/* $NetBSD: fd.c,v 1.24 1999/02/08 16:33:17 bouyer Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "locators.h" #define infdc (IODEVbase->io_fdc) #ifdef DEBUG #define DPRINTF(x) if (fddebug) printf x int fddebug = 0; #else #define DPRINTF(x) #endif #define FDUNIT(dev) (minor(dev) / 8) #define FDTYPE(dev) (minor(dev) % 8) #define b_cylin b_resid enum fdc_state { DEVIDLE = 0, MOTORWAIT, DOSEEK, SEEKWAIT, SEEKTIMEDOUT, SEEKCOMPLETE, DOIO, IOCOMPLETE, IOTIMEDOUT, DORESET, RESETCOMPLETE, RESETTIMEDOUT, DORECAL, RECALWAIT, RECALTIMEDOUT, RECALCOMPLETE, DOCOPY, DOIOHALF, COPYCOMPLETE, }; /* software state, per controller */ struct fdc_softc { struct device sc_dev; /* boilerplate */ u_char sc_flags; struct fd_softc *sc_fd[4]; /* pointers to children */ TAILQ_HEAD(drivehead, fd_softc) sc_drives; enum fdc_state sc_state; int sc_errors; /* number of retries so far */ u_char sc_status[7]; /* copy of registers */ } fdc_softc; bdev_decl(fd); cdev_decl(fd); int fdcintr __P((void)); void fdcreset __P((void)); /* controller driver configuration */ int fdcprobe __P((struct device *, struct cfdata *, void *)); void fdcattach __P((struct device *, struct device *, void *)); int fdprint __P((void *, const char *)); struct cfattach fdc_ca = { sizeof(struct fdc_softc), fdcprobe, fdcattach }; extern struct cfdriver fdc_cd; /* * Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how * we tell them apart. */ struct fd_type { int sectrac; /* sectors per track */ int heads; /* number of heads */ int seccyl; /* sectors per cylinder */ int secsize; /* size code for sectors */ int datalen; /* data len when secsize = 0 */ int steprate; /* step rate and head unload time */ int gap1; /* gap len between sectors */ int gap2; /* formatting gap */ int tracks; /* total num of tracks */ int size; /* size of disk in sectors */ int step; /* steps per cylinder */ int rate; /* transfer speed code */ char *name; }; /* The order of entries in the following table is important -- BEWARE! */ struct fd_type fd_types[] = { { 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS, "1.2MB/[1024bytes/sector]" }, /* 1.2 MB japanese format */ { 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" }, /* 1.44MB diskette */ { 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" }, /* 1.2 MB AT-diskettes */ { 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" }, /* 360kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" }, /* 360kB PC diskettes */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */ { 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" }, /* 720kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */ }; /* software state, per disk (with up to 4 disks per ctlr) */ struct fd_softc { struct device sc_dev; struct disk sc_dk; struct fd_type *sc_deftype; /* default type descriptor */ struct fd_type *sc_type; /* current type descriptor */ daddr_t sc_blkno; /* starting block number */ int sc_bcount; /* byte count left */ int sc_skip; /* bytes already transferred */ int sc_nblks; /* number of blocks currently tranferring */ int sc_nbytes; /* number of bytes currently tranferring */ int sc_drive; /* physical unit number */ int sc_flags; #define FD_BOPEN 0x01 /* it's open */ #define FD_COPEN 0x02 /* it's open */ #define FD_OPEN (FD_BOPEN|FD_COPEN) /* it's open */ #define FD_MOTOR 0x04 /* motor should be on */ #define FD_MOTOR_WAIT 0x08 /* motor coming up */ #define FD_ALIVE 0x10 /* alive */ int sc_cylin; /* where we think the head is */ TAILQ_ENTRY(fd_softc) sc_drivechain; int sc_ops; /* I/O ops since last switch */ struct buf sc_q; /* head of buf chain */ u_char *sc_copybuf; /* for secsize >=3 */ u_char sc_part; /* for secsize >=3 */ #define SEC_P10 0x02 /* first part */ #define SEC_P01 0x01 /* second part */ #define SEC_P11 0x03 /* both part */ }; /* floppy driver configuration */ int fdprobe __P((struct device *, struct cfdata *, void *)); void fdattach __P((struct device *, struct device *, void *)); struct cfattach fd_ca = { sizeof(struct fd_softc), fdprobe, fdattach }; extern struct