_arpcom.ac_enaddr); i++) sc->sc_arpcom.ac_enaddr[i] = inb(iobase + i * 2); ia->ia_iosize = 16; return 1; } /* * Determine which chip is present on the card. */ int lance_probe(sc) struct le_softc *sc; { /* Stop the LANCE chip and put it in a known state. */ lewrcsr(sc, LE_CSR0, LE_C0_STOP); LE_DELAY(100); if (lerdcsr(sc, LE_CSR0) != LE_C0_STOP) return 0; lewrcsr(sc, LE_CSR3, sc->sc_conf3); return 1; } #endif void leattach(parent, self, aux) struct device *parent, *self; void *aux; { struct le_softc *sc = (void *)self; extern struct cfdriver isacd, pcicd; #if NPCI > 0 if (parent->dv_cfdata->cf_driver == &pcicd) { struct pci_attach_args *pa = aux; int iobase; if (pa->pa_id == 0x20001022) { int i; if (pci_map_io(pa->pa_tag, 0x10, &iobase)) return; sc->sc_rap = iobase + NE2100_RAP; sc->sc_rdp = iobase + NE2100_RDP; sc->sc_card = PCnet_PCI; /* * Extract the physical MAC address from the ROM. */ for (i = 0; i < sizeof(sc->sc_arpcom.ac_enaddr); i++) sc->sc_arpcom.ac_enaddr[i] = inb(iobase + i); } } #endif #if NISA > 0 if (sc->sc_card == DEPCA) { struct isa_attach_args *ia = aux; u_char *mem, val; int i; mem = sc->sc_mem = ISA_HOLE_VADDR(ia->ia_maddr); val = 0xff; for (;;) { for (i = 0; i < ia->ia_msize; i++) mem[i] = val; for (i = 0; i < ia->ia_msize; i++) if (mem[i] != val) { printf("%s: failed to clear memory\n", sc->sc_dev.dv_xname); return; } if (val == 0x00) break; val -= 0x55; } sc->sc_conf3 = LE_C3_ACON; sc->sc_addr = 0; sc->sc_memsize = ia->ia_msize; } else #endif { sc->sc_mem = malloc(16384, M_DEVBUF, M_NOWAIT); if (sc->sc_mem == 0) { printf("%s: couldn't allocate memory for card\n", sc->sc_dev.dv_xname); return; } sc->sc_conf3 = 0; sc->sc_addr = kvtop(sc->sc_mem); sc->sc_memsize = 16384; } sc->sc_copytodesc = copytobuf_contig; sc->sc_copyfromdesc = copyfrombuf_contig; sc->sc_copytobuf = copytobuf_contig; sc->sc_copyfrombuf = copyfrombuf_contig; sc->sc_zerobuf = zerobuf_contig; sc->sc_arpcom.ac_if.if_name = lecd.cd_name; leconfig(sc); printf("%s: type %s\n", sc->sc_dev.dv_xname, card_type[sc->sc_card]); #if NISA > 0 if (parent->dv_cfdata->cf_driver == &isacd) { struct isa_attach_args *ia = aux; if (ia->ia_drq != DRQUNK) isa_dmacascade(ia->ia_drq); sc->sc_ih = isa_intr_establish(ia->ia_irq, ISA_IST_EDGE, ISA_IPL_NET, leintredge, sc); } #endif #if NPCI > 0 if (parent->dv_cfdata->cf_driver == &pcicd) { struct pci_attach_args *pa = aux; pci_conf_write(pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); sc->sc_ih = pci_map_int(pa->pa_tag, PCI_IPL_NET, leintr, sc); } #endif } #if NISA > 0 /* * Controller interrupt. */ leintredge(arg) void *arg; { if (leintr(arg) == 0) return (0); for (;;) if (leintr(arg) == 0) return (1); } #endif /* * Routines for accessing the transmit and receive buffers. */ void copytobuf_contig(sc, from, boff, len) struct le_softc *sc; caddr_t from; int boff, len; { volatile caddr_t buf = sc->sc_mem; /* * Just call bcopy() to do the work. */ bcopy(from, buf + boff, len); } void copyfrombuf_contig(sc, to, boff, len) struct le_softc *sc; caddr_t to; int boff, len; { volatile caddr_t buf = sc->sc_mem; /* * Just call bcopy() to do the work. */ bcopy(buf + boff, to, len); } void zerobuf_contig(sc, boff, len) struct le_softc *sc; int boff, len; { volatile caddr_t buf = sc->sc_mem; /* * Just call bzero() to do the work. */ bzero(buf + boff, len); } #include