/* $NetBSD: if_lmc.c,v 1.47 2009/05/06 09:25:15 cegger Exp $ */ /*- * Copyright (c) 2002-2006 David Boggs. * All rights reserved. * * BSD LICENSE: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * GNU GENERAL PUBLIC LICENSE: * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * DESCRIPTION: * * This is an open-source Unix device driver for PCI-bus WAN interface cards. * It sends and receives packets in HDLC frames over synchronous links. * A generic PC plus Unix plus some LMC cards makes an OPEN router. * This driver works with FreeBSD, NetBSD, OpenBSD, BSD/OS and Linux. * It has been tested on i386 (32-bit little-end), PowerPC (32-bit * big-end), Sparc (64-bit big-end), and Alpha (64-bit little-end) * architectures. * * HISTORY AND AUTHORS: * * Ron Crane had the neat idea to use a Fast Ethernet chip as a PCI * interface and add an Ethernet-to-HDLC gate array to make a WAN card. * David Boggs designed the Ethernet-to-HDLC gate arrays and PC cards. * We did this at our company, LAN Media Corporation (LMC). * SBE Corp aquired LMC and continues to make the cards. * * Since the cards use Tulip Ethernet chips, we started with Matt Thomas' * ubiquitous "de" driver. Michael Graff stripped out the Ethernet stuff * and added HSSI stuff. Basil Gunn ported it to Solaris (lost) and * Rob Braun ported it to Linux. Andrew Stanley-Jones added support * for three more cards and wrote the first version of lmcconfig. * During 2002-5 David Boggs rewrote it and now feels responsible for it. * * RESPONSIBLE INDIVIDUAL: * * Send bug reports and improvements to . */ #if defined(__FreeBSD__) # include /* OS version */ # include "opt_inet.h" /* INET */ # include "opt_inet6.h" /* INET6 */ # include "opt_netgraph.h" /* NETGRAPH */ # if defined(HAVE_KERNEL_OPTION_HEADERS) # include "opt_device_polling.h" /* DEVICE_POLLING */ # else # include "opt_global.h" /* ALTQ, DEVICE_POLLING */ # endif # include "opt_bpf.h" /* DEV_BPF */ # define NBPFILTER DEV_BPF # define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */ # define IFNET 1 # define NETDEV 0 # define NAPI 0 # define SPPP 1 # define P2P 0 # define GEN_HDLC 0 # define SYNC_PPP 0 # # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # if NETGRAPH # include # include # endif # if INET || INET6 # include # include # endif # if SPPP # include # endif # if NBPFILTER # include # endif # if !defined(NETGRAPH) # define NETGRAPH 0 # endif # if !defined(DEVICE_POLLING) # define DEVICE_POLLING 0 # endif # if !defined(ALTQ) # define ALTQ 0 # endif /* and finally... */ # include #endif /*__FreeBSD__*/ #if defined(__NetBSD__) # include __KERNEL_RCSID(0, "$NetBSD: if_lmc.c,v 1.47 2009/05/06 09:25:15 cegger Exp $"); # include /* OS version */ # include "opt_inet.h" /* INET6, INET */ # include "opt_altq_enabled.h" /* ALTQ */ # include "bpfilter.h" /* NBPFILTER */ # define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */ # define IFNET 1 # define NETDEV 0 # define NAPI 0 # define SPPP 1 # define P2P 0 # define GEN_HDLC 0 # define SYNC_PPP 0 # define NETGRAPH 0 # define DEVICE_POLLING 0 # # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # if INET || INET6 # include # include # endif # if SPPP # include # endif # if NBPFILTER # include # endif # if !defined(ALTQ) # define ALTQ 0 # endif /* and finally... */ # include "if_lmc.h" #endif /*__NetBSD__*/ #if defined(__OpenBSD__) # include /* OS version */ /* -DINET is passed on the compiler command line */ /* -DINET6 is passed on the compiler command line */ /* -DALTQ is passed on the compiler command line */ # include "bpfilter.h" /* NBPFILTER */ # define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */ # define IFNET 1 # define NAPI 0 # define SPPP 1 # define P2P 0 # define GEN_HDLC 0 # define SYNC_PPP 0 # define NETGRAPH 0 # define DEVICE_POLLING 0 # # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # if INET || INET6 # include # include # endif # if SPPP # include # endif # if NBPFILTER # include # endif # if !defined(ALTQ) # define ALTQ 0 # endif # undef NETDEV # define NETDEV 0 /* and finally... */ # include "if_lmc.h" #endif /*__OpenBSD__*/ #if defined(__bsdi__) # include /* OS version */ /* -DINET is passed on the compiler command line */ /* -DINET6 is passed on the compiler command line */ /* -DPPP is passed on the compiler command line */ /* -DCISCO_HDLC is passed on the compiler command line */ /* -DFR is passed on the compiler command line */ # if PPP || CISCO_HDLC || FR # define P2P 1 # else # define P2P 0 # endif # include "bpfilter.h" /* NBPFILTER */ # define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */ # define IFNET 1 # define NETDEV 0 # define NAPI 0 # define ALTQ 0 # define SPPP 0 # define GEN_HDLC 0 # define SYNC_PPP 0 # define NETGRAPH 0 # define DEVICE_POLLING 0 # # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # if INET || INET6 # include # include # endif # if P2P # include # include # endif # if NBPFILTER # include # endif /* and finally... */ # include "if_lmc.h" #endif /*__bsdi__*/ #if defined(__linux__) # include /* OS version */ # include # if CONFIG_LANMEDIA_GENHDLC # define GEN_HDLC 1 # else # define GEN_HDLC 0 # endif # if CONFIG_LANMEDIA_SYNCPPP # define SYNC_PPP 1 # else # define SYNC_PPP 0 # endif # if CONFIG_LANMEDIA_NAPI # define NAPI 1 # else # define NAPI 0 # endif # define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */ # define BSD 0 # define IFNET 0 # define NETDEV 1 # define ALTQ 0 # define P2P 0 # define SPPP 0 # define NETGRAPH 0 # define NBPFILTER 0 # define DEVICE_POLLING 0 # # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # if GEN_HDLC # include # endif # if SYNC_PPP # include # endif /* and finally... */ # include "if_lmc.h" #endif /* __linux__ */ /* The SROM is a generic 93C46 serial EEPROM (64 words by 16 bits). */ /* Data is set up before the RISING edge of CLK; CLK is parked low. */ static void /* context: process */ srom_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len) { u_int32_t csr = READ_CSR(sc, TLP_SROM_MII); for (; len>0; len--) { /* MSB first */ if (data & (1<<(len-1))) csr |= TLP_SROM_DIN; /* DIN setup */ else csr &= ~TLP_SROM_DIN; /* DIN setup */ WRITE_CSR(sc, TLP_SROM_MII, csr); csr |= TLP_SROM_CLK; /* CLK rising edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); csr &= ~TLP_SROM_CLK; /* CLK falling edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); } } /* Data is sampled on the RISING edge of CLK; CLK is parked low. */ static u_int16_t /* context: process */ srom_read(softc_t *sc, u_int8_t addr) { int i; u_int32_t csr; u_int16_t data; /* Enable SROM access. */ csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE); WRITE_CSR(sc, TLP_SROM_MII, csr); /* CS rising edge prepares SROM for a new cycle. */ csr |= TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */ srom_shift_bits(sc, 6, 4); /* issue read cmd */ srom_shift_bits(sc, addr, 6); /* issue address */ for (data=0, i=16; i>=0; i--) /* read ->17<- bits of data */ { /* MSB first */ csr = READ_CSR(sc, TLP_SROM_MII); /* DOUT sampled */ data = (data<<1) | ((csr & TLP_SROM_DOUT) ? 