cfdriver fd_cd; void fdstrategy __P((struct buf *)); void fdstart __P((struct fd_softc *fd)); struct dkdriver fddkdriver = { fdstrategy }; void fd_set_motor __P((struct fdc_softc *fdc, int reset)); void fd_motor_off __P((void *arg)); void fd_motor_on __P((void *arg)); int fdcresult __P((struct fdc_softc *fdc)); int out_fdc __P((u_char x)); void fdcstart __P((struct fdc_softc *fdc)); void fdcstatus __P((struct device *dv, int n, char *s)); void fdctimeout __P((void *arg)); void fdcpseudointr __P((void *arg)); void fdcretry __P((struct fdc_softc *fdc)); void fdfinish __P((struct fd_softc *fd, struct buf *bp)); __inline struct fd_type *fd_dev_to_type __P((struct fd_softc *, dev_t)); static int fdcpoll __P((struct fdc_softc *)); static int fdgetdisklabel __P((struct fd_softc *, dev_t)); static void fd_do_eject __P((int)); void fd_mountroot_hook __P((struct device *)); /* dma transfer routines */ __inline static void fdc_dmastart __P((int, caddr_t, vsize_t)); void fdcdmaintr __P((void)); void fdcdmaerrintr __P((void)); #define FDDI_EN 0x02 #define FDCI_EN 0x04 #define FDD_INT 0x40 #define FDC_INT 0x80 #define DMA_BRD 0x01 #define DMA_BWR 0x02 #define DRQ 0 static u_char *fdc_dmabuf; __inline static void fdc_dmastart(read, addr, count) int read; caddr_t addr; vsize_t count; { volatile struct dmac *dmac = &IODEVbase->io_dma[DRQ]; DPRINTF(("fdc_dmastart: (%s, addr = %p, count = %d\n", read ? "read" : "write", (caddr_t) addr, count)); if (dmarangecheck((vaddr_t)addr, count)) { dma_bouncebytes[DRQ] = count; dma_dataaddr[DRQ] = addr; if (!(read)) { bcopy(addr, dma_bouncebuf[DRQ], count); dma_bounced[DRQ] = DMA_BWR; } else { dma_bounced[DRQ] = DMA_BRD; } addr = dma_bouncebuf[DRQ]; } else { dma_bounced[DRQ] = 0; } dmac->csr = 0xff; dmac->ocr = read ? 0xb2 : 0x32; dmac->mtc = (unsigned short)count; asm("nop"); asm("nop"); dmac->mar = (unsigned long)kvtop(addr); #if defined(M68040) || defined(M68060) /* * Push back dirty cache lines */ if (mmutype == MMU_68040) DCFP(kvtop(addr)); #endif dmac->ccr = 0x88; } void fdcdmaintr() { volatile struct dmac *dmac = &IODEVbase->io_dma[DRQ]; dmac->csr = 0xff; PCIA(); /* XXX? by oki */ if (dma_bounced[DRQ] == DMA_BRD) { bcopy(dma_bouncebuf[DRQ], dma_dataaddr[DRQ], dma_bouncebytes[DRQ]); } dma_bounced[DRQ] = 0; } void fdcdmaerrintr() { volatile struct dmac *dmac = &IODEVbase->io_dma[DRQ]; printf("fdcdmaerrintr: csr=%x, cer=%x\n", dmac->csr, dmac->cer); dmac->csr = 0xff; } /* ARGSUSED */ int fdcprobe(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { if (strcmp("fdc", aux) != 0) return 0; return 1; } /* * Arguments passed between fdcattach and fdprobe. */ struct fdc_attach_args { int fa_drive; struct fd_type *fa_deftype; }; /* * Print the location of a disk drive (called just before attaching the * the drive). If `fdc' is not NULL, the drive was found but was not * in the system config file; print the drive name as well. * Return QUIET (config_find ignores this if the device was configured) to * avoid printing `fdN not configured' messages. */ int fdprint(aux, fdc) void *aux; const char *fdc; { register struct fdc_attach_args *fa = aux; if (!fdc) printf(" drive %d", fa->fa_drive); return QUIET; } void fdcattach(parent, self, aux) struct device *parent, *self; void *aux; { struct fdc_softc *fdc = (void *)self; volatile struct dmac *dmac = &IODEVbase->io_dma[DRQ]; struct fdc_attach_args fa; fdc->sc_state = DEVIDLE; TAILQ_INIT(&fdc->sc_drives); fdc->sc_flags = 0; /* reset */ ioctlr.intr &= (~FDDI_EN); ioctlr.intr |= FDCI_EN; fdcresult(fdc); fdcreset(); /* Initialize DMAC channel */ dmac->dcr = 0x80; dmac->scr = 0x04; dmac->csr = 0xff; dmac->cpr = 0x00; dmac->dar = (unsigned long) kvtop((void *)&infdc.data); dmac->mfc = 0x05; dmac->dfc = 0x05; dmac->bfc = 0x05; dmac->niv = 0x64; dmac->eiv = 0x65; printf(": uPD72065 FDC\n"); out_fdc(NE7CMD_SPECIFY);/* specify command */ out_fdc(0xd0); out_fdc(0x10); fdc_dmabuf = (u_char *)malloc(NBPG, M_DEVBUF, M_WAITOK); if (fdc_dmabuf == 0) printf("fdcattach: WARNING!! malloc() failed.