/* $NetBSD: m_netbsd15.c,v 1.11 2000/11/29 11:18:33 simonb Exp $ */ /* * top - a top users display for Unix * * SYNOPSIS: For a NetBSD-1.5 (or later) system * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider. * NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn. * NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green. * NetBSD-1.4/UVM port by matthew green. * NetBSD-1.5 port by Simon Burge. * - * This is the machine-dependent module for NetBSD-1.5 and later * works for: * NetBSD-1.4Z * and should work for: * NetBSD-1.5 (when released) * - * top does not need to be installed setuid or setgid with this module. * * LIBS: -lkvm * * CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR * * AUTHORS: Christos Zoulas * Steven Wallace * Wolfram Schneider * Arne Helme * Luke Mewburn * matthew green * Simon Burge * * * $Id: m_netbsd15.c,v 1.11 2000/11/29 11:18:33 simonb Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "os.h" #include "top.h" #include "machine.h" #include "utils.h" #include "display.h" #include "loadavg.h" void percentages64 __P((int, int *, u_int64_t *, u_int64_t *, u_int64_t *)); /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) ((pp)->p_swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->p_swtime * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) \ ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize) /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d%7s %5s %-7s%7s %5.2f%% %5.2f%% %.12s" /* * Process state names for the "STATE" column of the display. */ const char *state_abbrev[] = { "", "start", "run", "sleep", "stop", "zomb", "dead", "cpu" }; static kvm_t *kd; /* these are retrieved from the kernel in _init */ static double logcpu; static int hz; static int ccpu; /* these are for calculating cpu state percentages */ static u_int64_t cp_time[CPUSTATES]; static u_int64_t cp_old[CPUSTATES]; static u_int64_t cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[8]; char *procstatenames[] = { "", " starting, ", " runnable, ", " sleeping, ", " stopped, ", " zombie, ", " dead, ", " on processor, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[7]; char *memorynames[] = { "K Act, ", "K Inact, ", "K Wired, ", "K Free, ", "K Swap, ", "K Swap free, ", NULL }; /* these are names given to allowed sorting orders -- first is default */ char *ordernames[] = { "cpu", "pri", "res", "size", "state", "time", NULL }; /* forward definitions for comparison functions */ static int compare_cpu __P((struct proc **, struct proc **)); static int compare_prio __P((struct proc **, struct proc **)); static int compare_res __P((struct proc **, struct proc **)); static int compare_size __P((struct proc **, struct proc **)); static int compare_state __P((struct proc **, struct proc **)); static int compare_time __P((struct proc **, struct proc **)); int (*proc_compares[]) __P((struct proc **, struct proc **)) = { compare_cpu, compare_prio, compare_res, compare_size, compare_state, compare_time, NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc2 *pbase; static struct kinfo_proc2 **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) int machine_init(statics) struct statics *statics; { int pagesize; int mib[2]; size_t size; struct clockinfo clockinfo; if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL) return -1; mib[0] = CTL_KERN; mib[1] = KERN_CCPU; size = sizeof(ccpu); if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) { fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n", strerror(errno)); return(-1); } mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; size = sizeof(clockinfo); if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) { fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n", strerror(errno)); return(-1); } hz = clockinfo.stathz; /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->order_names = ordernames; /* all done! */ return(0); } char * format_header(uname_field) char *uname_field; { char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } void get_system_info(si) struct system_info *si; { size_t ssize; int mib[2]; struct uvmexp_sysctl uvmexp; struct swapent *sep, *seporig; u_int64_t totalsize, totalinuse; int size, inuse, ncounted; int rnswap, nswap; mib[0] = CTL_KERN; mib[1] = KERN_CP_TIME; ssize = sizeof(cp_time); if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) { fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", strerror(errno)); quit(23); } if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) { int i; warn("can't getloadavg"); for (i = 0; i < NUM_AVERAGES; i++) si->load_avg[i] = 0.0; } /* convert cp_time counts to percentages */ percentages64(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); mib[0] = CTL_VM; mib[1] = VM_UVMEXP2; ssize = sizeof(uvmexp); if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) { fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n", strerror(errno)); quit(23); } /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(uvmexp.active); memory_stats[1] = pagetok(uvmexp.inactive); memory_stats[2] = pagetok(uvmexp.wired); memory_stats[3] = pagetok(uvmexp.free); memory_stats[4] = memory_stats[5] = 0; seporig = NULL; do { nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap < 1) break; /* Use seporig to keep track of the malloc'd memory * base, as sep will be incremented in the for loop * below. */ seporig = sep = (struct swapent *)malloc(nswap * sizeof(*sep)); if (sep == NULL) break; rnswap = swapctl(SWAP_STATS, (void *)sep, nswap); if (nswap != rnswap) break; totalsize = totalinuse = ncounted = 0; for (; rnswap-- > 0; sep++) { ncounted++; size = sep->se_nblks; inuse = sep->se_inuse; totalsize += size; totalinuse += inuse; } memory_stats[4] = dbtob(totalinuse) / 1024; memory_stats[5] = dbtob(totalsize) / 1024 - memory_stats[4]; /* Free here, before we malloc again in the next * iteration of this loop. */ if (seporig) { free(seporig); seporig = NULL; } } while (0); /* Catch the case where we malloc'd, but then exited the * loop due to nswap != rnswap. */ if (seporig) free(seporig); memory_stats[6] = -1; /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->last_pid = -1; } caddr_t get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare) __P((struct proc **, struct proc **)); { int i; int total_procs; int active_procs; struct kinfo_proc2 **prefp; struct kinfo_proc2 *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; int show_command; static struct handle handle; pbase = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &nproc); if (nproc > onproc) pref = (struct kinfo_proc2 **) realloc(pref, sizeof(struct kinfo_proc2 *) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) pp->p_stat]++; if (pp->p_stat != SZOMB && pp->p_stat != SDEAD && (show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == SRUN || pp->p_stat == SONPROC)) && (!show_uid || pp->p_ruid == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *), (int (*) __P((const void *, const void *)))compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char * format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid) __P((int)); { struct kinfo_proc2 *pp; long cputime; double pct; struct handle *hp; const char *statep; #ifdef KI_NOCPU char state[10]; #endif static char fmt[128]; /* static area where result is built */ /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ if ((pp->p_flag & P_INMEM) == 0) { /* * Print swapped processes as */ char *comm = pp->p_comm; #define COMSIZ sizeof(pp->p_comm) char buf[COMSIZ]; (void) strncpy(buf, comm, COMSIZ); comm[0] = '<'; (void) strncpy(&comm[1], buf, COMSIZ - 2); comm[COMSIZ - 2] = '\0'; (void) strncat(comm, ">", COMSIZ - 1); comm[COMSIZ - 1] = '\0'; } #if 0 /* This does not produce the correct results */ cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks; #else cputime = pp->p_rtime_sec; /* This does not count interrupts */ #endif /* calculate the base for cpu percentages */ pct = pctdouble(pp->p_pctcpu); statep = state_abbrev[(unsigned)pp->p_stat]; #ifdef KI_NOCPU /* Post-1.5 change: add cpu number if appropriate */ if (pp->p_cpuid != KI_NOCPU) { switch (pp->p_stat) { case SONPROC: case SRUN: snprintf(state, sizeof(state), "%s/%lld", statep, (long long)pp->p_cpuid); statep = state; break; } } #endif /* format this entry */ sprintf(fmt, Proc_format, pp->p_pid, (*get_userid)(pp->p_ruid), pp->p_priority - PZERO, pp->p_nice - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(pp->p_vm_rssize)), statep, format_time(cputime), 100.0 * weighted_cpu(pct, pp), 100.0 * pct, printable(pp->p_comm)); /* return the result */ return(fmt); } /* comparison routines for qsort */ /* * There are currently four possible comparison routines. main selects * one of these by indexing in to the array proc_compares. * * Possible keys are defined as macros below. Currently these keys are * defined: percent cpu, cpu ticks, process state, resident set size, * total virtual memory usage. The process states are ordered as follows * (from least to most important): WAIT, zombie, sleep, stop, start, run. * The array declaration below maps a process state index into a number * that reflects this ordering. */ /* * First, the possible comparison keys. These are defined in such a way * that they can be merely listed in the source code to define the actual * desired ordering. */ #define ORDERKEY_PCTCPU \ if (lresult = (pctcpu)(p2)->p_pctcpu - (pctcpu)(p1)->p_pctcpu,\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPTICKS \ if (lresult = (pctcpu)(p2)->p_rtime_sec \ - (pctcpu)(p1)->p_rtime_sec,\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(int)(p2)->p_stat] - \ sorted_state[(int)(p1)->p_stat] ) == 0) #define ORDERKEY_PRIO \ if ((result = (p2)->p_priority - (p1)->p_priority) == 0) #define ORDERKEY_RSSIZE \ if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0) #define ORDERKEY_MEM \ if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0) /* * Now the array that maps process state to a weight. * The order of the elements should match those in state_abbrev[] */ static int sorted_state[] = { 0, /* (not used) ? */ 6, /* "start" SIDL */ 4, /* "run" SRUN */ 3, /* "sleep" SSLEEP */ 3, /* "stop" SSTOP */ 2, /* "dead" SDEAD */ 1, /* "zomb" SZOMB */ 5, /* "onproc" SONPROC */ }; /* compare_cpu - the comparison function for sorting by cpu percentage */ static int compare_cpu(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc2 *p1; struct kinfo_proc2 *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_prio - the comparison function for sorting by process priority */ static int compare_prio(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc2 *p1; struct kinfo_proc2 *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_PRIO ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_res - the comparison function for sorting by resident set size */ static int compare_res(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc2 *p1; struct kinfo_proc2 *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_size - the comparison function for sorting by total memory usage */ static int compare_size(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc2 *p1; struct kinfo_proc2 *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_state - the comparison function for sorting by process state */ static int compare_state(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc2 *p1; struct kinfo_proc2 *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_STATE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_time - the comparison function for sorting by total cpu time */ static int compare_time(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc2 *p1; struct kinfo_proc2 *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_MEM ORDERKEY_RSSIZE ; return (result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { int cnt; struct kinfo_proc2 **prefp; struct kinfo_proc2 *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->p_pid == (pid_t)pid) return(pp->p_ruid); } return(-1); } /* * percentages(cnt, out, new, old, diffs) - calculate percentage change * between array "old" and "new", putting the percentages i "out". * "cnt" is size of each array and "diffs" is used for scratch space. * The array "old" is updated on each call. * The routine assumes modulo arithmetic. This function is especially * useful on BSD mchines for calculating cpu state percentages. */ void percentages64(cnt, out, new, old, diffs) int cnt; int *out; u_int64_t *new; u_int64_t *old; u_int64_t *diffs; { int i; u_int64_t change; u_int64_t total_change; u_int64_t *dp; u_int64_t half_total; /* initialization */ total_change = 0; dp = diffs; /* calculate changes for each state and the overall change */ for (i = 0; i < cnt; i++) { /* * Don't worry about wrapping - even at hz=1GHz, a * u_int64_t will last at least 544 years. */ change = *new - *old; total_change += (*dp++ = change); *old++ = *new++; } /* avoid divide by zero potential */ if (total_change == 0) total_change = 1; /* calculate percentages based on overall change, rounding up */ half_total = total_change / 2; for (i = 0; i < cnt; i++) *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); }