1:0); csr |= TLP_SROM_CLK; /* CLK rising edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); csr &= ~TLP_SROM_CLK; /* CLK falling edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); } /* Disable SROM access. */ WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE); return data; } /* The SROM is formatted by the mfgr and should NOT be written! */ /* But lmcconfig can rewrite it in case it gets overwritten somehow. */ static void /* context: process */ srom_write(softc_t *sc, u_int8_t addr, u_int16_t data) { u_int32_t csr; int i; /* Enable SROM access. */ csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE); WRITE_CSR(sc, TLP_SROM_MII, csr); /* Issue write-enable command. */ csr |= TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */ srom_shift_bits(sc, 4, 4); /* issue write enable cmd */ srom_shift_bits(sc, 63, 6); /* issue address */ csr &= ~TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */ /* Issue erase command. */ csr |= TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */ srom_shift_bits(sc, 7, 4); /* issue erase cmd */ srom_shift_bits(sc, addr, 6); /* issue address */ csr &= ~TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */ /* Issue write command. */ csr |= TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */ for (i=0; i<10; i++) /* 100 ms max wait */ if ((READ_CSR(sc, TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000); srom_shift_bits(sc, 5, 4); /* issue write cmd */ srom_shift_bits(sc, addr, 6); /* issue address */ srom_shift_bits(sc, data, 16); /* issue data */ csr &= ~TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */ /* Issue write-disable command. */ csr |= TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */ for (i=0; i<10; i++) /* 100 ms max wait */ if ((READ_CSR(sc, TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000); srom_shift_bits(sc, 4, 4); /* issue write disable cmd */ srom_shift_bits(sc, 0, 6); /* issue address */ csr &= ~TLP_SROM_CS; WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */ /* Disable SROM access. */ WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE); } /* Not all cards have BIOS roms. */ /* The BIOS ROM is an AMD 29F010 1Mbit (128K by 8) EEPROM. */ static u_int8_t /* context: process */ bios_read(softc_t *sc, u_int32_t addr) { u_int32_t srom_mii; /* Load the BIOS rom address register. */ WRITE_CSR(sc, TLP_BIOS_ROM, addr); /* Enable the BIOS rom. */ srom_mii = TLP_BIOS_SEL | TLP_BIOS_RD | TLP_MII_MDOE; WRITE_CSR(sc, TLP_SROM_MII, srom_mii); /* Wait at least 20 PCI cycles. */ DELAY(20); /* Read the BIOS rom data. */ srom_mii = READ_CSR(sc, TLP_SROM_MII); /* Disable the BIOS rom. */ WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE); return (u_int8_t)srom_mii & 0xFF; } static void /* context: process */ bios_write_phys(softc_t *sc, u_int32_t addr, u_int8_t data) { u_int32_t srom_mii; /* Load the BIOS rom address register. */ WRITE_CSR(sc, TLP_BIOS_ROM, addr); /* Enable the BIOS rom. */ srom_mii = TLP_BIOS_SEL | TLP_BIOS_WR | TLP_MII_MDOE; /* Load the data into the data register. */ srom_mii = (srom_mii & 0xFFFFFF00) | (data & 0xFF); WRITE_CSR(sc, TLP_SROM_MII, srom_mii); /* Wait at least 20 PCI cycles. */ DELAY(20); /* Disable the BIOS rom. */ WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE); } static void /* context: process */ bios_write(softc_t *sc, u_int32_t addr, u_int8_t data) { u_int8_t read_data; /* this sequence enables writing */ bios_write_phys(sc, 0x5555, 0xAA); bios_write_phys(sc, 0x2AAA, 0x55); bios_write_phys(sc, 0x5555, 0xA0); bios_write_phys(sc, addr, data); /* Wait for the write operation to complete. */ for (;;) /* interruptible syscall */ { for (;;) { read_data = bios_read(sc, addr); if ((read_data & 0x80) == (data & 0x80)) break; if (read_data & 0x20) { /* Data sheet says read it again. */ read_data = bios_read(sc, addr); if ((read_data & 0x80) == (data & 0x80)) break; if (sc->config.debug) printf("%s: bios_write() failed; rom addr=0x%x\n", NAME_UNIT, addr); return; } } read_data = bios_read(sc, addr); if (read_data == data) break; } } static void /* context: process */ bios_erase(softc_t *sc) { unsigned char read_data; /* This sequence enables erasing: */ bios_write_phys(sc, 0x5555, 0xAA); bios_write_phys(sc, 0x2AAA, 0x55); bios_write_phys(sc, 0x5555, 0x80); bios_write_phys(sc, 0x5555, 0xAA); bios_write_phys(sc, 0x2AAA, 0x55); bios_write_phys(sc, 0x5555, 0x10); /* Wait for the erase operation to complete. */ for (;;) /* interruptible syscall */ { for (;;) { read_data = bios_read(sc, 0); if (read_data & 0x80) break; if (read_data & 0x20) { /* Data sheet says read it again. */ read_data = bios_read(sc, 0); if (read_data & 0x80) break; if (sc->config.debug) printf("%s: bios_erase() failed\n", NAME_UNIT); return; } } read_data = bios_read(sc, 0); if (read_data == 0xFF) break; } } /* MDIO is 3-stated between tranactions. */ /* MDIO is set up before the RISING edge of MDC; MDC is parked low. */ static void /* context: process */ mii_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len) { u_int32_t csr = READ_CSR(sc, TLP_SROM_MII); for (; len>0; len--) { /* MSB first */ if (data & (1<<(len-1))) csr |= TLP_MII_MDOUT; /* MDOUT setup */ else csr &= ~TLP_MII_MDOUT; /* MDOUT setup */ WRITE_CSR(sc, TLP_SROM_MII, csr); csr |= TLP_MII_MDC; /* MDC rising edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); csr &= ~TLP_MII_MDC; /* MDC falling edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); } } /* The specification for the MII is IEEE Std 802.3 clause 22. */ /* MDIO is sampled on the RISING edge of MDC; MDC is parked low. */ static u_int16_t /* context: process */ mii_read(softc_t *sc, u_int8_t regad) { int i; u_int32_t csr; u_int16_t data = 0; WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOUT); mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */ mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */ mii_shift_bits(sc, 1, 2); /* start symbol */ mii_shift_bits(sc, 2, 2); /* read op */ mii_shift_bits(sc, 0, 5); /* phyad=0 */ mii_shift_bits(sc, regad, 5); /* regad */ csr = READ_CSR(sc, TLP_SROM_MII); csr |= TLP_MII_MDOE; WRITE_CSR(sc, TLP_SROM_MII, csr); mii_shift_bits(sc, 0, 2); /* turn-around */ for (i=15; i>=0; i--) /* data */ { /* MSB first */ csr = READ_CSR(sc, TLP_SROM_MII); /* MDIN sampled */ data = (data<<1) | ((csr & TLP_MII_MDIN) ? 