\n"); dma_bouncebuf[DRQ] = fdc_dmabuf; /* physical limit: four drives per controller. */ for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) { (void)config_found(self, (void *)&fa, fdprint); } } void fdcreset() { infdc.stat = FDC_RESET; } static int fdcpoll(fdc) struct fdc_softc *fdc; { int i = 25000; while (--i > 0) { if ((ioctlr.intr & 0x80)) { out_fdc(NE7CMD_SENSEI); fdcresult(fdc); break; } DELAY(100); } return i; } int fdprobe(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct fdc_softc *fdc = (void *)parent; struct fd_type *type; int drive = cf->cf_unit; int n; int found = 0; int i; if (cf->cf_loc[FDCCF_UNIT] != FDCCF_UNIT_DEFAULT && cf->cf_loc[FDCCF_UNIT] != drive) return 0; type = &fd_types[0]; /* XXX 1.2MB */ ioctlr.intr &= (~FDCI_EN); /* select drive and turn on motor */ infdc.select = 0x80 | (type->rate << 4)| drive; fdc_force_ready(FDCRDY); fdcpoll(fdc); retry: out_fdc(NE7CMD_RECAL); out_fdc(drive); i = 25000; while (--i > 0) { if ((ioctlr.intr & 0x80)) { out_fdc(NE7CMD_SENSEI); n = fdcresult(fdc); break; } DELAY(100); } #ifdef FDDEBUG { int i; printf("fdprobe: status"); for (i = 0; i < n; i++) printf(" %x", fdc->sc_status[i]); printf("\n"); } #endif if (n == 2) { if ((fdc->sc_status[0] & 0xf0) == 0x20) { found = 1; } else if ((fdc->sc_status[0] & 0xf0) == 0xc0) { goto retry; } } /* turn off motor */ infdc.select = (type->rate << 4)| drive; fdc_force_ready(FDCSTBY); if (!found) { ioctlr.intr |= FDCI_EN; return 0; } return 1; } void fdattach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct fdc_softc *fdc = (void *)parent; register struct fd_softc *fd = (void *)self; struct fdc_attach_args *fa = aux; int drive = fa->fa_drive; struct fd_type *type = &fd_types[0]; /* XXX 1.2MB */ fd->sc_flags = 0; ioctlr.intr |= FDCI_EN; if (type) printf(": %s %d cyl, %d head, %d sec\n", type->name, type->tracks, type->heads, type->sectrac); else printf(": density unknown\n"); fd->sc_cylin = -1; fd->sc_drive = drive; fd->sc_deftype = type; fdc->sc_fd[drive] = fd; fd->sc_copybuf = (u_char *)malloc(NBPG, M_DEVBUF, M_WAITOK); if (fd->sc_copybuf == 0) printf("fdprobe: WARNING!! malloc() failed.\n"); fd->sc_flags |= FD_ALIVE; /* * Initialize and attach the disk structure. */ fd->sc_dk.dk_name = fd->sc_dev.dv_xname; fd->sc_dk.dk_driver = &fddkdriver; disk_attach(&fd->sc_dk); /* * Establish a mountroot_hook anyway in case we booted * with RB_ASKNAME and get selected as the boot device. */ mountroothook_establish(fd_mountroot_hook, &fd->sc_dev); } __inline struct fd_type * fd_dev_to_type(fd, dev) struct fd_softc *fd; dev_t dev; { int type = FDTYPE(dev); if (type > (sizeof(fd_types) / sizeof(fd_types[0]))) return NULL; return &fd_types[type]; } void fdstrategy(bp) register struct buf *bp; /* IO operation to perform */ { struct fd_softc *fd; int unit = FDUNIT(bp->b_dev); int sz; int s; if (unit >= fd_cd.cd_ndevs || (fd = fd_cd.cd_devs[unit]) == 0 || bp->b_blkno < 0 || (bp->b_bcount % FDC_BSIZE) != 0) { #ifdef FDDEBUG printf("fdstrategy: unit=%d, blkno=%d, bcount=%d\n", unit, bp->b_blkno, bp->b_bcount); #endif bp->b_error = EINVAL; goto bad; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; sz = howmany(bp->b_bcount, FDC_BSIZE); if (bp->b_blkno + sz > (fd->sc_type->size << (fd->sc_type->secsize - 2))) { sz = (fd->sc_type->size << (fd->sc_type->secsize - 2)) - bp->b_blkno; if (sz == 0) { /* If exactly at end of disk, return EOF. */ bp->b_resid = bp->b_bcount; goto done; } if (sz < 0) { /* If past end of disk, return EINVAL. */ bp->b_error = EINVAL; goto bad; } /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } bp->b_cylin = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE) / (fd->sc_type->seccyl * (1 << (fd->sc_type->secsize - 2))); DPRINTF(("fdstrategy: %s b_blkno %d b_bcount %ld cylin %ld\n", bp->b_flags & B_READ ? "read" : "write", bp->b_blkno, bp->b_bcount, bp->b_cylin)); /* Queue transfer on drive, activate drive and controller if idle. */ s = splbio(); disksort(&fd->sc_q, bp); untimeout(fd_motor_off, fd); /* a good idea */ if (!fd->sc_q.b_active) fdstart(fd); #ifdef