/* $NetBSD: gtidmac.c,v 1.9 2012/09/10 13:36:40 msaitoh Exp $ */ /* * Copyright (c) 2008, 2012 KIYOHARA Takashi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: gtidmac.c,v 1.9 2012/09/10 13:36:40 msaitoh Exp $"); #include #include #include #include #include #include #include /* For PAGE_SIZE */ #include #include #include #include #include #include #include "locators.h" #ifdef GTIDMAC_DEBUG #define DPRINTF(x) if (gtidmac_debug) printf x int gtidmac_debug = 0; #else #define DPRINTF(x) #endif #define GTIDMAC_NDESC 64 #define GTIDMAC_MAXCHAN 8 #define MVXORE_NDESC 128 #define MVXORE_MAXCHAN 2 #define GTIDMAC_NSEGS ((GTIDMAC_MAXXFER + PAGE_SIZE - 1) / PAGE_SIZE) #define MVXORE_NSEGS ((MVXORE_MAXXFER + PAGE_SIZE - 1) / PAGE_SIZE) struct gtidmac_softc; struct gtidmac_function { int (*chan_alloc)(void *, bus_dmamap_t **, bus_dmamap_t **, void *); void (*chan_free)(void *, int); int (*dma_setup)(void *, int, int, bus_dmamap_t *, bus_dmamap_t *, bus_size_t); void (*dma_start)(void *, int, void (*dma_done_cb)(void *, int, bus_dmamap_t *, bus_dmamap_t *, int)); uint32_t (*dma_finish)(void *, int, int); }; struct gtidmac_dma_desc { int dd_index; union { struct gtidmac_desc *idmac_vaddr; struct mvxore_desc *xore_vaddr; } dd_vaddr; #define dd_idmac_vaddr dd_vaddr.idmac_vaddr #define dd_xore_vaddr dd_vaddr.xore_vaddr paddr_t dd_paddr; SLIST_ENTRY(gtidmac_dma_desc) dd_next; }; struct gtidmac_softc { device_t sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_dma_tag_t sc_dmat; struct gtidmac_dma_desc *sc_dd_buffer; bus_dma_segment_t sc_pattern_segment; struct { u_char pbuf[16]; /* 16byte/pattern */ } *sc_pbuf; /* x256 pattern */ int sc_gtidmac_nchan; struct gtidmac_desc *sc_dbuf; bus_dmamap_t sc_dmap; SLIST_HEAD(, gtidmac_dma_desc) sc_dlist; struct { bus_dmamap_t chan_in; /* In dmamap */ bus_dmamap_t chan_out; /* Out dmamap */ uint64_t chan_totalcnt; /* total transfered byte */ int chan_ddidx; void *chan_running; /* opaque object data */ void (*chan_dma_done)(void *, int, bus_dmamap_t *, bus_dmamap_t *, int); } sc_cdesc[GTIDMAC_MAXCHAN]; struct gtidmac_intr_arg { struct gtidmac_softc *ia_sc; uint32_t ia_cause; uint32_t ia_mask; uint32_t ia_eaddr; uint32_t ia_eselect; } sc_intrarg[GTIDMAC_NINTRRUPT]; int sc_mvxore_nchan; struct mvxore_desc *sc_dbuf_xore; bus_dmamap_t sc_dmap_xore; SLIST_HEAD(, gtidmac_dma_desc) sc_dlist_xore; struct { bus_dmamap_t chan_in[MVXORE_NSRC]; /* In dmamap */ bus_dmamap_t chan_out; /* Out dmamap */ uint64_t chan_totalcnt; /* total transfered */ int chan_ddidx; void *chan_running; /* opaque object data */ void (*chan_dma_done)(void *, int, bus_dmamap_t *, bus_dmamap_t *, int); } sc_cdesc_xore[MVXORE_MAXCHAN]; struct dmover_backend sc_dmb; struct dmover_backend sc_dmb_xore; int sc_dmb_busy; }; struct gtidmac_softc *gtidmac_softc = NULL; static int gtidmac_match(device_t, struct cfdata *, void *); static void gtidmac_attach(device_t, device_t, void *); static int gtidmac_intr(void *); static int mvxore_port0_intr(void *); static int mvxore_port1_intr(void *); static int mvxore_intr(struct gtidmac_softc *, int); static void gtidmac_process(struct dmover_backend *); static void gtidmac_dmover_run(struct dmover_backend *); static void gtidmac_dmover_done(void *, int, bus_dmamap_t *, bus_dmamap_t *, int); static __inline int gtidmac_dmmap_load(struct gtidmac_softc *, bus_dmamap_t, dmover_buffer_type, dmover_buffer *, int); static __inline void gtidmac_dmmap_unload(struct gtidmac_softc *, bus_dmamap_t, int); static uint32_t gtidmac_finish(void *, int, int); static uint32_t mvxore_finish(void *, int, int); static void gtidmac_wininit(struct gtidmac_softc *); static void mvxore_wininit(struct gtidmac_softc *); static int gtidmac_buffer_setup(struct gtidmac_softc *); static int mvxore_buffer_setup(struct gtidmac_softc *); #ifdef GTIDMAC_DEBUG static void gtidmac_dump_idmacreg(struct gtidmac_softc *, int); static void gtidmac_dump_idmacdesc(struct gtidmac_softc *, struct gtidmac_dma_desc *, uint32_t, int); static void gtidmac_dump_xorereg(struct gtidmac_softc *, int); static void gtidmac_dump_xoredesc(struct gtidmac_softc *, struct gtidmac_dma_desc *, uint32_t, int); #endif static struct gtidmac_function gtidmac_functions = { .chan_alloc = gtidmac_chan_alloc, .chan_free = gtidmac_chan_free, .dma_setup = gtidmac_setup, .dma_start = gtidmac_start, .dma_finish = gtidmac_finish, }; static struct gtidmac_function mvxore_functions = { .chan_alloc = mvxore_chan_alloc, .chan_free = mvxore_chan_free, .dma_setup = mvxore_setup, .dma_start = mvxore_start, .dma_finish = mvxore_finish, }; static const struct dmover_algdesc gtidmac_algdescs[] = { { .dad_name = DMOVER_FUNC_ZERO, .dad_data = >idmac_functions, .dad_ninputs = 0 }, { .dad_name = DMOVER_FUNC_FILL8, .dad_data = >idmac_functions, .dad_ninputs = 0 }, { .dad_name = DMOVER_FUNC_COPY, .dad_data = >idmac_functions, .dad_ninputs = 1 }, }; static const struct dmover_algdesc mvxore_algdescs[] = { #if 0 /* * As for these operations, there are a lot of restrictions. It is * necessary to use IDMAC. */ { .dad_name = DMOVER_FUNC_ZERO, .dad_data = &mvxore_functions, .dad_ninputs = 0 }, { .dad_name = DMOVER_FUNC_FILL8, .dad_data = &mvxore_functions, .dad_ninputs = 0 }, #endif { .dad_name = DMOVER_FUNC_COPY, .dad_data = &mvxore_functions, .dad_ninputs = 1 }, { .dad_name = DMOVER_FUNC_ISCSI_CRC32C, .dad_data = &mvxore_functions, .dad_ninputs = 1 }, { .dad_name = DMOVER_FUNC_XOR2, .dad_data = &mvxore_functions, .dad_ninputs = 2 }, { .dad_name = DMOVER_FUNC_XOR3, .dad_data = &mvxore_functions, .dad_ninputs = 3 }, { .dad_name = DMOVER_FUNC_XOR4, .dad_data = &mvxore_functions, .dad_ninputs = 4 }, { .dad_name = DMOVER_FUNC_XOR5, .dad_data = &mvxore_functions, .dad_ninputs = 5 }, { .dad_name = DMOVER_FUNC_XOR6, .dad_data = &mvxore_functions, .dad_ninputs = 6 }, { .dad_name = DMOVER_FUNC_XOR7, .dad_data = &mvxore_functions, .dad_ninputs = 7 }, { .dad_name = DMOVER_FUNC_XOR8, .dad_data = &mvxore_functions, .dad_ninputs = 8 }, }; static struct { int model; int idmac_nchan; int idmac_irq; int xore_nchan; int xore_irq; } channels[] = { /* * Marvell System Controllers: * need irqs in attach_args. */ { MARVELL_DISCOVERY, 8, -1, 0, -1 }, { MARVELL_DISCOVERY_II, 8, -1, 0, -1 }, { MARVELL_DISCOVERY_III, 8, -1, 0, -1 }, #if 0 { MARVELL_DISCOVERY_LT, 4, -1, 2, -1 }, { MARVELL_DISCOVERY_V, 4, -1, 2, -1 }, { MARVELL_DISCOVERY_VI, 4, -1, 2, -1 }, ???? #endif /* * Marvell System on Chips: * No need irqs in attach_args. We always connecting to interrupt-pin * statically. */ { MARVELL_ORION_1_88F1181, 4, 24, 0, -1 }, { MARVELL_ORION_2_88F1281, 4, 24, 0, -1 }, { MARVELL_ORION_1_88F5082, 4, 24, 0, -1 }, { MARVELL_ORION_1_88F5180N, 4, 24, 0, -1 }, { MARVELL_ORION_1_88F5181, 4, 24, 0, -1 }, { MARVELL_ORION_1_88F5182, 4, 24, 2, 30 }, { MARVELL_ORION_2_88F5281, 4, 24, 0, -1 }, { MARVELL_ORION_1_88W8660, 4, 24, 0, -1 }, { MARVELL_KIRKWOOD_88F6180, 0, -1, 4, 5 }, { MARVELL_KIRKWOOD_88F6192, 0, -1, 4, 5 }, { MARVELL_KIRKWOOD_88F6281, 0, -1, 4, 5 }, { MARVELL_KIRKWOOD_88F6282, 0, -1, 4, 5 }, }; CFATTACH_DECL_NEW(gtidmac_gt, sizeof(struct gtidmac_softc), gtidmac_match, gtidmac_attach, NULL, NULL); CFATTACH_DECL_NEW(gtidmac_mbus, sizeof(struct gtidmac_softc), gtidmac_match, gtidmac_attach, NULL, NULL); /* ARGSUSED */ static int gtidmac_match(device_t parent, struct cfdata *match, void *aux) { struct marvell_attach_args *mva = aux; int i; if (strcmp(mva->mva_name, match->cf_name) != 0) return 0; if (mva->mva_offset == MVA_OFFSET_DEFAULT) return 0; for (i = 0; i < __arraycount(channels); i++) if (mva->mva_model == channels[i].model) { mva->mva_size = GTIDMAC_SIZE; return 1; } return 0; } /* ARGSUSED */ static void gtidmac_attach(device_t parent, device_t self, void *aux) { struct gtidmac_softc *sc = device_private(self); struct marvell_attach_args *mva = aux; prop_dictionary_t dict = device_properties(self); uint32_t idmac_irq, xore_irq, dmb_speed; int idmac_nchan, xore_nchan, nsegs, i, j, n; for (i = 0; i < __arraycount(channels); i++) if (mva->mva_model == channels[i].model) break; idmac_nchan = channels[i].idmac_nchan; idmac_irq = channels[i].idmac_irq; if (idmac_nchan != 0) { if (idmac_irq == -1) idmac_irq = mva->mva_irq; if (idmac_irq == -1) /* Discovery */ if (!prop_dictionary_get_uint32(dict, "idmac-irq", &idmac_irq)) { aprint_error(": no idmac-irq property\n"); return; } } xore_nchan = channels[i].xore_nchan; xore_irq = channels[i].xore_irq; if (xore_nchan != 0) { if (xore_irq == -1) xore_irq = mva->mva_irq; if (xore_irq == -1) /* Discovery LT/V/VI */ if (!prop_dictionary_get_uint32(dict, "xore-irq", &xore_irq)) { aprint_error(": no xore-irq property\n"); return; } } aprint_naive("\n"); aprint_normal(": Marvell IDMA Controller%s\n", xore_nchan ? "/XOR Engine" : ""); if (idmac_nchan > 0) aprint_normal_dev(self, "IDMA Controller %d channels, intr %d...%d\n", idmac_nchan, idmac_irq, idmac_irq + GTIDMAC_NINTRRUPT - 1); if (xore_nchan > 0) aprint_normal_dev(self, "XOR Engine %d channels, intr %d...%d\n", xore_nchan, xore_irq, xore_irq + xore_nchan - 1); sc->sc_dev = self; sc->sc_iot = mva->mva_iot; /* Map I/O registers */ if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset, mva->mva_size, &sc->sc_ioh)) { aprint_error_dev(self, "can't map registers\n"); return; } /* * Initialise DMA descriptors and associated metadata */ sc->sc_dmat = mva->mva_dmat; n = idmac_nchan * GTIDMAC_NDESC + xore_nchan * MVXORE_NDESC; sc->sc_dd_buffer = kmem_alloc(sizeof(struct gtidmac_dma_desc) * n, KM_SLEEP); if (sc->sc_dd_buffer == NULL) { aprint_error_dev(self, "can't allocate memory\n"); goto fail1; } /* pattern buffer */ if (bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0, &sc->sc_pattern_segment, 1, &nsegs, BUS_DMA_NOWAIT)) { aprint_error_dev(self, "bus_dmamem_alloc failed: pattern buffer\n"); goto fail2; } if (bus_dmamem_map(sc->sc_dmat, &sc->sc_pattern_segment, 1, PAGE_SIZE, (void **)&sc->sc_pbuf, BUS_DMA_NOWAIT)) { aprint_error_dev(self, "bus_dmamem_map failed: pattern buffer\n"); goto fail3; } for (i = 0; i < 0x100; i++) for (j = 0; j < sizeof(sc->sc_pbuf[i].pbuf); j++) sc->sc_pbuf[i].pbuf[j] = i; if (!prop_dictionary_get_uint32(dict, "dmb_speed", &dmb_speed)) { aprint_error_dev(self, "no dmb_speed property\n"); dmb_speed = 10; /* More than fast swdmover perhaps. */ } /* IDMAC DMA descriptor buffer */ sc->sc_gtidmac_nchan = idmac_nchan; if (sc->sc_gtidmac_nchan > 0) { if (gtidmac_buffer_setup(sc) != 0) goto fail4; if (mva->mva_model != MARVELL_DISCOVERY) gtidmac_wininit(sc); /* Setup interrupt */ for (i = 0; i < GTIDMAC_NINTRRUPT; i++) { j = i * idmac_nchan / GTIDMAC_NINTRRUPT; sc->sc_intrarg[i].ia_sc = sc; sc->sc_intrarg[i].ia_cause = GTIDMAC_ICR(j); sc->sc_intrarg[i].ia_eaddr = GTIDMAC_EAR(j); sc->sc_intrarg[i].ia_eselect = GTIDMAC_ESR(j); marvell_intr_establish(idmac_irq + i, IPL_BIO, gtidmac_intr, &sc->sc_intrarg[i]); } /* Register us with dmover. */ sc->sc_dmb.dmb_name = device_xname(self); sc->sc_dmb.dmb_speed = dmb_speed; sc->sc_dmb.dmb_cookie = sc; sc->sc_dmb.dmb_algdescs = gtidmac_algdescs; sc->sc_dmb.dmb_nalgdescs = __arraycount(gtidmac_algdescs); sc->sc_dmb.dmb_process = gtidmac_process; dmover_backend_register(&sc->sc_dmb); sc->sc_dmb_busy = 0; } /* XORE DMA descriptor buffer */ sc->sc_mvxore_nchan = xore_nchan; if (sc->sc_mvxore_nchan > 0) { if (mvxore_buffer_setup(sc) != 0) goto fail5; /* Setup interrupt */ for (i = 0; i < sc->sc_mvxore_nchan; i++) marvell_intr_establish(xore_irq + i, IPL_BIO, (i & 0x2) ? mvxore_port1_intr : mvxore_port0_intr, sc); mvxore_wininit(sc); /* Register us with dmover. */ sc->sc_dmb_xore.dmb_name = device_xname(sc->sc_dev); sc->sc_dmb_xore.dmb_speed = dmb_speed; sc->sc_dmb_xore.dmb_cookie = sc; sc->sc_dmb_xore.dmb_algdescs = mvxore_algdescs; sc->sc_dmb_xore.dmb_nalgdescs = __arraycount(mvxore_algdescs); sc->sc_dmb_xore.dmb_process = gtidmac_process; dmover_backend_register(&sc->sc_dmb_xore); } gtidmac_softc = sc; return; fail5: for (i = sc->sc_gtidmac_nchan - 1; i >= 0; i--) { bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc[i].chan_in); bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc[i].chan_out); } bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap); bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap); bus_dmamem_unmap(sc->sc_dmat, sc->sc_dbuf, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC); bus_dmamem_free(sc->sc_dmat, sc->sc_dmap->dm_segs, sc->sc_dmap->dm_nsegs); fail4: bus_dmamem_unmap(sc->sc_dmat, sc->sc_pbuf, PAGE_SIZE); fail3: bus_dmamem_free(sc->sc_dmat, &sc->sc_pattern_segment, 1); fail2: kmem_free(sc->sc_dd_buffer, sizeof(struct gtidmac_dma_desc) * n); fail1: bus_space_unmap(sc->sc_iot, sc->sc_ioh, mva->mva_size); return; } static int gtidmac_intr(void *arg) { struct gtidmac_intr_arg *ia = arg; struct gtidmac_softc *sc = ia->ia_sc; uint32_t cause; int handled = 0, chan, error; cause = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ia->ia_cause); DPRINTF(("IDMAC intr: cause=0x%x\n", cause)); bus_space_write_4(sc->sc_iot, sc->sc_ioh, ia->ia_cause, ~cause); chan = 0; while (cause) { error = 0; if (cause & GTIDMAC_I_ADDRMISS) { aprint_error_dev(sc->sc_dev, "Address Miss"); error = EINVAL; } if (cause & GTIDMAC_I_ACCPROT) { aprint_error_dev(sc->sc_dev, "Access Protect Violation"); error = EACCES; } if (cause & GTIDMAC_I_WRPROT) { aprint_error_dev(sc->sc_dev, "Write Protect"); error = EACCES; } if (cause & GTIDMAC_I_OWN) { aprint_error_dev(sc->sc_dev, "Ownership Violation"); error = EINVAL; } #define GTIDMAC_I_ERROR \ (GTIDMAC_I_ADDRMISS | \ GTIDMAC_I_ACCPROT | \ GTIDMAC_I_WRPROT | \ GTIDMAC_I_OWN) if (cause & GTIDMAC_I_ERROR) { uint32_t sel; int select; sel = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ia->ia_eselect) & GTIDMAC_ESR_SEL; select = sel - chan * GTIDMAC_I_BITS; if (select >= 0 && select < GTIDMAC_I_BITS) { uint32_t ear; ear = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ia->ia_eaddr); aprint_error(": Error Address 0x%x\n", ear); } else aprint_error(": lost Error Address\n"); } if (cause & (GTIDMAC_I_COMP | GTIDMAC_I_ERROR)) { sc->sc_cdesc[chan].chan_dma_done( sc->sc_cdesc[chan].chan_running, chan, &sc->sc_cdesc[chan].chan_in, &sc->sc_cdesc[chan].chan_out, error); handled++; } cause >>= GTIDMAC_I_BITS; } DPRINTF(("IDMAC intr: %shandled\n", handled ? "" : "not ")); return handled; } static int mvxore_port0_intr(void *arg) { struct gtidmac_softc *sc = arg; return mvxore_intr(sc, 0); } static int mvxore_port1_intr(void *arg) { struct gtidmac_softc *sc = arg; return mvxore_intr(sc, 1); } static int mvxore_intr(struct gtidmac_softc *sc, int port) { uint32_t cause; int handled = 0, chan, error; cause = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEICR(sc, port)); DPRINTF(("XORE port %d intr: cause=0x%x\n", port, cause)); printf("XORE port %d intr: cause=0x%x\n", port, cause); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEICR(sc, port), ~cause); chan = 0; while (cause) { error = 0; if (cause & MVXORE_I_ADDRDECODE) { aprint_error_dev(sc->sc_dev, "Failed address decoding"); error = EINVAL; } if (cause & MVXORE_I_ACCPROT) { aprint_error_dev(sc->sc_dev, "Access Protect Violation"); error = EACCES; } if (cause & MVXORE_I_WRPROT) { aprint_error_dev(sc->sc_dev, "Write Protect"); error = EACCES; } if (cause & MVXORE_I_OWN) { aprint_error_dev(sc->sc_dev, "Ownership Violation"); error = EINVAL; } if (cause & MVXORE_I_INTPARITY) { aprint_error_dev(sc->sc_dev, "Parity Error"); error = EIO; } if (cause & MVXORE_I_XBAR) { aprint_error_dev(sc->sc_dev, "Crossbar Parity Error"); error = EINVAL; } #define MVXORE_I_ERROR \ (MVXORE_I_ADDRDECODE | \ MVXORE_I_ACCPROT | \ MVXORE_I_WRPROT | \ MVXORE_I_OWN | \ MVXORE_I_INTPARITY | \ MVXORE_I_XBAR) if (cause & MVXORE_I_ERROR) { uint32_t type; int event; type = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEECR(sc, port)); type &= MVXORE_XEECR_ERRORTYPE_MASK; event = type - chan * MVXORE_I_BITS; if (event >= 0 && event < MVXORE_I_BITS) { uint32_t xeear; xeear = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEEAR(sc, port)); aprint_error(": Error Address 0x%x\n", xeear); } else aprint_error(": lost Error Address\n"); } if (cause & (MVXORE_I_EOC | MVXORE_I_ERROR)) { sc->sc_cdesc_xore[chan].chan_dma_done( sc->sc_cdesc_xore[chan].chan_running, chan, sc->sc_cdesc_xore[chan].chan_in, &sc->sc_cdesc_xore[chan].chan_out, error); handled++; } cause >>= MVXORE_I_BITS; } printf("XORE port %d intr: %shandled\n", port, handled ? "" : "not "); DPRINTF(("XORE port %d intr: %shandled\n", port, handled ? "" : "not ")); return handled; } /* * dmover(9) backend function. */ static void gtidmac_process(struct dmover_backend *dmb) { struct gtidmac_softc *sc = dmb->dmb_cookie; int s; /* If the backend is currently idle, go process the queue. */ s = splbio(); if (!sc->sc_dmb_busy) gtidmac_dmover_run(dmb); splx(s); } static void gtidmac_dmover_run(struct dmover_backend *dmb) { struct gtidmac_softc *sc = dmb->dmb_cookie; struct dmover_request *dreq; const struct dmover_algdesc *algdesc; struct gtidmac_function *df; bus_dmamap_t *dmamap_in, *dmamap_out; int chan, ninputs, error, i; sc->sc_dmb_busy = 1; for (;;) { dreq = TAILQ_FIRST(&dmb->dmb_pendreqs); if (dreq == NULL) break; algdesc = dreq->dreq_assignment->das_algdesc; df = algdesc->dad_data; chan = (*df->chan_alloc)(sc, &dmamap_in, &dmamap_out, dreq); if (chan == -1) return; dmover_backend_remque(dmb, dreq); dreq->dreq_flags |= DMOVER_REQ_RUNNING; /* XXXUNLOCK */ error = 0; /* Load in/out buffers of dmover to bus_dmamap. */ ninputs = dreq->dreq_assignment->das_algdesc->dad_ninputs; if (ninputs == 0) { int pno = 0; if (algdesc->dad_name == DMOVER_FUNC_FILL8) pno = dreq->dreq_immediate[0]; i = 0; error = bus_dmamap_load(sc->sc_dmat, *dmamap_in, &sc->sc_pbuf[pno], sizeof(sc->sc_pbuf[pno]), NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | BUS_DMA_WRITE); if (error == 0) { bus_dmamap_sync(sc->sc_dmat, *dmamap_in, 0, sizeof(uint32_t), BUS_DMASYNC_PREWRITE); /* * We will call gtidmac_dmmap_unload() when * becoming an error. */ i = 1; } } else for (i = 0; i < ninputs; i++) { error = gtidmac_dmmap_load(sc, *(dmamap_in + i), dreq->dreq_inbuf_type, &dreq->dreq_inbuf[i], 0/*write*/); if (error != 0) break; } if (algdesc->dad_name != DMOVER_FUNC_ISCSI_CRC32C) { if (error == 0) error = gtidmac_dmmap_load(sc, *dmamap_out, dreq->dreq_outbuf_type, &dreq->dreq_outbuf, 1/*read*/); if (error == 0) { /* * The size of outbuf is always believed to be * DMA transfer size in dmover request. */ error = (*df->dma_setup)(sc, chan, ninputs, dmamap_in, dmamap_out, (*dmamap_out)->dm_mapsize); if (error != 0) gtidmac_dmmap_unload(sc, *dmamap_out, 1); } } else if (error == 0) error = (*df->dma_setup)(sc, chan, ninputs, dmamap_in, dmamap_out, (*dmamap_in)->dm_mapsize); /* XXXLOCK */ if (error != 0) { for (; i-- > 0;) gtidmac_dmmap_unload(sc, *(dmamap_in + i), 0); (*df->chan_free)(sc, chan); dreq->dreq_flags |= DMOVER_REQ_ERROR; dreq->dreq_error = error; /* XXXUNLOCK */ dmover_done(dreq); /* XXXLOCK */ continue; } (*df->dma_start)(sc, chan, gtidmac_dmover_done); break; } /* All done */ sc->sc_dmb_busy = 0; } static void gtidmac_dmover_done(void *object, int chan, bus_dmamap_t *dmamap_in, bus_dmamap_t *dmamap_out, int error) { struct gtidmac_softc *sc; struct dmover_request *dreq = object; struct dmover_backend *dmb; struct gtidmac_function *df; uint32_t result; int ninputs, i; KASSERT(dreq != NULL); dmb = dreq->dreq_assignment->das_backend; df = dreq->dreq_assignment->das_algdesc->dad_data; ninputs = dreq->dreq_assignment->das_algdesc->dad_ninputs; sc = dmb->dmb_cookie; result = (*df->dma_finish)(sc, chan, error); for (i = 0; i < ninputs; i++) gtidmac_dmmap_unload(sc, *(dmamap_in + i), 0); if (dreq->dreq_assignment->das_algdesc->dad_name == DMOVER_FUNC_ISCSI_CRC32C) memcpy(dreq->dreq_immediate, &result, sizeof(result)); else gtidmac_dmmap_unload(sc, *dmamap_out, 1); (*df->chan_free)(sc, chan); if (error) { dreq->dreq_error = error; dreq->dreq_flags |= DMOVER_REQ_ERROR; } dmover_done(dreq); /* * See if we can start some more dmover(9) requests. * * Note: We're already at splbio() here. */ if (!sc->sc_dmb_busy) gtidmac_dmover_run(dmb); } static __inline int gtidmac_dmmap_load(struct gtidmac_softc *sc, bus_dmamap_t dmamap, dmover_buffer_type dmbuf_type, dmover_buffer *dmbuf, int read) { int error, flags; flags = BUS_DMA_NOWAIT | BUS_DMA_STREAMING | read ? BUS_DMA_READ : BUS_DMA_WRITE; switch (dmbuf_type) { case DMOVER_BUF_LINEAR: error = bus_dmamap_load(sc->sc_dmat, dmamap, dmbuf->dmbuf_linear.l_addr, dmbuf->dmbuf_linear.l_len, NULL, flags); break; case DMOVER_BUF_UIO: if ((read && dmbuf->dmbuf_uio->uio_rw != UIO_READ) || (!read && dmbuf->dmbuf_uio->uio_rw == UIO_READ)) return (EINVAL); error = bus_dmamap_load_uio(sc->sc_dmat, dmamap, dmbuf->dmbuf_uio, flags); break; default: error = EINVAL; } if (error == 0) bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); return error; } static __inline void gtidmac_dmmap_unload(struct gtidmac_softc *sc, bus_dmamap_t dmamap, int read) { bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, dmamap); } void * gtidmac_tag_get(void) { return gtidmac_softc; } /* * IDMAC functions */ int gtidmac_chan_alloc(void *tag, bus_dmamap_t **dmamap_in, bus_dmamap_t **dmamap_out, void *object) { struct gtidmac_softc *sc = tag; int chan; /* maybe need lock */ for (chan = 0; chan < sc->sc_gtidmac_nchan; chan++) if (sc->sc_cdesc[chan].chan_running == NULL) break; if (chan >= sc->sc_gtidmac_nchan) return -1; sc->sc_cdesc[chan].chan_running = object; /* unlock */ *dmamap_in = &sc->sc_cdesc[chan].chan_in; *dmamap_out = &sc->sc_cdesc[chan].chan_out; return chan; } void gtidmac_chan_free(void *tag, int chan) { struct gtidmac_softc *sc = tag; /* maybe need lock */ sc->sc_cdesc[chan].chan_running = NULL; /* unlock */ } /* ARGSUSED */ int gtidmac_setup(void *tag, int chan, int ninputs, bus_dmamap_t *dmamap_in, bus_dmamap_t *dmamap_out, bus_size_t size) { struct gtidmac_softc *sc = tag; struct gtidmac_dma_desc *dd, *fstdd, *nxtdd; struct gtidmac_desc *desc; uint32_t ccl, bcnt, ires, ores; int n = 0, iidx, oidx; KASSERT(ninputs == 0 || ninputs == 1); ccl = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCLR(chan)); #ifdef DIAGNOSTIC if (ccl & GTIDMAC_CCLR_CHANACT) panic("gtidmac_setup: chan%d already active", chan); #endif /* We always Chain-mode and max (16M - 1)byte/desc */ ccl = (GTIDMAC_CCLR_DESCMODE_16M | #ifdef GTIDMAC_DEBUG GTIDMAC_CCLR_CDEN | #endif GTIDMAC_CCLR_TRANSFERMODE_B /* Transfer Mode: Block */ | GTIDMAC_CCLR_INTMODE_NULL /* Intr Mode: Next Desc NULL */ | GTIDMAC_CCLR_CHAINMODE_C /* Chain Mode: Chaind */); if (size != (*dmamap_in)->dm_mapsize) { ccl |= GTIDMAC_CCLR_SRCHOLD; if ((*dmamap_in)->dm_mapsize == 8) ccl |= GTIDMAC_CCLR_SBL_8B; else if ((*dmamap_in)->dm_mapsize == 16) ccl |= GTIDMAC_CCLR_SBL_16B; else if ((*dmamap_in)->dm_mapsize == 32) ccl |= GTIDMAC_CCLR_SBL_32B; else if ((*dmamap_in)->dm_mapsize == 64) ccl |= GTIDMAC_CCLR_SBL_64B; else if ((*dmamap_in)->dm_mapsize == 128) ccl |= GTIDMAC_CCLR_SBL_128B; else panic("gtidmac_setup: chan%d source:" " unsupport hold size", chan); } else ccl |= GTIDMAC_CCLR_SBL_128B; if (size != (*dmamap_out)->dm_mapsize) { ccl |= GTIDMAC_CCLR_DESTHOLD; if ((*dmamap_out)->dm_mapsize == 8) ccl |= GTIDMAC_CCLR_DBL_8B; else if ((*dmamap_out)->dm_mapsize == 16) ccl |= GTIDMAC_CCLR_DBL_16B; else if ((*dmamap_out)->dm_mapsize == 32) ccl |= GTIDMAC_CCLR_DBL_32B; else if ((*dmamap_out)->dm_mapsize == 64) ccl |= GTIDMAC_CCLR_DBL_64B; else if ((*dmamap_out)->dm_mapsize == 128) ccl |= GTIDMAC_CCLR_DBL_128B; else panic("gtidmac_setup: chan%d destination:" " unsupport hold size", chan); } else ccl |= GTIDMAC_CCLR_DBL_128B; fstdd = SLIST_FIRST(&sc->sc_dlist); if (fstdd == NULL) { aprint_error_dev(sc->sc_dev, "no descriptor\n"); return ENOMEM; } SLIST_REMOVE_HEAD(&sc->sc_dlist, dd_next); sc->sc_cdesc[chan].chan_ddidx = fstdd->dd_index; dd = fstdd; ires = ores = 0; iidx = oidx = 0; while (1 /*CONSTCOND*/) { if (ccl & GTIDMAC_CCLR_SRCHOLD) { if (ccl & GTIDMAC_CCLR_DESTHOLD) bcnt = size; /* src/dst hold */ else bcnt = (*dmamap_out)->dm_segs[oidx].ds_len; } else if (ccl & GTIDMAC_CCLR_DESTHOLD) bcnt = (*dmamap_in)->dm_segs[iidx].ds_len; else bcnt = min((*dmamap_in)->dm_segs[iidx].ds_len - ires, (*dmamap_out)->dm_segs[oidx].ds_len - ores); desc = dd->dd_idmac_vaddr; desc->bc.mode16m.bcnt = bcnt | GTIDMAC_CIDMABCR_BCLEFT | GTIDMAC_CIDMABCR_OWN; desc->srcaddr = (*dmamap_in)->dm_segs[iidx].ds_addr + ires; desc->dstaddr = (*dmamap_out)->dm_segs[oidx].ds_addr + ores; n += bcnt; if (n >= size) break; if (!(ccl & GTIDMAC_CCLR_SRCHOLD)) { ires += bcnt; if (ires >= (*dmamap_in)->dm_segs[iidx].ds_len) { ires = 0; iidx++; KASSERT(iidx < (*dmamap_in)->dm_nsegs); } } if (!(ccl & GTIDMAC_CCLR_DESTHOLD)) { ores += bcnt; if (ores >= (*dmamap_out)->dm_segs[oidx].ds_len) { ores = 0; oidx++; KASSERT(oidx < (*dmamap_out)->dm_nsegs); } } nxtdd = SLIST_FIRST(&sc->sc_dlist); if (nxtdd == NULL) { aprint_error_dev(sc->sc_dev, "no descriptor\n"); return ENOMEM; } SLIST_REMOVE_HEAD(&sc->sc_dlist, dd_next); desc->nextdp = (uint32_t)nxtdd->dd_paddr; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, dd->dd_index * sizeof(*desc), sizeof(*desc), #ifdef GTIDMAC_DEBUG BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #else BUS_DMASYNC_PREWRITE); #endif SLIST_INSERT_AFTER(dd, nxtdd, dd_next); dd = nxtdd; } desc->nextdp = (uint32_t)NULL; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, dd->dd_index * sizeof(*desc), #ifdef GTIDMAC_DEBUG sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #else sizeof(*desc), BUS_DMASYNC_PREWRITE); #endif /* Set paddr of descriptor to Channel Next Descriptor Pointer */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CNDPR(chan), fstdd->dd_paddr); #if BYTE_ORDER == LITTLE_ENDIAN bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCHR(chan), GTIDMAC_CCHR_DESCBYTESWAP | GTIDMAC_CCHR_ENDIAN_LE); #else bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCHR(chan), GTIDMAC_CCHR_DESCBYTESWAP | GTIDMAC_CCHR_ENDIAN_BE); #endif bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCLR(chan), ccl); #ifdef GTIDMAC_DEBUG gtidmac_dump_idmacdesc(sc, fstdd, ccl, 0/*pre*/); #endif sc->sc_cdesc[chan].chan_totalcnt += size; return 0; } void gtidmac_start(void *tag, int chan, void (*dma_done_cb)(void *, int, bus_dmamap_t *, bus_dmamap_t *, int)) { struct gtidmac_softc *sc = tag; uint32_t ccl; DPRINTF(("%s:%d: starting\n", device_xname(sc->sc_dev), chan)); #ifdef GTIDMAC_DEBUG gtidmac_dump_idmacreg(sc, chan); #endif sc->sc_cdesc[chan].chan_dma_done = dma_done_cb; ccl = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCLR(chan)); /* Start and 'Fetch Next Descriptor' */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCLR(chan), ccl | GTIDMAC_CCLR_CHANEN | GTIDMAC_CCLR_FETCHND); } static uint32_t gtidmac_finish(void *tag, int chan, int error) { struct gtidmac_softc *sc = tag; struct gtidmac_dma_desc *dd, *fstdd, *nxtdd; struct gtidmac_desc *desc; fstdd = &sc->sc_dd_buffer[sc->sc_cdesc[chan].chan_ddidx]; #ifdef GTIDMAC_DEBUG if (error || gtidmac_debug > 1) { uint32_t ccl; gtidmac_dump_idmacreg(sc, chan); ccl = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCLR(chan)); gtidmac_dump_idmacdesc(sc, fstdd, ccl, 1/*post*/); } #endif dd = fstdd; do { desc = dd->dd_idmac_vaddr; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, dd->dd_index * sizeof(*desc), sizeof(*desc), #ifdef GTIDMAC_DEBUG BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #else BUS_DMASYNC_POSTWRITE); #endif nxtdd = SLIST_NEXT(dd, dd_next); SLIST_INSERT_HEAD(&sc->sc_dlist, dd, dd_next); dd = nxtdd; } while (desc->nextdp); return 0; } /* * XORE functions */ int mvxore_chan_alloc(void *tag, bus_dmamap_t **dmamap_in, bus_dmamap_t **dmamap_out, void *object) { struct gtidmac_softc *sc = tag; int chan; /* maybe need lock */ for (chan = 0; chan < sc->sc_mvxore_nchan; chan++) if (sc->sc_cdesc_xore[chan].chan_running == NULL) break; if (chan >= sc->sc_mvxore_nchan) return -1; sc->sc_cdesc_xore[chan].chan_running = object; /* unlock */ *dmamap_in = sc->sc_cdesc_xore[chan].chan_in; *dmamap_out = &sc->sc_cdesc_xore[chan].chan_out; return chan; } void mvxore_chan_free(void *tag, int chan) { struct gtidmac_softc *sc = tag; /* maybe need lock */ sc->sc_cdesc_xore[chan].chan_running = NULL; /* unlock */ } /* ARGSUSED */ int mvxore_setup(void *tag, int chan, int ninputs, bus_dmamap_t *dmamap_in, bus_dmamap_t *dmamap_out, bus_size_t size) { struct gtidmac_softc *sc = tag; struct gtidmac_dma_desc *dd, *fstdd, *nxtdd; struct mvxore_desc *desc; uint32_t xexc, bcnt, cmd, lastcmd; int n = 0, i; uint32_t ires[MVXORE_NSRC] = { 0, 0, 0, 0, 0, 0, 0, 0 }, ores = 0; int iidx[MVXORE_NSRC] = { 0, 0, 0, 0, 0, 0, 0, 0 }, oidx = 0; #ifdef DIAGNOSTIC uint32_t xexact; xexact = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXACTR(sc, chan)); if ((xexact & MVXORE_XEXACTR_XESTATUS_MASK) == MVXORE_XEXACTR_XESTATUS_ACT) panic("mvxore_setup: chan%d already active." " mvxore not support hot insertion", chan); #endif xexc = (MVXORE_XEXCR_REGACCPROTECT | MVXORE_XEXCR_DBL_128B | MVXORE_XEXCR_SBL_128B); cmd = lastcmd = 0; if (ninputs > 1) { xexc |= MVXORE_XEXCR_OM_XOR; lastcmd = cmd = (1 << ninputs) - 1; } else if (ninputs == 1) { if ((*dmamap_out)->dm_nsegs == 0) { xexc |= MVXORE_XEXCR_OM_CRC32; lastcmd = MVXORE_DESC_CMD_CRCLAST; } else xexc |= MVXORE_XEXCR_OM_DMA; } else if (ninputs == 0) { if ((*dmamap_out)->dm_nsegs != 1) { aprint_error_dev(sc->sc_dev, "XORE not supports %d DMA segments\n", (*dmamap_out)->dm_nsegs); return EINVAL; } if ((*dmamap_in)->dm_mapsize == 0) { xexc |= MVXORE_XEXCR_OM_ECC; /* XXXXX: Maybe need to set Timer Mode registers? */ #if 0 } else if ((*dmamap_in)->dm_mapsize == 8 || (*dmamap_in)->dm_mapsize == 16) { /* in case dmover */ uint64_t pattern; /* XXXX: Get pattern data */ KASSERT((*dmamap_in)->dm_mapsize == 8 || (void *)((uint32_t)(*dmamap_in)->_dm_origbuf & ~PAGE_MASK) == sc->sc_pbuf); pattern = *(uint64_t *)(*dmamap_in)->_dm_origbuf; /* XXXXX: XORE has a IVR. We should get this first. */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEIVRL, pattern); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEIVRH, pattern >> 32); xexc |= MVXORE_XEXCR_OM_MEMINIT; #endif } else { aprint_error_dev(sc->sc_dev, "XORE not supports DMA mapsize %zd\n", (*dmamap_in)->dm_mapsize); return EINVAL; } bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXDPR(sc, chan), (*dmamap_out)->dm_segs[0].ds_addr); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXBSR(sc, chan), (*dmamap_out)->dm_mapsize); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXCR(sc, chan), xexc); sc->sc_cdesc_xore[chan].chan_totalcnt += size; return 0; } /* Make descriptor for DMA/CRC32/XOR */ fstdd = SLIST_FIRST(&sc->sc_dlist_xore); if (fstdd == NULL) { aprint_error_dev(sc->sc_dev, "no xore descriptor\n"); return ENOMEM; } SLIST_REMOVE_HEAD(&sc->sc_dlist_xore, dd_next); sc->sc_cdesc_xore[chan].chan_ddidx = fstdd->dd_index + GTIDMAC_NDESC * sc->sc_gtidmac_nchan; dd = fstdd; while (1 /*CONSTCOND*/) { desc = dd->dd_xore_vaddr; desc->stat = MVXORE_DESC_STAT_OWN; desc->cmd = cmd; if ((*dmamap_out)->dm_nsegs != 0) { desc->dstaddr = (*dmamap_out)->dm_segs[oidx].ds_addr + ores; bcnt = (*dmamap_out)->dm_segs[oidx].ds_len - ores; } else { desc->dstaddr = 0; bcnt = MVXORE_MAXXFER; /* XXXXX */ } for (i = 0; i < ninputs; i++) { desc->srcaddr[i] = (*dmamap_in[i]).dm_segs[iidx[i]].ds_addr + ires[i]; bcnt = min(bcnt, (*dmamap_in[i]).dm_segs[iidx[i]].ds_len - ires[i]); } desc->bcnt = bcnt; n += bcnt; if (n >= size) break; ores += bcnt; if ((*dmamap_out)->dm_nsegs != 0 && ores >= (*dmamap_out)->dm_segs[oidx].ds_len) { ores = 0; oidx++; KASSERT(oidx < (*dmamap_out)->dm_nsegs); } for (i = 0; i < ninputs; i++) { ires[i] += bcnt; if (ires[i] >= (*dmamap_in[i]).dm_segs[iidx[i]].ds_len) { ires[i] = 0; iidx[i]++; KASSERT(iidx[i] < (*dmamap_in[i]).dm_nsegs); } } nxtdd = SLIST_FIRST(&sc->sc_dlist_xore); if (nxtdd == NULL) { aprint_error_dev(sc->sc_dev, "no xore descriptor\n"); return ENOMEM; } SLIST_REMOVE_HEAD(&sc->sc_dlist_xore, dd_next); desc->nextda = (uint32_t)nxtdd->dd_paddr; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_xore, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); SLIST_INSERT_AFTER(dd, nxtdd, dd_next); dd = nxtdd; } desc->cmd = lastcmd; desc->nextda = (uint32_t)NULL; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_xore, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Set paddr of descriptor to Channel Next Descriptor Pointer */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXNDPR(sc, chan), fstdd->dd_paddr); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXCR(sc, chan), xexc); #ifdef GTIDMAC_DEBUG gtidmac_dump_xoredesc(sc, fstdd, xexc, 0/*pre*/); #endif sc->sc_cdesc_xore[chan].chan_totalcnt += size; return 0; } void mvxore_start(void *tag, int chan, void (*dma_done_cb)(void *, int, bus_dmamap_t *, bus_dmamap_t *, int)) { struct gtidmac_softc *sc = tag; uint32_t xexact; DPRINTF(("%s:%d: xore starting\n", device_xname(sc->sc_dev), chan)); #ifdef GTIDMAC_DEBUG gtidmac_dump_xorereg(sc, chan); #endif sc->sc_cdesc_xore[chan].chan_dma_done = dma_done_cb; xexact = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXACTR(sc, chan)); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXACTR(sc, chan), xexact | MVXORE_XEXACTR_XESTART); } static uint32_t mvxore_finish(void *tag, int chan, int error) { struct gtidmac_softc *sc = tag; struct gtidmac_dma_desc *dd, *fstdd, *nxtdd; struct mvxore_desc *desc; uint32_t xexc; #ifdef GTIDMAC_DEBUG if (error || gtidmac_debug > 1) gtidmac_dump_xorereg(sc, chan); #endif xexc = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXCR(sc, chan)); if ((xexc & MVXORE_XEXCR_OM_MASK) == MVXORE_XEXCR_OM_ECC || (xexc & MVXORE_XEXCR_OM_MASK) == MVXORE_XEXCR_OM_MEMINIT) return 0; fstdd = &sc->sc_dd_buffer[sc->sc_cdesc_xore[chan].chan_ddidx]; #ifdef GTIDMAC_DEBUG if (error || gtidmac_debug > 1) gtidmac_dump_xoredesc(sc, fstdd, xexc, 1/*post*/); #endif dd = fstdd; do { desc = dd->dd_xore_vaddr; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_xore, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); nxtdd = SLIST_NEXT(dd, dd_next); SLIST_INSERT_HEAD(&sc->sc_dlist_xore, dd, dd_next); dd = nxtdd; } while (desc->nextda); if ((xexc & MVXORE_XEXCR_OM_MASK) == MVXORE_XEXCR_OM_CRC32) return desc->result; return 0; } static void gtidmac_wininit(struct gtidmac_softc *sc) { device_t pdev = device_parent(sc->sc_dev); uint64_t base; uint32_t size, cxap, en; int window, target, attr, rv, i; struct { int tag; int winacc; } targets[] = { { MARVELL_TAG_SDRAM_CS0, GTIDMAC_CXAPR_WINACC_FA }, { MARVELL_TAG_SDRAM_CS1, GTIDMAC_CXAPR_WINACC_FA }, { MARVELL_TAG_SDRAM_CS2, GTIDMAC_CXAPR_WINACC_FA }, { MARVELL_TAG_SDRAM_CS3, GTIDMAC_CXAPR_WINACC_FA }, /* Also can set following targets. */ /* Devices = 0x1(ORION_TARGETID_DEVICE_*) */ /* PCI = 0x3(ORION_TARGETID_PCI0_*) */ /* PCI Express = 0x4(ORION_TARGETID_PEX?_*) */ /* Tunit SRAM(?) = 0x5(???) */ { MARVELL_TAG_UNDEFINED, GTIDMAC_CXAPR_WINACC_NOAA } }; en = 0xff; cxap = 0; for (window = 0, i = 0; targets[i].tag != MARVELL_TAG_UNDEFINED && window < GTIDMAC_NWINDOW; i++) { rv = marvell_winparams_by_tag(pdev, targets[i].tag, &target, &attr, &base, &size); if (rv != 0 || size == 0) continue; if (base > 0xffffffffULL) { if (window >= GTIDMAC_NREMAP) { aprint_error_dev(sc->sc_dev, "can't remap window %d\n", window); continue; } bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_HARXR(window), (base >> 32) & 0xffffffff); } bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_BARX(window), GTIDMAC_BARX_TARGET(target) | GTIDMAC_BARX_ATTR(attr) | GTIDMAC_BARX_BASE(base)); bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_SRX(window), GTIDMAC_SRX_SIZE(size)); en &= ~GTIDMAC_BAER_EN(window); cxap |= GTIDMAC_CXAPR_WINACC(window, targets[i].winacc); window++; } bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_BAER, en); for (i = 0; i < GTIDMAC_NACCPROT; i++) bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CXAPR(i), cxap); } static void mvxore_wininit(struct gtidmac_softc *sc) { device_t pdev = device_parent(sc->sc_dev); uint64_t base; uint32_t target, attr, size, xexwc; int window, rv, i, p; struct { int tag; int winacc; } targets[] = { { MARVELL_TAG_SDRAM_CS0, MVXORE_XEXWCR_WINACC_FA }, { MARVELL_TAG_SDRAM_CS1, MVXORE_XEXWCR_WINACC_FA }, { MARVELL_TAG_SDRAM_CS2, MVXORE_XEXWCR_WINACC_FA }, { MARVELL_TAG_SDRAM_CS3, MVXORE_XEXWCR_WINACC_FA }, { MARVELL_TAG_UNDEFINED, MVXORE_XEXWCR_WINACC_NOAA } }; xexwc = 0; for (window = 0, i = 0; targets[i].tag != MARVELL_TAG_UNDEFINED && window < MVXORE_NWINDOW; i++) { rv = marvell_winparams_by_tag(pdev, targets[i].tag, &target, &attr, &base, &size); if (rv != 0 || size == 0) continue; if (base > 0xffffffffULL) { if (window >= MVXORE_NREMAP) { aprint_error_dev(sc->sc_dev, "can't remap window %d\n", window); continue; } for (p = 0; p < sc->sc_mvxore_nchan >> 1; p++) bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEHARRX(sc, p, window), (base >> 32) & 0xffffffff); } for (p = 0; p < sc->sc_mvxore_nchan >> 1; p++) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEBARX(sc, p, window), MVXORE_XEBARX_TARGET(target) | MVXORE_XEBARX_ATTR(attr) | MVXORE_XEBARX_BASE(base)); bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XESMRX(sc, p, window), MVXORE_XESMRX_SIZE(size)); } xexwc |= (MVXORE_XEXWCR_WINEN(window) | MVXORE_XEXWCR_WINACC(window, targets[i].winacc)); window++; } for (i = 0; i < sc->sc_mvxore_nchan; i++) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXWCR(sc, i), xexwc); /* XXXXX: reset... */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXAOCR(sc, 0), 0); } } static int gtidmac_buffer_setup(struct gtidmac_softc *sc) { bus_dma_segment_t segs; struct gtidmac_dma_desc *dd; uint32_t mask; int nchan, nsegs, i; nchan = sc->sc_gtidmac_nchan; if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC * nchan, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->sc_dev, "bus_dmamem_alloc failed: descriptor buffer\n"); goto fail0; } if (bus_dmamem_map(sc->sc_dmat, &segs, 1, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC * nchan, (void **)&sc->sc_dbuf, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->sc_dev, "bus_dmamem_map failed: descriptor buffer\n"); goto fail1; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC * nchan, 1, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC * nchan, 0, BUS_DMA_NOWAIT, &sc->sc_dmap)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed: descriptor buffer\n"); goto fail2; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, sc->sc_dbuf, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC * nchan, NULL, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_load failed: descriptor buffer\n"); goto fail3; } SLIST_INIT(&sc->sc_dlist); for (i = 0; i < GTIDMAC_NDESC * nchan; i++) { dd = &sc->sc_dd_buffer[i]; dd->dd_index = i; dd->dd_idmac_vaddr = &sc->sc_dbuf[i]; dd->dd_paddr = sc->sc_dmap->dm_segs[0].ds_addr + (sizeof(struct gtidmac_desc) * i); SLIST_INSERT_HEAD(&sc->sc_dlist, dd, dd_next); } /* Initialize IDMAC DMA channels */ mask = 0; for (i = 0; i < nchan; i++) { if (i > 0 && ((i * GTIDMAC_I_BITS) & 31 /*bit*/) == 0) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_IMR(i - 1), mask); mask = 0; } if (bus_dmamap_create(sc->sc_dmat, GTIDMAC_MAXXFER, GTIDMAC_NSEGS, GTIDMAC_MAXXFER, 0, BUS_DMA_NOWAIT, &sc->sc_cdesc[i].chan_in)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed: chan%d in\n", i); goto fail4; } if (bus_dmamap_create(sc->sc_dmat, GTIDMAC_MAXXFER, GTIDMAC_NSEGS, GTIDMAC_MAXXFER, 0, BUS_DMA_NOWAIT, &sc->sc_cdesc[i].chan_out)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed: chan%d out\n", i); bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc[i].chan_in); goto fail4; } sc->sc_cdesc[i].chan_totalcnt = 0; sc->sc_cdesc[i].chan_running = NULL; /* Ignore bits overflow. The mask is 32bit. */ mask |= GTIDMAC_I(i, GTIDMAC_I_COMP | GTIDMAC_I_ADDRMISS | GTIDMAC_I_ACCPROT | GTIDMAC_I_WRPROT | GTIDMAC_I_OWN); /* 8bits/channel * 4channels => 32bit */ if ((i & 0x3) == 0x3) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_IMR(i), mask); mask = 0; } } return 0; fail4: for (; i-- > 0;) { bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc[i].chan_in); bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc[i].chan_out); } bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap); fail3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap); fail2: bus_dmamem_unmap(sc->sc_dmat, sc->sc_dbuf, sizeof(struct gtidmac_desc) * GTIDMAC_NDESC); fail1: bus_dmamem_free(sc->sc_dmat, &segs, 1); fail0: return -1; } static int mvxore_buffer_setup(struct gtidmac_softc *sc) { bus_dma_segment_t segs; struct gtidmac_dma_desc *dd; uint32_t mask; int nchan, nsegs, i, j; nchan = sc->sc_mvxore_nchan; if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct mvxore_desc) * MVXORE_NDESC * nchan, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->sc_dev, "bus_dmamem_alloc failed: xore descriptor buffer\n"); goto fail0; } if (bus_dmamem_map(sc->sc_dmat, &segs, 1, sizeof(struct mvxore_desc) * MVXORE_NDESC * nchan, (void **)&sc->sc_dbuf_xore, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->sc_dev, "bus_dmamem_map failed: xore descriptor buffer\n"); goto fail1; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct mvxore_desc) * MVXORE_NDESC * nchan, 1, sizeof(struct mvxore_desc) * MVXORE_NDESC * nchan, 0, BUS_DMA_NOWAIT, &sc->sc_dmap_xore)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed: xore descriptor buffer\n"); goto fail2; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_dmap_xore, sc->sc_dbuf_xore, sizeof(struct mvxore_desc) * MVXORE_NDESC * nchan, NULL, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_load failed: xore descriptor buffer\n"); goto fail3; } SLIST_INIT(&sc->sc_dlist_xore); for (i = 0; i < MVXORE_NDESC * nchan; i++) { dd = &sc->sc_dd_buffer[i + GTIDMAC_NDESC * sc->sc_gtidmac_nchan]; dd->dd_index = i; dd->dd_xore_vaddr = &sc->sc_dbuf_xore[i]; dd->dd_paddr = sc->sc_dmap_xore->dm_segs[0].ds_addr + (sizeof(struct mvxore_desc) * i); SLIST_INSERT_HEAD(&sc->sc_dlist_xore, dd, dd_next); } /* Initialize XORE DMA channels */ mask = 0; for (i = 0; i < nchan; i++) { for (j = 0; j < MVXORE_NSRC; j++) { if (bus_dmamap_create(sc->sc_dmat, MVXORE_MAXXFER, MVXORE_NSEGS, MVXORE_MAXXFER, 0, BUS_DMA_NOWAIT, &sc->sc_cdesc_xore[i].chan_in[j])) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed:" " xore chan%d in[%d]\n", i, j); goto fail4; } } if (bus_dmamap_create(sc->sc_dmat, MVXORE_MAXXFER, MVXORE_NSEGS, MVXORE_MAXXFER, 0, BUS_DMA_NOWAIT, &sc->sc_cdesc_xore[i].chan_out)) { aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed: chan%d out\n", i); goto fail5; } sc->sc_cdesc_xore[i].chan_totalcnt = 0; sc->sc_cdesc_xore[i].chan_running = NULL; mask |= MVXORE_I(i, MVXORE_I_EOC | MVXORE_I_ADDRDECODE | MVXORE_I_ACCPROT | MVXORE_I_WRPROT | MVXORE_I_OWN | MVXORE_I_INTPARITY | MVXORE_I_XBAR); /* 16bits/channel * 2channels => 32bit */ if (i & 0x1) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEIMR(sc, i >> 1), mask); mask = 0; } } return 0; for (; i-- > 0;) { bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc_xore[i].chan_out); fail5: j = MVXORE_NSRC; fail4: for (; j-- > 0;) bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdesc_xore[i].chan_in[j]); } bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap_xore); fail3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap_xore); fail2: bus_dmamem_unmap(sc->sc_dmat, sc->sc_dbuf_xore, sizeof(struct mvxore_desc) * MVXORE_NDESC); fail1: bus_dmamem_free(sc->sc_dmat, &segs, 1); fail0: return -1; } #ifdef GTIDMAC_DEBUG static void gtidmac_dump_idmacreg(struct gtidmac_softc *sc, int chan) { uint32_t val; char buf[256]; printf("IDMAC Registers\n"); val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CIDMABCR(chan)); snprintb(buf, sizeof(buf), "\177\020b\037Own\0b\036BCLeft\0", val); printf(" Byte Count : %s\n", buf); printf(" ByteCnt : 0x%06x\n", val & GTIDMAC_CIDMABCR_BYTECNT_MASK); printf(" Source Address : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CIDMASAR(chan))); printf(" Destination Address : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CIDMADAR(chan))); printf(" Next Descriptor Pointer : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CNDPR(chan))); printf(" Current Descriptor Pointer : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCDPR(chan))); val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCLR(chan)); snprintb(buf, sizeof(buf), "\177\020b\024Abr\0b\021CDEn\0b\016ChanAct\0b\015FetchND\0" "b\014ChanEn\0b\012IntMode\0b\005DestHold\0b\003SrcHold\0", val); printf(" Channel Control (Low) : %s\n", buf); printf(" SrcBurstLimit : %s Bytes\n", (val & GTIDMAC_CCLR_SBL_MASK) == GTIDMAC_CCLR_SBL_128B ? "128" : (val & GTIDMAC_CCLR_SBL_MASK) == GTIDMAC_CCLR_SBL_64B ? "64" : (val & GTIDMAC_CCLR_SBL_MASK) == GTIDMAC_CCLR_SBL_32B ? "32" : (val & GTIDMAC_CCLR_SBL_MASK) == GTIDMAC_CCLR_SBL_16B ? "16" : (val & GTIDMAC_CCLR_SBL_MASK) == GTIDMAC_CCLR_SBL_8B ? "8" : "unknwon"); printf(" DstBurstLimit : %s Bytes\n", (val & GTIDMAC_CCLR_DBL_MASK) == GTIDMAC_CCLR_DBL_128B ? "128" : (val & GTIDMAC_CCLR_DBL_MASK) == GTIDMAC_CCLR_DBL_64B ? "64" : (val & GTIDMAC_CCLR_DBL_MASK) == GTIDMAC_CCLR_DBL_32B ? "32" : (val & GTIDMAC_CCLR_DBL_MASK) == GTIDMAC_CCLR_DBL_16B ? "16" : (val & GTIDMAC_CCLR_DBL_MASK) == GTIDMAC_CCLR_DBL_8B ? "8" : "unknwon"); printf(" ChainMode : %sChained\n", val & GTIDMAC_CCLR_CHAINMODE_NC ? "Non-" : ""); printf(" TransferMode : %s\n", val & GTIDMAC_CCLR_TRANSFERMODE_B ? "Block" : "Demand"); printf(" DescMode : %s\n", val & GTIDMAC_CCLR_DESCMODE_16M ? "16M" : "64k"); val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIDMAC_CCHR(chan)); snprintb(buf, sizeof(buf), "\177\020b\001DescByteSwap\0b\000Endianness\0", val); printf(" Channel Control (High) : %s\n", buf); } static void gtidmac_dump_idmacdesc(struct gtidmac_softc *sc, struct gtidmac_dma_desc *dd, uint32_t mode, int post) { struct gtidmac_desc *desc; int i; char buf[256]; printf("IDMAC Descriptor\n"); i = 0; while (1 /*CONSTCOND*/) { if (post) bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); desc = dd->dd_idmac_vaddr; printf("%d (0x%lx)\n", i, dd->dd_paddr); if (mode & GTIDMAC_CCLR_DESCMODE_16M) { snprintb(buf, sizeof(buf), "\177\020b\037Own\0b\036BCLeft\0", desc->bc.mode16m.bcnt); printf(" Byte Count : %s\n", buf); printf(" ByteCount : 0x%06x\n", desc->bc.mode16m.bcnt & GTIDMAC_CIDMABCR_BYTECNT_MASK); } else { printf(" Byte Count : 0x%04x\n", desc->bc.mode64k.bcnt); printf(" Remind Byte Count : 0x%04x\n", desc->bc.mode64k.rbc); } printf(" Source Address : 0x%08x\n", desc->srcaddr); printf(" Destination Address : 0x%08x\n", desc->dstaddr); printf(" Next Descriptor Pointer : 0x%08x\n", desc->nextdp); if (desc->nextdp == (uint32_t)NULL) break; if (!post) bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); i++; dd = SLIST_NEXT(dd, dd_next); } if (!post) bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void gtidmac_dump_xorereg(struct gtidmac_softc *sc, int chan) { uint32_t val, opmode; char buf[64]; printf("XORE Registers\n"); val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXCR(sc, chan)); snprintb(buf, sizeof(buf), "\177\020" "b\017RegAccProtect\0b\016DesSwp\0b\015DwrReqSwp\0b\014DrdResSwp\0", val); printf(" Configuration : 0x%s\n", buf); opmode = val & MVXORE_XEXCR_OM_MASK; printf(" OperationMode : %s operation\n", opmode == MVXORE_XEXCR_OM_XOR ? "XOR calculate" : opmode == MVXORE_XEXCR_OM_CRC32 ? "CRC-32 calculate" : opmode == MVXORE_XEXCR_OM_DMA ? "DMA" : opmode == MVXORE_XEXCR_OM_ECC ? "ECC cleanup" : opmode == MVXORE_XEXCR_OM_MEMINIT ? "Memory Initialization" : "unknown"); printf(" SrcBurstLimit : %s Bytes\n", (val & MVXORE_XEXCR_SBL_MASK) == MVXORE_XEXCR_SBL_128B ? "128" : (val & MVXORE_XEXCR_SBL_MASK) == MVXORE_XEXCR_SBL_64B ? "64" : (val & MVXORE_XEXCR_SBL_MASK) == MVXORE_XEXCR_SBL_32B ? "32" : "unknwon"); printf(" DstBurstLimit : %s Bytes\n", (val & MVXORE_XEXCR_SBL_MASK) == MVXORE_XEXCR_SBL_128B ? "128" : (val & MVXORE_XEXCR_SBL_MASK) == MVXORE_XEXCR_SBL_64B ? "64" : (val & MVXORE_XEXCR_SBL_MASK) == MVXORE_XEXCR_SBL_32B ? "32" : "unknwon"); val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXACTR(sc, chan)); printf(" Activation : 0x%08x\n", val); val &= MVXORE_XEXACTR_XESTATUS_MASK; printf(" XEstatus : %s\n", val == MVXORE_XEXACTR_XESTATUS_NA ? "Channel not active" : val == MVXORE_XEXACTR_XESTATUS_ACT ? "Channel active" : val == MVXORE_XEXACTR_XESTATUS_P ? "Channel paused" : "???"); if (opmode == MVXORE_XEXCR_OM_XOR || opmode == MVXORE_XEXCR_OM_CRC32 || opmode == MVXORE_XEXCR_OM_DMA) { printf(" NextDescPtr : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXNDPR(sc, chan))); printf(" CurrentDescPtr : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXCDPR(chan))); } printf(" ByteCnt : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXBCR(chan))); if (opmode == MVXORE_XEXCR_OM_ECC || opmode == MVXORE_XEXCR_OM_MEMINIT) { printf(" DstPtr : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXDPR(sc, chan))); printf(" BlockSize : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEXBSR(sc, chan))); if (opmode == MVXORE_XEXCR_OM_ECC) { val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XETMCR); if (val & MVXORE_XETMCR_TIMEREN) { val >>= MVXORE_XETMCR_SECTIONSIZECTRL_SHIFT; val &= MVXORE_XETMCR_SECTIONSIZECTRL_MASK; printf(" SectionSizeCtrl : 0x%08x\n", 2 ^ val); printf(" TimerInitVal : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XETMIVR)); printf(" TimerCrntVal : 0x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XETMCVR)); } } else /* MVXORE_XEXCR_OM_MEMINIT */ printf(" InitVal : 0x%08x%08x\n", bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEIVRH), bus_space_read_4(sc->sc_iot, sc->sc_ioh, MVXORE_XEIVRL)); } } static void gtidmac_dump_xoredesc(struct gtidmac_softc *sc, struct gtidmac_dma_desc *dd, uint32_t mode, int post) { struct mvxore_desc *desc; int i, j; char buf[256]; printf("XORE Descriptor\n"); mode &= MVXORE_XEXCR_OM_MASK; i = 0; while (1 /*CONSTCOND*/) { if (post) bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_xore, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); desc = dd->dd_xore_vaddr; printf("%d (0x%lx)\n", i, dd->dd_paddr); snprintb(buf, sizeof(buf), "\177\020b\037Own\0b\036Success\0", desc->stat); printf(" Status : 0x%s\n", buf); if (desc->cmd & MVXORE_DESC_CMD_CRCLAST && post) printf(" CRC-32 Result : 0x%08x\n", desc->result); snprintb(buf, sizeof(buf), "\177\020b\037EODIntEn\0b\036CRCLast\0" "b\007Src7Cmd\0b\006Src6Cmd\0b\005Src5Cmd\0b\004Src4Cmd\0" "b\003Src3Cmd\0b\002Src2Cmd\0b\001Src1Cmd\0b\000Src0Cmd\0", desc->cmd); printf(" Command : 0x%s\n", buf); printf(" Next Descriptor Address : 0x%08x\n", desc->nextda); printf(" Byte Count : 0x%06x\n", desc->bcnt); printf(" Destination Address : 0x%08x\n", desc->dstaddr); if (mode == MVXORE_XEXCR_OM_XOR) { for (j = 0; j < MVXORE_NSRC; j++) if (desc->cmd & MVXORE_DESC_CMD_SRCCMD(j)) printf(" Source Address#%d :" " 0x%08x\n", j, desc->srcaddr[j]); } else printf(" Source Address : 0x%08x\n", desc->srcaddr[0]); if (desc->nextda == (uint32_t)NULL) break; if (!post) bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_xore, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); i++; dd = SLIST_NEXT(dd, dd_next); } if (!post) bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_xore, dd->dd_index * sizeof(*desc), sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } #endif