1:0); csr |= TLP_MII_MDC; /* MDC rising edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); csr &= ~TLP_MII_MDC; /* MDC falling edge */ WRITE_CSR(sc, TLP_SROM_MII, csr); } return data; } static void /* context: process */ mii_write(softc_t *sc, u_int8_t regad, u_int16_t data) { WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOUT); mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */ mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */ mii_shift_bits(sc, 1, 2); /* start symbol */ mii_shift_bits(sc, 1, 2); /* write op */ mii_shift_bits(sc, 0, 5); /* phyad=0 */ mii_shift_bits(sc, regad, 5); /* regad */ mii_shift_bits(sc, 2, 2); /* turn-around */ mii_shift_bits(sc, data, 16); /* data */ WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE); if (regad == 16) sc->led_state = data; /* a small optimization */ } static void mii16_set_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii16 = mii_read(sc, 16); mii16 |= bits; mii_write(sc, 16, mii16); } static void mii16_clr_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii16 = mii_read(sc, 16); mii16 &= ~bits; mii_write(sc, 16, mii16); } static void mii17_set_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii17 = mii_read(sc, 17); mii17 |= bits; mii_write(sc, 17, mii17); } static void mii17_clr_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii17 = mii_read(sc, 17); mii17 &= ~bits; mii_write(sc, 17, mii17); } /* * Watchdog code is more readable if it refreshes LEDs * once a second whether they need it or not. * But MII refs take 150 uSecs each, so remember the last value * written to MII16 and avoid LED writes that do nothing. */ static void led_off(softc_t *sc, u_int16_t led) { if ((led & sc->led_state) == led) return; mii16_set_bits(sc, led); } static void led_on(softc_t *sc, u_int16_t led) { if ((led & sc->led_state) == 0) return; mii16_clr_bits(sc, led); } static void led_inv(softc_t *sc, u_int16_t led) { u_int16_t mii16 = mii_read(sc, 16); mii16 ^= led; mii_write(sc, 16, mii16); } /* * T1 & T3 framer registers are accessed through MII regs 17 & 18. * Write the address to MII reg 17 then R/W data through MII reg 18. * The hardware interface is an Intel-style 8-bit muxed A/D bus. */ static void framer_write(softc_t *sc, u_int16_t addr, u_int8_t data) { mii_write(sc, 17, addr); mii_write(sc, 18, data); } static u_int8_t framer_read(softc_t *sc, u_int16_t addr) { mii_write(sc, 17, addr); return (u_int8_t)mii_read(sc, 18); } /* Tulip's hardware implementation of General Purpose IO * (GPIO) pins makes life difficult for software. * Bits 7-0 in the Tulip GPIO CSR are used for two purposes * depending on the state of bit 8. * If bit 8 is 0 then bits 7-0 are "data" bits. * If bit 8 is 1 then bits 7-0 are "direction" bits. * If a direction bit is one, the data bit is an output. * The problem is that the direction bits are WRITE-ONLY. * Software must remember the direction bits in a shadow copy. * (sc->gpio_dir) in order to change some but not all of the bits. * All accesses to the Tulip GPIO register use these five procedures. */ static void gpio_make_input(softc_t *sc, u_int32_t bits) { sc->gpio_dir &= ~bits; WRITE_CSR(sc, TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir)); } static void gpio_make_output(softc_t *sc, u_int32_t bits) { sc->gpio_dir |= bits; WRITE_CSR(sc, TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir)); } static u_int32_t gpio_read(softc_t *sc) { return READ_CSR(sc, TLP_GPIO); } static void gpio_set_bits(softc_t *sc, u_int32_t bits) { WRITE_CSR(sc, TLP_GPIO, (gpio_read(sc) | bits) & 0xFF); } static void gpio_clr_bits(softc_t *sc, u_int32_t bits) { WRITE_CSR(sc, TLP_GPIO, (gpio_read(sc) & ~bits) & 0xFF); } /* Reset ALL of the flip-flops in the gate array to zero. */ /* This does NOT change the gate array programming. */ /* Called during initialization so it must not sleep. */ static void /* context: kernel (boot) or process (syscall) */ xilinx_reset(softc_t *sc) { /* Drive RESET low to force initialization. */ gpio_clr_bits(sc, GPIO_RESET); gpio_make_output(sc, GPIO_RESET); /* Hold RESET low for more than 10 uSec. */ DELAY(50); /* Done with RESET; make it an input. */ gpio_make_input(sc, GPIO_RESET); } /* Load Xilinx gate array program from on-board rom. */ /* This changes the gate array programming. */ static void /* context: process */ xilinx_load_from_rom(softc_t *sc) { int i; /* Drive MODE low to load from ROM rather than GPIO. */ gpio_clr_bits(sc, GPIO_MODE); gpio_make_output(sc, GPIO_MODE); /* Drive DP & RESET low to force configuration. */ gpio_clr_bits(sc, GPIO_RESET | GPIO_DP); gpio_make_output(sc, GPIO_RESET | GPIO_DP); /* Hold RESET & DP low for more than 10 uSec. */ DELAY(50); /* Done with RESET & DP; make them inputs. */ gpio_make_input(sc, GPIO_DP | GPIO_RESET); /* BUSY-WAIT for Xilinx chip to configure itself from ROM bits. */ for (i=0; i<100; i++) /* 1 sec max delay */ if ((gpio_read(sc) & GPIO_DP)==0) SLEEP(10000); /* Done with MODE; make it an input. */ gpio_make_input(sc, GPIO_MODE); } /* Load the Xilinx gate array program from userland bits. */ /* This changes the gate array programming. */ static int /* context: process */ xilinx_load_from_file(softc_t *sc, char *addr, u_int32_t len) { char *data; int i, j, error; /* Get some pages to hold the Xilinx bits; biggest file is < 6 KB. */ if (len > 8192) return EFBIG; /* too big */ data = malloc(len, M_TEMP, M_WAITOK); if (data == NULL) return ENOMEM; /* Copy the Xilinx bits from userland. */ if ((error = copyin(addr, data, len))) { free(data, M_TEMP); return error; } /* Drive MODE high to load from GPIO rather than ROM. */ gpio_set_bits(sc, GPIO_MODE); gpio_make_output(sc, GPIO_MODE); /* Drive DP & RESET low to force configuration. */ gpio_clr_bits(sc, GPIO_RESET | GPIO_DP); gpio_make_output(sc, GPIO_RESET | GPIO_DP); /* Hold RESET & DP low for more than 10 uSec. */ DELAY(50); /* Done with RESET & DP; make them inputs. */ gpio_make_input(sc, GPIO_RESET | GPIO_DP); /* BUSY-WAIT for Xilinx chip to clear its config memory. */ gpio_make_input(sc, GPIO_INIT); for (i=0; i<10000; i++) /* 1 sec max delay */ if ((gpio_read(sc) & GPIO_INIT)==0) SLEEP(10000); /* Configure CLK and DATA as outputs. */ gpio_set_bits(sc, GPIO_CLK); /* park CLK high */ gpio_make_output(sc, GPIO_CLK | GPIO_DATA); /* Write bits to Xilinx; CLK is parked HIGH. */ /* DATA is set up before the RISING edge of CLK. */ for (i=0; istatus.card_type == CSID_LMC_SSI) { if (synth->prescale == 9) /* divide by 512 */ mii17_set_bits(sc, MII17_SSI_PRESCALE); else /* divide by 32 */ mii17_clr_bits(sc, MII17_SSI_PRESCALE); } gpio_clr_bits(sc, GPIO_DATA | GPIO_CLK); gpio_make_output(sc, GPIO_DATA | GPIO_CLK); /* SYNTH is a low-true chip enable for the AV9110 chip. */ gpio_set_bits(sc, GPIO_SSI_SYNTH); gpio_make_output(sc, GPIO_SSI_SYNTH); gpio_clr_bits(sc, GPIO_SSI_SYNTH); /* Serially shift the command into the AV9110 chip. */ synth_shift_bits(sc, synth->n, 7); synth_shift_bits(sc, synth->m, 7); synth_shift_bits(sc, synth->v, 1); synth_shift_bits(sc, synth->x, 2); synth_shift_bits(sc, synth->r, 2); synth_shift_bits(sc, 0x16, 5); /* enable clk/x output */ /* SYNTH (chip enable) going high ends the command. */ gpio_set_bits(sc, GPIO_SSI_SYNTH); gpio_make_input(sc, GPIO_SSI_SYNTH); /* Stop driving serial-related signals; pullups/pulldowns take over. */ gpio_make_input(sc, GPIO_DATA | GPIO_CLK); /* remember the new synthesizer parameters */ if (&sc->config.synth != synth) sc->config.synth = *synth; } /* Write a command to the DAC controlling the VCXO on some T3 adapters. */ /* The DAC is a TI-TLV5636: 12-bit resolution and a serial interface. */ /* DATA is set up before the FALLING edge of CLK. CLK is parked HIGH. */ static void /* context: process */ dac_write(softc_t *sc, u_int16_t data) { int i; /* Prepare to use DATA and CLK. */ gpio_set_bits(sc, GPIO_DATA | GPIO_CLK); gpio_make_output(sc, GPIO_DATA | GPIO_CLK); /* High-to-low transition prepares DAC for new value. */ gpio_set_bits(sc, GPIO_T3_DAC); gpio_make_output(sc, GPIO_T3_DAC); gpio_clr_bits(sc, GPIO_T3_DAC); /* Serially shift command bits into DAC. */ for (i=0; i<16; i++) { /* MSB