DIAGNOSTIC else { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; if (fdc->sc_state == DEVIDLE) { printf("fdstrategy: controller inactive\n"); fdcstart(fdc); } } #endif splx(s); return; bad: bp->b_flags |= B_ERROR; done: /* Toss transfer; we're done early. */ biodone(bp); } void fdstart(fd) struct fd_softc *fd; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int active = fdc->sc_drives.tqh_first != 0; /* Link into controller queue. */ fd->sc_q.b_active = 1; TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); /* If controller not already active, start it. */ if (!active) fdcstart(fdc); } void fdfinish(fd, bp) struct fd_softc *fd; struct buf *bp; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; /* * Move this drive to the end of the queue to give others a `fair' * chance. We only force a switch if N operations are completed while * another drive is waiting to be serviced, since there is a long motor * startup delay whenever we switch. */ if (fd->sc_drivechain.tqe_next && ++fd->sc_ops >= 8) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); if (bp->b_actf) { TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); } else fd->sc_q.b_active = 0; } bp->b_resid = fd->sc_bcount; fd->sc_skip = 0; fd->sc_q.b_actf = bp->b_actf; biodone(bp); /* turn off motor 5s from now */ timeout(fd_motor_off, fd, 5 * hz); fdc->sc_state = DEVIDLE; } int fdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio)); } int fdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio)); } void fd_set_motor(fdc, reset) struct fdc_softc *fdc; int reset; { struct fd_softc *fd; int n; DPRINTF(("fd_set_motor:\n")); for (n = 0; n < 4; n++) if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) { infdc.select = 0x80 | (fd->sc_type->rate << 4)| n; } } void fd_motor_off(arg) void *arg; { struct fd_softc *fd = arg; int s; DPRINTF(("fd_motor_off:\n")); s = splbio(); fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); infdc.select = (fd->sc_type->rate << 4) | fd->sc_drive; #if 0 fd_set_motor((struct fdc_softc *)&fdc_softc[0], 0); /* XXX */ #endif splx(s); } void fd_motor_on(arg) void *arg; { struct fd_softc *fd = arg; struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int s; DPRINTF(("fd_motor_on:\n")); s = splbio(); fd->sc_flags &= ~FD_MOTOR_WAIT; if ((fdc->sc_drives.tqh_first == fd) && (fdc->sc_state == MOTORWAIT)) (void) fdcintr(); splx(s); } int fdcresult(fdc) struct fdc_softc *fdc; { u_char i; int j = 100000, n = 0; for (; j; j--) { i = infdc.stat & (NE7_DIO | NE7_RQM | NE7_CB); if (i == NE7_RQM) return n; if (i == (NE7_DIO | NE7_RQM | NE7_CB)) { if (n >= sizeof(fdc->sc_status)) { log(LOG_ERR, "fdcresult: overrun\n"); return -1; } fdc->sc_status[n++] = infdc.data; } } log(LOG_ERR, "fdcresult: timeout\n"); return -1; } int out_fdc(x) u_char x; { int i = 100000; while ((infdc.stat & NE7_DIO) && i-- > 0); if (i <= 0) return -1; while ((infdc.stat & NE7_RQM) == 0 && i-- > 0); if (i <= 0) return -1; infdc.data = x; return 0; } int fdopen(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { int unit; struct fd_softc *fd; struct fd_type *type; unit = FDUNIT(dev); if (unit >= fd_cd.cd_ndevs) return ENXIO; fd = fd_cd.cd_devs[unit]; if (fd == 0) return ENXIO; type = fd_dev_to_type(fd, dev); if (type == NULL) return ENXIO; if ((fd->sc_flags & FD_OPEN) != 0 && fd->sc_type != type) return EBUSY; if ((fd->sc_flags & FD_OPEN) == 0) { /* Lock eject button */ infdc.drvstat = 0x40 | ( 1 << unit); infdc.drvstat = 0x40; } fd->sc_type = type; fd->sc_cylin = -1; switch (mode) { case S_IFCHR: fd->sc_flags |= FD_COPEN; break; case S_IFBLK: fd->sc_flags |= FD_BOPEN; break; } fdgetdisklabel(fd, dev); return 0; } int fdclose(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { int unit = FDUNIT(dev); struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; DPRINTF(("fdclose %d\n", unit)); switch (mode) { case S_IFCHR: fd->sc_flags &= ~FD_COPEN; break; case S_IFBLK: fd->sc_flags &= ~FD_BOPEN; break; } if ((fd->sc_flags & FD_OPEN) == 0) { infdc.drvstat = ( 1 << unit); infdc.drvstat = 0x00; } return 0; } void fdcstart(fdc) struct fdc_softc *fdc; { #ifdef DIAGNOSTIC /* only got here if controller's drive queue was inactive; should be in idle state */ if (fdc->sc_state != DEVIDLE) { printf("fdcstart: not idle\n"); return; } #endif (void) fdcintr(); } void fdcstatus(dv, n, s) struct device *dv; int n; char *s; { struct fdc_softc *fdc = (void *)dv->dv_parent; char bits[64]; if (n == 0) { out_fdc(NE7CMD_SENSEI); (void) fdcresult(fdc); n = 2; } printf("%s: %s: state %d", dv->dv_xname, s, fdc->sc_state); switch (n) { case 0: printf("\n"); break; case 2: printf(" (st0 %s cyl %d)\n", bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS, bits, sizeof(bits)), fdc->sc_status[1]); break; case 7: printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS, bits, sizeof(bits))); printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1], NE7_ST1BITS, bits, sizeof(bits))); printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2], NE7_ST2BITS, bits, sizeof(bits))); printf(" cyl %d head %d sec %d)\n", fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); break; #ifdef DIAGNOSTIC default: printf(" fdcstatus: weird size: %d\n", n); break; #endif } } void fdctimeout(arg) void *arg; { struct fdc_softc *fdc = arg; struct fd_softc *fd = fdc->sc_drives.tqh_first; int s; s = splbio(); fdcstatus(&fd->sc_dev, 0, "timeout"); if (fd->sc_q.b_actf) fdc->sc_state++; else fdc->sc_state = DEVIDLE; (void) fdcintr(); splx(s); } void fdcpseudointr(arg) void *arg; { int s; /* just ensure it has the right spl */ s = splbio(); (void) fdcintr(); splx(s); } int fdcintr() { struct fdc_softc *fdc = (void *)((struct fd_softc*)fd_cd.cd_devs[0])->sc_dev.dv_parent; /* XXX */ #define st0 fdc->sc_status[0] #define cyl fdc->sc_status[1] struct fd_softc *fd; struct buf *bp; int read, head, sec, pos, i, sectrac, nblks; int tmp; struct fd_type *type; loop: fd = fdc->sc_drives.tqh_first; if (fd == NULL) { DPRINTF(("fdcintr: set DEVIDLE\n")); if (fdc->sc_state == DEVIDLE) { if ((ioctlr.intr & 0x80)) { out_fdc(NE7CMD_SENSEI); if ((tmp = fdcresult(fdc)) != 2 || (st0 & 0xf8) != 0x20) { goto loop; } } } /* no drives waiting; end */ fdc->sc_state = DEVIDLE; return 1; } /* Is there a transfer to this drive? If not, deactivate drive. */ bp = fd->sc_q.b_actf; if (bp == NULL) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); fd->sc_q.b_active = 0; goto loop; } switch (fdc->sc_state) { case DEVIDLE: DPRINTF(("fdcintr: in DEVIDLE\n")); fdc->sc_errors = 0; fd->sc_skip = 0; fd->sc_bcount = bp->b_bcount; fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE); untimeout(fd_motor_off, fd); if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) { fdc->sc_state = MOTORWAIT; return 1; } if ((fd->sc_flags & FD_MOTOR) == 0) { /* Turn on the motor */ /* being careful about other drives. */ for (i = 0; i < 4; i++) { struct fd_softc *ofd = fdc->sc_fd[i]; if (ofd && ofd->sc_flags & FD_MOTOR) { untimeout(fd_motor_off, ofd); ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); break; } } fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT; fd_set_motor(fdc, 0); fdc->sc_state = MOTORWAIT; /* allow .5s for motor to stabilize */ timeout(fd_motor_on, fd, hz / 2); return 1; } /* Make sure the right drive is selected. */ fd_set_motor(fdc, 0); /* fall through */ case DOSEEK: doseek: DPRINTF(("fdcintr: in DOSEEK\n")); if (fd->sc_cylin == bp->b_cylin) goto doio; out_fdc(NE7CMD_SPECIFY);/* specify command */ out_fdc(0xd0); /* XXX const */ out_fdc(0x10); out_fdc(NE7CMD_SEEK); /* seek function */ out_fdc(fd->sc_drive); /* drive number */ out_fdc(bp->b_cylin * fd->sc_type->step); fd->sc_cylin = -1; fdc->sc_state = SEEKWAIT; fd->sc_dk.dk_seek++; disk_busy(&fd->sc_dk); timeout(fdctimeout, fdc, 4 * hz); return 1; case DOIO: doio: DPRINTF(("fdcintr: DOIO: ")); type = fd->sc_type; sectrac = type->sectrac; pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2))); sec = pos / (1 << (type->secsize - 2)); if (type->secsize == 2) { fd->sc_part = SEC_P11; nblks = (sectrac - sec) << (type->secsize - 2); nblks = min(nblks, fd->sc_bcount / FDC_BSIZE); DPRINTF(("nblks(0)")); } else if ((fd->sc_blkno % 2) == 0) { if (fd->sc_bcount & 0x00000200) { if (fd->sc_bcount == FDC_BSIZE) { fd->sc_part = SEC_P10; nblks = 1; DPRINTF(("nblks(1)")); } else { fd->sc_part = SEC_P11; nblks = (sectrac - sec) * 2; nblks = min(nblks, fd->sc_bcount / FDC_BSIZE - 1); DPRINTF(("nblks(2)")); } } else { fd->sc_part = SEC_P11; nblks = (sectrac - sec) << (type->secsize - 2); nblks = min(nblks, fd->sc_bcount / FDC_BSIZE); DPRINTF(("nblks(3)")); } } else { fd->sc_part = SEC_P01; nblks = 1; DPRINTF(("nblks(4)")); } nblks = min(nblks, FDC_MAXIOSIZE / FDC_BSIZE); DPRINTF((" %d\n", nblks)); fd->sc_nblks = nblks; fd->sc_nbytes = nblks * FDC_BSIZE; head = (fd->sc_blkno % (type->seccyl * (1 << (type->secsize - 2)))) / (type->sectrac * (1 << (type->secsize - 2))); #ifdef DIAGNOSTIC {int block; block = ((fd->sc_cylin * type->heads + head) * type->sectrac + sec) * (1 << (type->secsize - 2)); block += (fd->sc_part == SEC_P01) ? 1 : 0; if (block != fd->sc_blkno) { printf("C H R N: %d %d %d %d\n", fd->sc_cylin, head, sec, type->secsize); printf("fdcintr: doio: block %d != blkno %d\n", block, fd->sc_blkno); #ifdef DDB Debugger(); #endif }} #endif read = bp->b_flags & B_READ; DPRINTF(("fdcintr: %s drive %d track %d head %d sec %d nblks %d, skip %d\n", read ? "read" : "write", fd->sc_drive, fd->sc_cylin, head, sec, nblks, fd->sc_skip)); DPRINTF(("C H R N: %d %d %d %d\n", fd->sc_cylin, head, sec, type->secsize)); if (fd->sc_part != SEC_P11) goto docopy; fdc_dmastart(read, bp->b_data + fd->sc_skip, fd->sc_nbytes); if (read) out_fdc(NE7CMD_READ); /* READ */ else out_fdc(NE7CMD_WRITE); /* WRITE */ out_fdc((head << 2) | fd->sc_drive); out_fdc(bp->b_cylin); /* cylinder */ out_fdc(head); out_fdc(sec + 1); /* sector +1 */ out_fdc(type->secsize); /* sector size */ out_fdc(type->sectrac); /* sectors/track */ out_fdc(type->gap1); /* gap1 size */ out_fdc(type->datalen); /* data length */ fdc->sc_state = IOCOMPLETE; disk_busy(&fd->sc_dk); /* allow 2 seconds for operation */ timeout(fdctimeout, fdc, 2 * hz); return 1; /* will return later */ case DOCOPY: docopy: DPRINTF(("fdcintr: DOCOPY:\n")); fdc_dmastart(B_READ, fd->sc_copybuf, 1024); out_fdc(NE7CMD_READ); /* READ */ out_fdc((head << 2) | fd->sc_drive); out_fdc(bp->b_cylin); /* cylinder */ out_fdc(head); out_fdc(sec + 1); /* sector +1 */ out_fdc(type->secsize); /* sector size */ out_fdc(type->sectrac); /* sectors/track */ out_fdc(type->gap1); /* gap1 size */ out_fdc(type->datalen); /* data length */ fdc->sc_state = COPYCOMPLETE; /* allow 2 seconds for operation */ timeout(fdctimeout, fdc, 2 * hz); return 1; /* will return later */ case DOIOHALF: doiohalf: DPRINTF((" DOIOHALF:\n")); #ifdef DIAGNOSTIC type = fd->sc_type; sectrac = type->sectrac; pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2))); sec = pos / (1 << (type->secsize - 2)); head = (fd->sc_blkno % (type->seccyl * (1 << (type->secsize - 2)))) / (type->sectrac * (1 << (type->secsize - 2))); {int block; block = ((fd->sc_cylin * type->heads + head) * type->sectrac + sec) * (1 << (type->secsize - 2)); block += (fd->sc_part == SEC_P01) ? 1 : 0; if (block != fd->sc_blkno) { printf("fdcintr: block %d != blkno %d\n", block, fd->sc_blkno); #ifdef DDB Debugger(); #endif }} #endif if (read = bp->b_flags & B_READ) { bcopy(fd->sc_copybuf + (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0), bp->b_data + fd->sc_skip, FDC_BSIZE); fdc->sc_state = IOCOMPLETE; goto iocomplete2; } else { bcopy(bp->b_data + fd->sc_skip, fd->sc_copybuf + (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0), FDC_BSIZE); fdc_dmastart(read, fd->sc_copybuf, 1024); } out_fdc(NE7CMD_WRITE); /* WRITE */ out_fdc((head << 2) | fd->sc_drive); out_fdc(bp->b_cylin); /* cylinder */ out_fdc(head); out_fdc(sec + 1); /* sector +1 */ out_fdc(fd->sc_type->secsize); /* sector size */ out_fdc(sectrac); /* sectors/track */ out_fdc(fd->sc_type->gap1); /* gap1 size */ out_fdc(fd->sc_type->datalen); /* data length */ fdc->sc_state = IOCOMPLETE; /* allow 2 seconds for operation */ timeout(fdctimeout, fdc, 2 * hz); return 1; /* will return later */ case SEEKWAIT: untimeout(fdctimeout, fdc); fdc->sc_state = SEEKCOMPLETE; /* allow 1/50 second for heads to settle */ /* timeout(fdcpseudointr, fdc, hz / 50);*/ return 1; case SEEKCOMPLETE: /* Make sure seek really happened */ DPRINTF(("fdcintr: SEEKCOMPLETE: FDC status = %x\n", infdc.stat)); out_fdc(NE7CMD_SENSEI); tmp = fdcresult(fdc); if ((st0 & 0xf8) == 0xc0) { DPRINTF(("fdcintr: first seek!\n")); fdc->sc_state = DORECAL; goto loop; } else if (tmp != 2 || (st0 & 0xf8) != 0x20 || cyl != bp->b_cylin) { #ifdef FDDEBUG fdcstatus(&fd->sc_dev, 2, "seek failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = bp->b_cylin; goto doio; case IOTIMEDOUT: #if 0 isa_dmaabort(fdc->sc_drq); #endif case SEEKTIMEDOUT: case RECALTIMEDOUT: case RESETTIMEDOUT: fdcretry(fdc); goto loop; case IOCOMPLETE: /* IO DONE, post-analyze */ untimeout(fdctimeout, fdc); DPRINTF(("fdcintr: in IOCOMPLETE\n")); if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) { printf("fdcintr: resnum=%d, st0=%x\n", tmp, st0); #if 0 isa_dmaabort(fdc->sc_drq); #endif fdcstatus(&fd->sc_dev, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %d nblks %d\n", fd->sc_blkno, fd->sc_nblks); fdcretry(fdc); goto loop; } #if 0 isa_dmadone(bp->b_flags & B_READ, bp->b_data + fd->sc_skip, nblks * FDC_BSIZE, fdc->sc_drq); #endif iocomplete2: if (fdc->sc_errors) { diskerr(bp, "fd", "soft error", LOG_PRINTF, fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL); printf("\n"); fdc->sc_errors = 0; } fd->sc_blkno += fd->sc_nblks; fd->sc_skip += fd->sc_nbytes; fd->sc_bcount -= fd->sc_nbytes; DPRINTF(("fd->sc_bcount = %d\n", fd->sc_bcount)); if (fd->sc_bcount > 0) { bp->b_cylin = fd->sc_blkno / (fd->sc_type->seccyl * (1 << (fd->sc_type->secsize - 2))); goto doseek; } fdfinish(fd, bp); goto loop; case COPYCOMPLETE: /* IO DONE, post-analyze */ DPRINTF(("fdcintr: COPYCOMPLETE:")); untimeout(fdctimeout, fdc); if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) { printf("fdcintr: resnum=%d, st0=%x\n", tmp, st0); #if 0 isa_dmaabort(fdc->sc_drq); #endif fdcstatus(&fd->sc_dev, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %d nblks %d\n", fd->sc_blkno, fd->sc_nblks); fdcretry(fdc); goto loop; } goto doiohalf; case DORESET: DPRINTF(("fdcintr: in DORESET\n")); /* try a reset, keep motor on */ fd_set_motor(fdc, 1); DELAY(100); fd_set_motor(fdc, 0); fdc->sc_state = RESETCOMPLETE; timeout(fdctimeout, fdc, hz / 2); return 1; /* will return later */ case RESETCOMPLETE: DPRINTF(("fdcintr: in RESETCOMPLETE\n")); untimeout(fdctimeout, fdc); /* clear the controller output buffer */ for (i = 0; i < 4; i++) { out_fdc(NE7CMD_SENSEI); (void) fdcresult(fdc); } /* fall through */ case DORECAL: DPRINTF(("fdcintr: in DORECAL\n")); out_fdc(NE7CMD_RECAL); /* recalibrate function */ out_fdc(fd->sc_drive); fdc->sc_state = RECALWAIT; timeout(fdctimeout, fdc, 5 * hz); return 1; /* will return later */ case RECALWAIT: DPRINTF(("fdcintr: in RECALWAIT\n")); untimeout(fdctimeout, fdc); fdc->sc_state = RECALCOMPLETE; /* allow 1/30 second for heads to settle */ /* timeout(fdcpseudointr, fdc, hz / 30);*/ return 1; /* will return later */ case RECALCOMPLETE: DPRINTF(("fdcintr: in RECALCOMPLETE\n")); out_fdc(NE7CMD_SENSEI); tmp = fdcresult(fdc); if ((st0 & 0xf8) == 0xc0) { DPRINTF(("fdcintr: first seek!\n")); fdc->sc_state = DORECAL; goto loop; } else if (tmp != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) { #ifdef FDDEBUG fdcstatus(&fd->sc_dev, 2, "recalibrate failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = 0; goto doseek; case MOTORWAIT: if (fd->sc_flags & FD_MOTOR_WAIT) return 1; /* time's not up yet */ goto doseek; default: fdcstatus(&fd->sc_dev, 0, "stray interrupt"); return 1; } #ifdef DIAGNOSTIC panic("fdcintr: impossible"); #endif #undef st0 #undef cyl } void fdcretry(fdc) struct fdc_softc *fdc; { struct fd_softc *fd; struct buf *bp; char bits[64]; DPRINTF(("fdcretry:\n")); fd = fdc->sc_drives.tqh_first; bp = fd->sc_q.b_actf; switch (fdc->sc_errors) { case 0: /* try again */ fdc->sc_state = SEEKCOMPLETE; break; case 1: case 2: case 3: /* didn't work; try recalibrating */ fdc->sc_state = DORECAL; break; case 4: /* still no go; reset the bastard */ fdc->sc_state = DORESET; break; default: diskerr(bp, "fd", "hard error", LOG_PRINTF, fd->sc_skip, (struct disklabel *)NULL); printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS, bits, sizeof(bits))); printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1], NE7_ST1BITS, bits, sizeof(bits))); printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2], NE7_ST2BITS, bits, sizeof(bits))); printf(" cyl %d head %d sec %d)\n", fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); bp->b_flags |= B_ERROR; bp->b_error = EIO; fdfinish(fd, bp); } fdc->sc_errors++; } int fdsize(dev) dev_t dev; { /* Swapping to floppies would not make sense. */ return -1; } int fddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { /* Not implemented. */ return ENXIO; } int fdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; int unit = FDUNIT(dev); int part = DISKPART(dev); struct disklabel buffer; int error; DPRINTF(("fdioctl:\n")); switch (cmd) { case DIOCGDINFO: #if 1 *(struct disklabel *)addr = *(fd->sc_dk.dk_label); return(0); #else bzero(&buffer, sizeof(buffer)); buffer.d_secpercyl = fd->sc_type->seccyl; buffer.d_type = DTYPE_FLOPPY; buffer.d_secsize = 128 << fd->sc_type->secsize; if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL) return EINVAL; *(struct disklabel *)addr = buffer; return 0; #endif case DIOCGPART: ((struct partinfo *)addr)->disklab = fd->sc_dk.dk_label; ((struct partinfo *)addr)->part = &fd->sc_dk.dk_label->d_partitions[part]; return(0); case DIOCWLABEL: if ((flag & FWRITE) == 0) return EBADF; /* XXX do something */ return 0; case DIOCWDINFO: if ((flag & FWRITE) == 0) return EBADF; error = setdisklabel(&buffer, (struct disklabel *)addr, 0, NULL); if (error) return error; error = writedisklabel(dev, fdstrategy, &buffer, NULL); return error; case DIOCLOCK: /* * Nothing to do here, really. */ return 0; /* XXX */ case DIOCEJECT: if (*(int *)addr == 0) { /* * Don't force eject: check that we are the only * partition open. If so, unlock it. */ if ((fd->sc_dk.dk_openmask & ~(1 << part)) != 0 || fd->sc_dk.dk_bopenmask + fd->sc_dk.dk_copenmask != fd->sc_dk.dk_openmask) { return (EBUSY); } } /* FALLTHROUGH */ case ODIOCEJECT: fd_do_eject(unit); return 0; default: return ENOTTY; } #ifdef DIAGNOSTIC panic("fdioctl: impossible"); #endif } void fd_do_eject(unit) int unit; { infdc.drvstat = 0x20 | ( 1 << unit); DELAY(1); /* XXX */ infdc.drvstat = 0x20; } /* * Build disk label. For now we only create a label from what we know * from 'sc'. */ static int fdgetdisklabel(sc, dev) struct fd_softc *sc; dev_t dev; { struct disklabel *lp; int part; #ifdef FDDEBUG printf("fdgetdisklabel()\n"); #endif part = DISKPART(dev); lp = sc->sc_dk.dk_label; bzero(lp, sizeof(struct disklabel)); lp->d_secsize = 128 << sc->sc_type->secsize; lp->d_ntracks = sc->sc_type->heads; lp->d_nsectors = sc->sc_type->sectrac; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; lp->d_ncylinders = sc->sc_type->size / lp->d_secpercyl; lp->d_secperunit = sc->sc_type->size; lp->d_type = DTYPE_FLOPPY; lp->d_rpm = 300; /* XXX */ lp->d_interleave = 1; /* FIXME: is this OK? */ lp->d_bbsize = 0; lp->d_sbsize = 0; lp->d_npartitions = part + 1; #define STEP_DELAY 6000 /* 6ms (6000us) delay after stepping */ lp->d_trkseek = STEP_DELAY; /* XXX */ lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); lp->d_partitions[part].p_size = lp->d_secperunit; lp->d_partitions[part].p_fstype = FS_UNUSED; lp->d_partitions[part].p_fsize = 1024; lp->d_partitions[part].p_frag = 8; return(0); } /* * Mountroot hook: prompt the user to enter the root file system * floppy. */ void fd_mountroot_hook(dev) struct device *dev; { int c; fd_do_eject(dev->dv_unit); printf("Insert filesystem floppy and press return."); for (;;) { c = cngetc(); if ((c == '\r') || (c == '\n')) { printf("\n"); break; } } }