first */ if (data & (1<<(15-i))) gpio_set_bits(sc, GPIO_DATA); /* DATA setup */ else gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */ gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */ gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */ } /* Done with DAC; make it an input; loads new value into DAC. */ gpio_set_bits(sc, GPIO_T3_DAC); gpio_make_input(sc, GPIO_T3_DAC); /* Stop driving serial-related signals; pullups/pulldowns take over. */ gpio_make_input(sc, GPIO_DATA | GPIO_CLK); } /* Begin HSSI card code */ static struct card hssi_card = { .ident = hssi_ident, .watchdog = hssi_watchdog, .ioctl = hssi_ioctl, .attach = hssi_attach, .detach = hssi_detach, }; static void hssi_ident(softc_t *sc) { printf(", EIA-613"); } static void /* context: softirq */ hssi_watchdog(softc_t *sc) { u_int16_t mii16 = mii_read(sc, 16) & MII16_HSSI_MODEM; sc->status.link_state = STATE_UP; led_inv(sc, MII16_HSSI_LED_UL); /* Software is alive. */ led_on(sc, MII16_HSSI_LED_LL); /* always on (SSI cable) */ /* Check the transmit clock. */ if (sc->status.tx_speed == 0) { led_on(sc, MII16_HSSI_LED_UR); sc->status.link_state = STATE_DOWN; } else led_off(sc, MII16_HSSI_LED_UR); /* Is the modem ready? */ if ((mii16 & MII16_HSSI_CA)==0) { led_off(sc, MII16_HSSI_LED_LR); sc->status.link_state = STATE_DOWN; } else led_on(sc, MII16_HSSI_LED_LR); /* Print the modem control signals if they changed. */ if ((sc->config.debug) && (mii16 != sc->last_mii16)) { const char *on = "ON ", *off = "OFF"; printf("%s: TA=%s CA=%s LA=%s LB=%s LC=%s TM=%s\n", NAME_UNIT, (mii16 & MII16_HSSI_TA) ? on : off, (mii16 & MII16_HSSI_CA) ? on : off, (mii16 & MII16_HSSI_LA) ? on : off, (mii16 & MII16_HSSI_LB) ? on : off, (mii16 & MII16_HSSI_LC) ? on : off, (mii16 & MII16_HSSI_TM) ? on : off); } /* SNMP one-second-report */ sc->status.snmp.hssi.sigs = mii16 & MII16_HSSI_MODEM; /* Remember this state until next time. */ sc->last_mii16 = mii16; /* If a loop back is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) sc->status.link_state = STATE_UP; } static int /* context: process */ hssi_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; if (ioctl->cmd == IOCTL_SNMP_SIGS) { u_int16_t mii16 = mii_read(sc, 16); mii16 &= ~MII16_HSSI_MODEM; mii16 |= (MII16_HSSI_MODEM & ioctl->data); mii_write(sc, 16, mii16); } else if (ioctl->cmd == IOCTL_SET_STATUS) { if (ioctl->data) mii16_set_bits(sc, MII16_HSSI_TA); else mii16_clr_bits(sc, MII16_HSSI_TA); } else error = EINVAL; return error; } /* Must not sleep. */ static void hssi_attach(softc_t *sc, struct config *config) { if (config == NULL) /* startup config */ { sc->status.card_type = READ_PCI_CFG(sc, TLP_CSID); sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.tx_clk_src = CFG_CLKMUX_ST; sc->config.dte_dce = CFG_DTE; sc->config.synth.n = 52; /* 52.000 Mbs */ sc->config.synth.m = 5; sc->config.synth.v = 0; sc->config.synth.x = 0; sc->config.synth.r = 0; sc->config.synth.prescale = 2; } else if (config != &sc->config) /* change config */ { u_int32_t *old_synth = (u_int32_t *)&sc->config.synth; u_int32_t *new_synth = (u_int32_t *)&config->synth; if ((sc->config.crc_len == config->crc_len) && (sc->config.loop_back == config->loop_back) && (sc->config.tx_clk_src == config->tx_clk_src) && (sc->config.dte_dce == config->dte_dce) && (*old_synth == *new_synth)) return; /* nothing changed */ sc->config.crc_len = config->crc_len; sc->config.loop_back = config->loop_back; sc->config.tx_clk_src = config->tx_clk_src; sc->config.dte_dce = config->dte_dce; *old_synth = *new_synth; } /* If (config == &sc->config) then the FPGA microcode * was just initialized and the current config should * be reloaded into the card. */ /* set CRC length */ if (sc->config.crc_len == CFG_CRC_32) mii16_set_bits(sc, MII16_HSSI_CRC32); else mii16_clr_bits(sc, MII16_HSSI_CRC32); /* Assert pin LA in HSSI conn: ask modem for local loop. */ if (sc->config.loop_back == CFG_LOOP_LL) mii16_set_bits(sc, MII16_HSSI_LA); else mii16_clr_bits(sc, MII16_HSSI_LA); /* Assert pin LB in HSSI conn: ask modem for remote loop. */ if (sc->config.loop_back == CFG_LOOP_RL) mii16_set_bits(sc, MII16_HSSI_LB); else mii16_clr_bits(sc, MII16_HSSI_LB); if (sc->status.card_type == CSID_LMC_HSSI) { /* set TXCLK src */ if (sc->config.tx_clk_src == CFG_CLKMUX_ST) gpio_set_bits(sc, GPIO_HSSI_TXCLK); else gpio_clr_bits(sc, GPIO_HSSI_TXCLK); gpio_make_output(sc, GPIO_HSSI_TXCLK); } else if (sc->status.card_type == CSID_LMC_HSSIc) { /* cPCI HSSI rev C has extra features */ /* Set TXCLK source. */ u_int16_t mii16 = mii_read(sc, 16); mii16 &= ~MII16_HSSI_CLKMUX; mii16 |= (sc->config.tx_clk_src&3)<<13; mii_write(sc, 16, mii16); /* cPCI HSSI implements loopback towards the net. */ if (sc->config.loop_back == CFG_LOOP_LINE) mii16_set_bits(sc, MII16_HSSI_LOOP); else mii16_clr_bits(sc, MII16_HSSI_LOOP); /* Set DTE/DCE mode. */ if (sc->config.dte_dce == CFG_DCE) gpio_set_bits(sc, GPIO_HSSI_DCE); else gpio_clr_bits(sc, GPIO_HSSI_DCE); gpio_make_output(sc, GPIO_HSSI_DCE); /* Program the synthesized oscillator. */ synth_write(sc, &sc->config.synth); } } static void hssi_detach(softc_t *sc) { mii16_clr_bits(sc, MII16_HSSI_TA); led_on(sc, MII16_LED_ALL); } /* End HSSI card code */ /* Begin DS3 card code */ static struct card t3_card = { .ident = t3_ident, .watchdog = t3_watchdog, .ioctl = t3_ioctl, .attach = t3_attach, .detach = t3_detach, }; static void t3_ident(softc_t *sc) { printf(", TXC03401 rev B"); } static void /* context: softirq */ t3_watchdog(softc_t *sc) { u_int16_t CV; u_int8_t CERR, PERR, MERR, FERR, FEBE; u_int8_t ctl1, stat16, feac; u_int16_t mii16; sc->status.link_state = STATE_UP; /* Read the alarm registers. */ ctl1 = framer_read(sc, T3CSR_CTL1); stat16 = framer_read(sc, T3CSR_STAT16); mii16 = mii_read(sc, 16); /* Always ignore the RTLOC alarm bit. */ stat16 &= ~STAT16_RTLOC; /* Software is alive. */ led_inv(sc, MII16_DS3_LED_GRN); /* Receiving Alarm Indication Signal (AIS). */ if (stat16 & STAT16_RAIS) /* receiving ais */ led_on(sc, MII16_DS3_LED_BLU); else if (ctl1 & CTL1_TXAIS) /* sending ais */ led_inv(sc, MII16_DS3_LED_BLU); else led_off(sc, MII16_DS3_LED_BLU); /* Receiving Remote Alarm Indication (RAI). */ if (stat16 & STAT16_XERR) /* receiving rai */ led_on(sc, MII16_DS3_LED_YEL); else if ((ctl1 & CTL1_XTX) == 0) /* sending rai */ led_inv(sc, MII16_DS3_LED_YEL); else led_off(sc, MII16_DS3_LED_YEL); /* If certain status bits are set then the link is 'down'. */ /* The bad bits are: rxlos rxoof rxais rxidl xerr. */ if (stat16 & ~(STAT16_FEAC | STAT16_SEF)) sc->status.link_state = STATE_DOWN; /* Declare local Red Alarm if the link is down. */ if (sc->status.link_state == STATE_DOWN) led_on(sc, MII16_DS3_LED_RED); else if (sc->loop_timer) /* loopback is active */ led_inv(sc, MII16_DS3_LED_RED); else led_off(sc, MII16_DS3_LED_RED); /* Print latched error bits if they changed. */ if ((sc->config.debug) && ((stat16 & ~STAT16_FEAC) != sc->last_stat16)) { const char *on = "ON ", *off = "OFF"; printf("%s: RLOS=%s ROOF=%s RAIS=%s RIDL=%s SEF=%s XERR=%s\n", NAME_UNIT, (stat16 & STAT16_RLOS) ? on : off, (stat16 & STAT16_ROOF) ? on : off, (stat16 & STAT16_RAIS) ? on : off, (stat16 & STAT16_RIDL) ? on : off, (stat16 & STAT16_SEF) ? on : off, (stat16 & STAT16_XERR) ? on : off); } /* Check and print error counters if non-zero. */ CV = framer_read(sc, T3CSR_CVHI)<<8; CV += framer_read(sc, T3CSR_CVLO); PERR = framer_read(sc, T3CSR_PERR); CERR = framer_read(sc, T3CSR_CERR); FERR = framer_read(sc, T3CSR_FERR); MERR = framer_read(sc, T3CSR_MERR); FEBE = framer_read(sc, T3CSR_FEBE); /* CV is invalid during LOS. */ if (stat16 & STAT16_RLOS) CV = 0; /* CERR & FEBE are invalid in M13 mode */ if (sc->config.format == CFG_FORMAT_T3M13) CERR = FEBE = 0; /* FEBE is invalid during AIS. */ if (stat16 & STAT16_RAIS) FEBE = 0; if (sc->config.debug && (CV || PERR || CERR || FERR || MERR || FEBE)) printf("%s: CV=%u PERR=%u CERR=%u FERR=%u MERR=%u FEBE=%u\n", NAME_UNIT, CV, PERR, CERR, FERR, MERR, FEBE); /* Driver keeps crude link-level error counters (SNMP is better). */ sc->status.cntrs.lcv_errs += CV; sc->status.cntrs.par_errs += PERR; sc->status.cntrs.cpar_errs += CERR; sc->status.cntrs.frm_errs += FERR; sc->status.cntrs.mfrm_errs += MERR; sc->status.cntrs.febe_errs += FEBE; /* Check for FEAC messages (FEAC not defined in M13 mode). */ if (FORMAT_T3CPAR && (stat16 & STAT16_FEAC)) do { feac = framer_read(sc, T3CSR_FEAC_STK); if ((feac & FEAC_STK_VALID)==0) break; /* Ignore RxFEACs while a far end loopback has been requested. */ if (sc->status.snmp.t3.line & TLOOP_FAR_LINE) continue; switch (feac & FEAC_STK_FEAC) { case T3BOP_LINE_UP: break; case T3BOP_LINE_DOWN: break; case T3BOP_LOOP_DS3: { if (sc->last_FEAC == T3BOP_LINE_DOWN) { if (sc->config.debug) printf("%s: Received a 'line loopback deactivate' FEAC msg\n", NAME_UNIT); mii16_clr_bits(sc, MII16_DS3_LNLBK); sc->loop_timer = 0; } if (sc->last_FEAC == T3BOP_LINE_UP) { if (sc->config.debug) printf("%s: Received a 'line loopback activate' FEAC msg\n", NAME_UNIT); mii16_set_bits(sc, MII16_DS3_LNLBK); sc->loop_timer = 300; } break; } case T3BOP_OOF: { if (sc->config.debug) printf("%s: Received a 'far end LOF' FEAC msg\n", NAME_UNIT); break; } case T3BOP_IDLE: { if (sc->config.debug) printf("%s: Received a 'far end IDL' FEAC msg\n", NAME_UNIT); break; } case T3BOP_AIS: { if (sc->config.debug) printf("%s: Received a 'far end AIS' FEAC msg\n", NAME_UNIT); break; } case T3BOP_LOS: { if (sc->config.debug) printf("%s: Received a 'far end LOS' FEAC msg\n", NAME_UNIT); break; } default: { if (sc->config.debug) printf("%s: Received a 'type 0x%02X' FEAC msg\n", NAME_UNIT, feac & FEAC_STK_FEAC); break; } } sc->last_FEAC = feac & FEAC_STK_FEAC; } while (feac & FEAC_STK_MORE); stat16 &= ~STAT16_FEAC; /* Send Service-Affecting priority FEAC messages */ if (((sc->last_stat16 ^ stat16) & 0xF0) && (FORMAT_T3CPAR)) { /* Transmit continuous FEACs */ framer_write(sc, T3CSR_CTL14, framer_read(sc, T3CSR_CTL14) & ~CTL14_FEAC10); if (stat16 & STAT16_RLOS) framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_LOS); else if (stat16 & STAT16_ROOF) framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_OOF); else if (stat16 & STAT16_RAIS) framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_AIS); else if (stat16 & STAT16_RIDL) framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_IDLE); else framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE); } /* Start sending RAI, Remote Alarm Indication. */ if ((stat16 & STAT16_ROOF) && !(stat16 & STAT16_RLOS) && !(sc->last_stat16 & STAT16_ROOF)) framer_write(sc, T3CSR_CTL1, ctl1 &= ~CTL1_XTX); /* Stop sending RAI, Remote Alarm Indication. */ else if (!(stat16 & STAT16_ROOF) && (sc->last_stat16 & STAT16_ROOF)) framer_write(sc, T3CSR_CTL1, ctl1 |= CTL1_XTX); /* Start sending AIS, Alarm Indication Signal */ if ((stat16 & STAT16_RLOS) && !(sc->last_stat16 & STAT16_RLOS)) { mii16_set_bits(sc, MII16_DS3_FRAME); framer_write(sc, T3CSR_CTL1, ctl1 | CTL1_TXAIS); } /* Stop sending AIS, Alarm Indication Signal */ else if (!(stat16 & STAT16_RLOS) && (sc->last_stat16 & STAT16_RLOS)) { mii16_clr_bits(sc, MII16_DS3_FRAME); framer_write(sc, T3CSR_CTL1, ctl1 & ~CTL1_TXAIS); } /* Time out loopback requests. */ if (sc->loop_timer) if (--sc->loop_timer == 0) if (mii16 & MII16_DS3_LNLBK) { if (sc->config.debug) printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT); mii16_clr_bits(sc, MII16_DS3_LNLBK); /* line loopback off */ } /* SNMP error counters */ sc->status.snmp.t3.lcv = CV; sc->status.snmp.t3.pcv = PERR; sc->status.snmp.t3.ccv = CERR; sc->status.snmp.t3.febe = FEBE; /* SNMP Line Status */ sc->status.snmp.t3.line = 0; if (!(ctl1 & CTL1_XTX)) sc->status.snmp.t3.line |= TLINE_TX_RAI; if (stat16 & STAT16_XERR) sc->status.snmp.t3.line |= TLINE_RX_RAI; if (ctl1 & CTL1_TXAIS) sc->status.snmp.t3.line |= TLINE_TX_AIS; if (stat16 & STAT16_RAIS) sc->status.snmp.t3.line |= TLINE_RX_AIS; if (stat16 & STAT16_ROOF) sc->status.snmp.t3.line |= TLINE_LOF; if (stat16 & STAT16_RLOS) sc->status.snmp.t3.line |= TLINE_LOS; if (stat16 & STAT16_SEF) sc->status.snmp.t3.line |= T3LINE_SEF; /* SNMP Loopback Status */ sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE; if (sc->config.loop_back == CFG_LOOP_TULIP) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER; if (ctl1 & CTL1_3LOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_INWARD; if (mii16 & MII16_DS3_TRLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER; if (mii16 & MII16_DS3_LNLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_LINE; /*if (ctl12 & CTL12_RTPLOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_PAYLOAD; */ /* Remember this state until next time. */ sc->last_stat16 = stat16; /* If an INWARD loopback is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */ sc->status.link_state = STATE_UP; } static void /* context: process */ t3_send_dbl_feac(softc_t *sc, int feac1, int feac2) { u_int8_t tx_feac; int i; /* The FEAC transmitter could be sending a continuous */ /* FEAC msg when told to send a double FEAC message. */ /* So save the current state of the FEAC transmitter. */ tx_feac = framer_read(sc, T3CSR_TX_FEAC); /* Load second FEAC code and stop FEAC transmitter. */ framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE + feac2); /* FEAC transmitter sends 10 more FEACs and then stops. */ SLEEP(20000); /* sending one FEAC takes 1700 uSecs */ /* Load first FEAC code and start FEAC transmitter. */ framer_write(sc, T3CSR_DBL_FEAC, CTL13_DFEXEC + feac1); /* Wait for double FEAC sequence to complete -- about 70 ms. */ for (i=0; i<10; i++) /* max delay 100 ms */ if (framer_read(sc, T3CSR_DBL_FEAC) & CTL13_DFEXEC) SLEEP(10000); /* Flush received FEACS; do not respond to our own loop cmd! */ while (framer_read(sc, T3CSR_FEAC_STK) & FEAC_STK_VALID) DELAY(1); /* Restore previous state of the FEAC transmitter. */ /* If it was sending a continous FEAC, it will resume. */ framer_write(sc, T3CSR_TX_FEAC, tx_feac); } static int /* context: process */ t3_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; switch (ioctl->cmd) { case IOCTL_SNMP_SEND: /* set opstatus? */ { if (sc->config.format != CFG_FORMAT_T3CPAR) error = EINVAL; else if (ioctl->data == TSEND_LINE) { sc->status.snmp.t3.loop |= TLOOP_FAR_LINE; t3_send_dbl_feac(sc, T3BOP_LINE_UP, T3BOP_LOOP_DS3); } else if (ioctl->data == TSEND_RESET) { t3_send_dbl_feac(sc, T3BOP_LINE_DOWN, T3BOP_LOOP_DS3); sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE; } else error = EINVAL; break; } case IOCTL_SNMP_LOOP: /* set opstatus = test? */ { if (ioctl->data == CFG_LOOP_NONE) { mii16_clr_bits(sc, MII16_DS3_FRAME); mii16_clr_bits(sc, MII16_DS3_TRLBK); mii16_clr_bits(sc, MII16_DS3_LNLBK); framer_write(sc, T3CSR_CTL1, framer_read(sc, T3CSR_CTL1) & ~CTL1_3LOOP); framer_write(sc, T3CSR_CTL12, framer_read(sc, T3CSR_CTL12) & ~(CTL12_RTPLOOP | CTL12_RTPLLEN)); } else if (ioctl->data == CFG_LOOP_LINE) mii16_set_bits(sc, MII16_DS3_LNLBK); else if (ioctl->data == CFG_LOOP_OTHER) mii16_set_bits(sc, MII16_DS3_TRLBK); else if (ioctl->data == CFG_LOOP_INWARD) framer_write(sc, T3CSR_CTL1, framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP); else if (ioctl->data == CFG_LOOP_DUAL) { mii16_set_bits(sc, MII16_DS3_LNLBK); framer_write(sc, T3CSR_CTL1, framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP); } else if (ioctl->data == CFG_LOOP_PAYLOAD) { mii16_set_bits(sc, MII16_DS3_FRAME); framer_write(sc, T3CSR_CTL12, framer_read(sc, T3CSR_CTL12) | CTL12_RTPLOOP); framer_write(sc, T3CSR_CTL12, framer_read(sc, T3CSR_CTL12) | CTL12_RTPLLEN); DELAY(25); /* at least two frames (22 uS) */ framer_write(sc, T3CSR_CTL12, framer_read(sc, T3CSR_CTL12) & ~CTL12_RTPLLEN); } else error = EINVAL; break; } case IOCTL_SET_STATUS: { #if 0 if (ioctl->data) framer_write(sc, T3CSR_CTL1, framer_read(sc, T3CSR_CTL1) & ~CTL1_TXIDL); else /* off */ framer_write(sc, T3CSR_CTL1, framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL); #endif break; } default: error = EINVAL; break; } return error; } /* Must not sleep. */ static void t3_attach(softc_t *sc, struct config *config) { int i; u_int8_t ctl1; if (config == NULL) /* startup config */ { sc->status.card_type = CSID_LMC_T3; sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.format = CFG_FORMAT_T3CPAR; sc->config.cable_len = 10; /* meters */ sc->config.scrambler = CFG_SCRAM_DL_KEN; sc->config.tx_clk_src = CFG_CLKMUX_INT; /* Center the VCXO -- get within 20 PPM of 44736000. */ dac_write(sc, 0x9002); /* set Vref = 2.048 volts */ dac_write(sc, 2048); /* range is 0..4095 */ } else if (config != &sc->config) /* change config */ { if ((sc->config.crc_len == config->crc_len) && (sc->config.loop_back == config->loop_back) && (sc->config.format == config->format) && (sc->config.cable_len == config->cable_len) && (sc->config.scrambler == config->scrambler) && (sc->config.tx_clk_src == config->tx_clk_src)) return; /* nothing changed */ sc->config.crc_len = config->crc_len; sc->config.loop_back = config->loop_back; sc->config.format = config->format; sc->config.cable_len = config->cable_len; sc->config.scrambler = config->scrambler; sc->config.tx_clk_src = config->tx_clk_src; } /* Set cable length. */ if (sc->config.cable_len > 30) mii16_clr_bits(sc, MII16_DS3_ZERO); else mii16_set_bits(sc, MII16_DS3_ZERO); /* Set payload scrambler polynomial. */ if (sc->config.scrambler == CFG_SCRAM_LARS) mii16_set_bits(sc, MII16_DS3_POLY); else mii16_clr_bits(sc, MII16_DS3_POLY); /* Set payload scrambler on/off. */ if (sc->config.scrambler == CFG_SCRAM_OFF) mii16_clr_bits(sc, MII16_DS3_SCRAM); else mii16_set_bits(sc, MII16_DS3_SCRAM); /* Set CRC length. */ if (sc->config.crc_len == CFG_CRC_32) mii16_set_bits(sc, MII16_DS3_CRC32); else mii16_clr_bits(sc, MII16_DS3_CRC32); /* Loopback towards host thru the line interface. */ if (sc->config.loop_back == CFG_LOOP_OTHER) mii16_set_bits(sc, MII16_DS3_TRLBK); else mii16_clr_bits(sc, MII16_DS3_TRLBK); /* Loopback towards network thru the line interface. */ if (sc->config.loop_back == CFG_LOOP_LINE) mii16_set_bits(sc, MII16_DS3_LNLBK); else if (sc->config.loop_back == CFG_LOOP_DUAL) mii16_set_bits(sc, MII16_DS3_LNLBK); else mii16_clr_bits(sc, MII16_DS3_LNLBK); /* Configure T3 framer chip; write EVERY writeable register. */ ctl1 = CTL1_SER | CTL1_XTX; if (sc->config.format == CFG_FORMAT_T3M13) ctl1 |= CTL1_M13MODE; if (sc->config.loop_back == CFG_LOOP_INWARD) ctl1 |= CTL1_3LOOP; if (sc->config.loop_back == CFG_LOOP_DUAL) ctl1 |= CTL1_3LOOP; framer_write(sc, T3CSR_CTL1, ctl1); framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE); framer_write(sc, T3CSR_CTL8, CTL8_FBEC); framer_write(sc, T3CSR_CTL12, CTL12_DLCB1 | CTL12_C21 | CTL12_MCB1); framer_write(sc, T3CSR_DBL_FEAC, 0); framer_write(sc, T3CSR_CTL14, CTL14_RGCEN | CTL14_TGCEN); framer_write(sc, T3CSR_INTEN, 0); framer_write(sc, T3CSR_CTL20, CTL20_CVEN); /* Clear error counters and latched error bits */ /* that may have happened while initializing. */ for (i=0; i<21; i++) framer_read(sc, i); } static void t3_detach(softc_t *sc) { framer_write(sc, T3CSR_CTL1, framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL); led_on(sc, MII16_LED_ALL); } /* End DS3 card code */ /* Begin SSI card code */ static struct card ssi_card = { .ident = ssi_ident, .watchdog = ssi_watchdog, .ioctl = ssi_ioctl, .attach = ssi_attach, .detach = ssi_detach, }; static void ssi_ident(softc_t *sc) { printf(", LTC1343/44"); } static void /* context: softirq */ ssi_watchdog(softc_t *sc) { u_int16_t cable; u_int16_t mii16 = mii_read(sc, 16) & MII16_SSI_MODEM; sc->status.link_state = STATE_UP; /* Software is alive. */ led_inv(sc, MII16_SSI_LED_UL); /* Check the transmit clock. */ if (sc->status.tx_speed == 0) { led_on(sc, MII16_SSI_LED_UR); sc->status.link_state = STATE_DOWN; } else led_off(sc, MII16_SSI_LED_UR); /* Check the external cable. */ cable = mii_read(sc, 17); cable = cable & MII17_SSI_CABLE_MASK; cable = cable >> MII17_SSI_CABLE_SHIFT; if (cable == 7) { led_off(sc, MII16_SSI_LED_LL); /* no cable */ sc->status.link_state = STATE_DOWN; } else led_on(sc, MII16_SSI_LED_LL); /* The unit at the other end of the cable is ready if: */ /* DTE mode and DCD pin is asserted */ /* DCE mode and DSR pin is asserted */ if (((sc->config.dte_dce == CFG_DTE) && !(mii16 & MII16_SSI_DCD)) || ((sc->config.dte_dce == CFG_DCE) && !(mii16 & MII16_SSI_DSR))) { led_off(sc, MII16_SSI_LED_LR); sc->status.link_state = STATE_DOWN; } else led_on(sc, MII16_SSI_LED_LR); if (sc->config.debug && (cable != sc->status.cable_type)) printf("%s: SSI cable type changed to '%s'\n", NAME_UNIT, ssi_cables[cable]); sc->status.cable_type = cable; /* Print the modem control signals if they changed. */ if ((sc->config.debug) && (mii16 != sc->last_mii16)) { const char *on = "ON ", *off = "OFF"; printf("%s: DTR=%s DSR=%s RTS=%s CTS=%s DCD=%s RI=%s LL=%s RL=%s TM=%s\n", NAME_UNIT, (mii16 & MII16_SSI_DTR) ? on : off, (mii16 & MII16_SSI_DSR) ? on : off, (mii16 & MII16_SSI_RTS) ? on : off, (mii16 & MII16_SSI_CTS) ? on : off, (mii16 & MII16_SSI_DCD) ? on : off, (mii16 & MII16_SSI_RI) ? on : off, (mii16 & MII16_SSI_LL) ? on : off, (mii16 & MII16_SSI_RL) ? on : off, (mii16 & MII16_SSI_TM) ? on : off); } /* SNMP one-second report */ sc->status.snmp.ssi.sigs = mii16 & MII16_SSI_MODEM; /* Remember this state until next time. */ sc->last_mii16 = mii16; /* If a loop back is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) sc->status.link_state = STATE_UP; } static int /* context: process */ ssi_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; if (ioctl->cmd == IOCTL_SNMP_SIGS) { u_int16_t mii16 = mii_read(sc, 16); mii16 &= ~MII16_SSI_MODEM; mii16 |= (MII16_SSI_MODEM & ioctl->data); mii_write(sc, 16, mii16); } else if (ioctl->cmd == IOCTL_SET_STATUS) { if (ioctl->data) mii16_set_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD)); else mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD)); } else error = EINVAL; return error; } /* Must not sleep. */ static void ssi_attach(softc_t *sc, struct config *config) { if (config == NULL) /* startup config */ { sc->status.card_type = CSID_LMC_SSI; sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.tx_clk_src = CFG_CLKMUX_ST; sc->config.dte_dce = CFG_DTE; sc->config.synth.n = 51; /* 1.536 MHz */ sc->config.synth.m = 83; sc->config.synth.v = 1; sc->config.synth.x = 1; sc->config.synth.r = 1; sc->config.synth.prescale = 4; } else if (config != &sc->config) /* change config */ { u_int32_t *old_synth = (u_int32_t *)&sc->config.synth; u_int32_t *new_synth = (u_int32_t *)&config->synth; if ((sc->config.crc_len == config->crc_len) && (sc->config.loop_back == config->loop_back) && (sc->config.tx_clk_src == config->tx_clk_src) && (sc->config.dte_dce == config->dte_dce) && (*old_synth == *new_synth)) return; /* nothing changed */ sc->config.crc_len = config->crc_len; sc->config.loop_back = config->loop_back; sc->config.tx_clk_src = config->tx_clk_src; sc->config.dte_dce = config->dte_dce; *old_synth = *new_synth; } /* Disable the TX clock driver while programming the oscillator. */ gpio_clr_bits(sc, GPIO_SSI_DCE); gpio_make_output(sc, GPIO_SSI_DCE); /* Program the synthesized oscillator. */ synth_write(sc, &sc->config.synth); /* Set DTE/DCE mode. */ /* If DTE mode then DCD & TXC are received. */ /* If DCE mode then DCD & TXC are driven. */ /* Boards with MII rev=4.0 do not drive DCD. */ if (sc->config.dte_dce == CFG_DCE) gpio_set_bits(sc, GPIO_SSI_DCE); else gpio_clr_bits(sc, GPIO_SSI_DCE); gpio_make_output(sc, GPIO_SSI_DCE); /* Set CRC length. */ if (sc->config.crc_len == CFG_CRC_32) mii16_set_bits(sc, MII16_SSI_CRC32); else mii16_clr_bits(sc, MII16_SSI_CRC32); /* Loop towards host thru cable drivers and receivers. */ /* Asserts DCD at the far end of a null modem cable. */ if (sc->config.loop_back == CFG_LOOP_PINS) mii16_set_bits(sc, MII16_SSI_LOOP); else mii16_clr_bits(sc, MII16_SSI_LOOP); /* Assert pin LL in modem conn: ask modem for local loop. */ /* Asserts TM at the far end of a null modem cable. */ if (sc->config.loop_back == CFG_LOOP_LL) mii16_set_bits(sc, MII16_SSI_LL); else mii16_clr_bits(sc, MII16_SSI_LL); /* Assert pin RL in modem conn: ask modem for remote loop. */ if (sc->config.loop_back == CFG_LOOP_RL) mii16_set_bits(sc, MII16_SSI_RL); else mii16_clr_bits(sc, MII16_SSI_RL); } static void ssi_detach(softc_t *sc) { mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD)); led_on(sc, MII16_LED_ALL); } /* End SSI card code */ /* Begin T1E1 card code */ static struct card t1_card = { .ident = t1_ident, .watchdog = t1_watchdog, .ioctl = t1_ioctl, .attach = t1_attach, .detach = t1_detach, }; static void t1_ident(softc_t *sc) { printf(", Bt837%x rev %x", framer_read(sc, Bt8370_DID)>>4, framer_read(sc, Bt8370_DID)&0x0F); } static void /* context: softirq */ t1_watchdog(softc_t *sc) { u_int16_t LCV = 0, FERR = 0, CRC = 0, FEBE = 0; u_int8_t alm1, alm3, loop, isr0; int i; sc->status.link_state = STATE_UP; /* Read the alarm registers */ alm1 = framer_read(sc, Bt8370_ALM1); alm3 = framer_read(sc, Bt8370_ALM3); loop = framer_read(sc, Bt8370_LOOP); isr0 = framer_read(sc, Bt8370_ISR0); /* Always ignore the SIGFRZ alarm bit, */ alm1 &= ~ALM1_SIGFRZ; if (FORMAT_T1ANY) /* ignore RYEL in T1 modes */ alm1 &= ~ALM1_RYEL; else if (FORMAT_E1NONE) /* ignore all alarms except LOS */ alm1 &= ALM1_RLOS; /* Software is alive. */ led_inv(sc, MII16_T1_LED_GRN); /* Receiving Alarm Indication Signal (AIS). */ if (alm1 & ALM1_RAIS) /* receiving ais */ led_on(sc, MII16_T1_LED_BLU); else if (alm1 & ALM1_RLOS) /* sending ais */ led_inv(sc, MII16_T1_LED_BLU); else led_off(sc, MII16_T1_LED_BLU); /* Receiving Remote Alarm Indication (RAI). */ if (alm1 & (ALM1_RMYEL | ALM1_RYEL)) /* receiving rai */ led_on(sc, MII16_T1_LED_YEL); else if (alm1 & ALM1_RLOF) /* sending rai */ led_inv(sc, MII16_T1_LED_YEL); else led_off(sc, MII16_T1_LED_YEL); /* If any alarm bits are set then the link is 'down'. */ /* The bad bits are: rmyel ryel rais ralos rlos rlof. */ /* Some alarm bits have been masked by this point. */ if (alm1) sc->status.link_state = STATE_DOWN; /* Declare local Red Alarm if the link is down. */ if (sc->status.link_state == STATE_DOWN) led_on(sc, MII16_T1_LED_RED); else if (sc->loop_timer) /* loopback is active */ led_inv(sc, MII16_T1_LED_RED); else led_off(sc, MII16_T1_LED_RED); /* Print latched error bits if they changed. */ if ((sc->config.debug) && (alm1 != sc->last_alm1)) { const char *on = "ON ", *off = "OFF"; printf("%s: RLOF=%s RLOS=%s RALOS=%s RAIS=%s RYEL=%s RMYEL=%s\n", NAME_UNIT, (alm1 & ALM1_RLOF) ? on : off, (alm1 & ALM1_RLOS) ? on : off, (alm1 & ALM1_RALOS) ? on : off, (alm1 & ALM1_RAIS) ? on : off, (alm1 & ALM1_RYEL) ? on : off, (alm1 & ALM1_RMYEL) ? on : off); } /* Check and print error counters if non-zero. */ LCV = framer_read(sc, Bt8370_LCV_LO) + (framer_read(sc, Bt8370_LCV_HI)<<8); if (!FORMAT_E1NONE) FERR = framer_read(sc, Bt8370_FERR_LO) + (framer_read(sc, Bt8370_FERR_HI)<<8); if (FORMAT_E1CRC || FORMAT_T1ESF) CRC = framer_read(sc, Bt8370_CRC_LO) + (framer_read(sc, Bt8370_CRC_HI)<<8); if (FORMAT_E1CRC) FEBE = framer_read(sc, Bt8370_FEBE_LO) + (framer_read(sc, Bt8370_FEBE_HI)<<8); /* Only LCV is valid if Out-Of-Frame */ if (FORMAT_E1NONE) FERR = CRC = FEBE = 0; if ((sc->config.debug) && (LCV || FERR || CRC || FEBE)) printf("%s: LCV=%u FERR=%u CRC=%u FEBE=%u\n", NAME_UNIT, LCV, FERR, CRC, FEBE); /* Driver keeps crude link-level error counters (SNMP is better). */ sc->status.cntrs.lcv_errs += LCV; sc->status.cntrs.frm_errs += FERR; sc->status.cntrs.crc_errs += CRC; sc->status.cntrs.febe_errs += FEBE; /* Check for BOP messages in the ESF Facility Data Link. */ if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR1) & 0x80)) { u_int8_t bop_code = framer_read(sc, Bt8370_RBOP) & 0x3F; switch (bop_code) { case T1BOP_OOF: { if ((sc->config.debug) && !(sc->last_alm1 & ALM1_RMYEL)) printf("%s: Receiving a 'yellow alarm' BOP msg\n", NAME_UNIT); break; } case T1BOP_LINE_UP: { if (sc->config.debug) printf("%s: Received a 'line loopback activate' BOP msg\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, LOOP_LINE); sc->loop_timer = 305; break; } case T1BOP_LINE_DOWN: { if (sc->config.debug) printf("%s: Received a 'line loopback deactivate' BOP msg\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE); sc->loop_timer = 0; break; } case T1BOP_PAY_UP: { if (sc->config.debug) printf("%s: Received a 'payload loopback activate' BOP msg\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD); sc->loop_timer = 305; break; } case T1BOP_PAY_DOWN: { if (sc->config.debug) printf("%s: Received a 'payload loopback deactivate' BOP msg\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, framer_read(sc, Bt8370_LOOP) & ~LOOP_PAYLOAD); sc->loop_timer = 0; break; } default: { if (sc->config.debug) printf("%s: Received a type 0x%02X BOP msg\n", NAME_UNIT, bop_code); break; } } } /* Check for HDLC pkts in the ESF Facility Data Link. */ if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR2) & 0x70)) { /* while (not fifo-empty && not start-of-msg) flush fifo */ while ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C)==0) framer_read(sc, Bt8370_RDL1); /* If (not fifo-empty), then begin processing fifo contents. */ if ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C) == 0x08) { u_int8_t msg[64]; u_int8_t stat = framer_read(sc, Bt8370_RDL1); sc->status.cntrs.fdl_pkts++; for (i=0; i<(stat & 0x3F); i++) msg[i] = framer_read(sc, Bt8370_RDL1); /* Is this FDL message a T1.403 performance report? */ if (((stat & 0x3F)==11) && ((msg[0]==0x38) || (msg[0]==0x3A)) && (msg[1]==1) && (msg[2]==3)) /* Copy 4 PRs from FDL pkt to SNMP struct. */ memcpy(sc->status.snmp.t1.prm, msg+3, 8); } } /* Check for inband loop up/down commands. */ if (FORMAT_T1ANY) { u_int8_t isr6 = framer_read(sc, Bt8370_ISR6); u_int8_t alarm2 = framer_read(sc, Bt8370_ALM2); u_int8_t tlb = framer_read(sc, Bt8370_TLB); /* Inband Code == Loop Up && On Transition && Inband Tx Inactive */ if ((isr6 & 0x40) && (alarm2 & 0x40) && !(tlb & 1)) { /* CSU loop up is 10000 10000 ... */ if (sc->config.debug) printf("%s: Received a 'CSU Loop Up' inband msg\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, LOOP_LINE); /* Loop up */ sc->loop_timer = 305; } /* Inband Code == Loop Down && On Transition && Inband Tx Inactive */ if ((isr6 & 0x80) && (alarm2 & 0x80) && !(tlb & 1)) { /* CSU loop down is 100 100 100 ... */ if (sc->config.debug) printf("%s: Received a 'CSU Loop Down' inband msg\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE); /* loop down */ sc->loop_timer = 0; } } /* Manually send Yellow Alarm BOP msgs. */ if (FORMAT_T1ESF) { u_int8_t isr7 = framer_read(sc, Bt8370_ISR7); if ((isr7 & 0x02) && (alm1 & 0x02)) /* RLOF on-transition */ { /* Start sending continuous Yellow Alarm BOP messages. */ framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_CONT); framer_write(sc, Bt8370_TBOP, 0x00); /* send BOP; order matters */ } else if ((isr7 & 0x02) && !(alm1 & 0x02)) /* RLOF off-transition */ { /* Stop sending continuous Yellow Alarm BOP messages. */ framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF); } } /* Time out loopback requests. */ if (sc->loop_timer) if (--sc->loop_timer == 0) if (loop) { if (sc->config.debug) printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT); framer_write(sc, Bt8370_LOOP, loop & ~(LOOP_PAYLOAD | LOOP_LINE)); } /* RX Test Pattern status */ if ((sc->config.debug) && (isr0 & 0x10)) printf("%s: RX Test Pattern Sync\n", NAME_UNIT); /* SNMP Error Counters */ sc->status.snmp.t1.lcv = LCV; sc->status.snmp.t1.fe = FERR; sc->status.snmp.t1.crc = CRC; sc->status.snmp.t1.febe = FEBE; /* SNMP Line Status */ sc->status.snmp.t1.line = 0; if (alm1 & ALM1_RMYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI; if (alm1 & ALM1_RYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI; if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_TX_RAI; if (alm1 & ALM1_RAIS) sc->status.snmp.t1.line |= TLINE_RX_AIS; if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_TX_AIS; if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_LOF; if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_LOS; if (alm3 & ALM3_RMAIS) sc->status.snmp.t1.line |= T1LINE_RX_TS16_AIS; if (alm3 & ALM3_SRED) sc->status.snmp.t1.line |= T1LINE_TX_TS16_LOMF; if (alm3 & ALM3_SEF) sc->status.snmp.t1.line |= T1LINE_SEF; if (isr0 & 0x10) sc->status.snmp.t1.line |= T1LINE_RX_TEST; if ((alm1 & ALM1_RMYEL) && (FORMAT_E1CAS)) sc->status.snmp.t1.line |= T1LINE_RX_TS16_LOMF; /* SNMP Loopback Status */ sc->status.snmp.t1.loop &= ~(TLOOP_FAR_LINE | TLOOP_FAR_PAYLOAD); if (sc->config.loop_back == CFG_LOOP_TULIP) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER; if (loop & LOOP_PAYLOAD) sc->status.snmp.t1.loop |= TLOOP_NEAR_PAYLOAD; if (loop & LOOP_LINE) sc->status.snmp.t1.loop |= TLOOP_NEAR_LINE; if (loop & LOOP_ANALOG) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER; if (loop & LOOP_FRAMER) sc->status.snmp.t1.loop |= TLOOP_NEAR_INWARD; /* Remember this state until next time. */ sc->last_alm1 = alm1; /* If an INWARD loopback is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */ sc->status.link_state = STATE_UP; } static void /* context: process */ t1_send_bop(softc_t *sc, int bop_code) { u_int8_t bop; int i; /* The BOP transmitter could be sending a continuous */ /* BOP msg when told to send this BOP_25 message. */ /* So save and restore the state of the BOP machine. */ bop = framer_read(sc, Bt8370_BOP); framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_OFF); for (i=0; i<40; i++) /* max delay 400 ms. */ if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000); /* send 25 repetitions of bop_code */ framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_25); framer_write(sc, Bt8370_TBOP, bop_code); /* order matters */ /* wait for tx to stop */ for (i=0; i<40; i++) /* max delay 400 ms. */ if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000); /* Restore previous state of the BOP machine. */ framer_write(sc, Bt8370_BOP, bop); } static int /* context: process */ t1_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; switch (ioctl->cmd) { case IOCTL_SNMP_SEND: /* set opstatus? */ { switch (ioctl->data) { case TSEND_NORMAL: { framer_write(sc, Bt8370_TPATT, 0x00); /* tx pattern generator off */ framer_write(sc, Bt8370_RPATT, 0x00); /* rx pattern detector off */ framer_write(sc, Bt8370_TLB, 0x00); /* tx inband generator off */ break; } case TSEND_LINE: { if (FORMAT_T1ESF) t1_send_bop(sc, T1BOP_LINE_UP); else if (FORMAT_T1SF) { framer_write(sc, Bt8370_LBP, 0x08); /* 10000 10000 ... */ framer_write(sc, Bt8370_TLB, 0x05); /* 5 bits, framed, start */ } sc->status.snmp.t1.loop |= TLOOP_FAR_LINE; break; } case TSEND_PAYLOAD: { t1_send_bop(sc, T1BOP_PAY_UP); sc->status.snmp.t1.loop |= TLOOP_FAR_PAYLOAD; break; } case TSEND_RESET: { if (sc->status.snmp.t1.loop == TLOOP_FAR_LINE) { if (FORMAT_T1ESF) t1_send_bop(sc, T1BOP_LINE_DOWN); else if (FORMAT_T1SF) { framer_write(sc, Bt8370_LBP, 0x24); /* 100100 100100 ... */ framer_write(sc, Bt8370_TLB, 0x09); /* 6 bits, framed, start */ } sc->status.snmp.t1.loop &= ~TLOOP_FAR_LINE; } if (sc->status.snmp.t1.loop == TLOOP_FAR_PAYLOAD) { t1_send_bop(sc, T1BOP_PAY_DOWN); sc->status.snmp.t1.loop &= ~TLOOP_FAR_PAYLOAD; } break; } case TSEND_QRS: { framer_write(sc, Bt8370_TPATT, 0x1E); /* framed QRSS */ break; } default: { error = EINVAL; break; } } break; } case IOCTL_SNMP_LOOP: /* set opstatus = test? */ { u_int8_t new_loop = 0; if (ioctl->data == CFG_LOOP_NONE) new_loop = 0; else if (ioctl->data == CFG_LOOP_PAYLOAD) new_loop = LOOP_PAYLOAD; else if (ioctl->data == CFG_LOOP_LINE) new_loop = LOOP_LINE; else if (ioctl->data == CFG_LOOP_OTHER) new_loop = LOOP_ANALOG; else if (ioctl->data == CFG_LOOP_INWARD) new_loop = LOOP_FRAMER; else if (ioctl->data == CFG_LOOP_DUAL) new_loop = LOOP_DUAL; else error = EINVAL; if (!error) { framer_write(sc, Bt8370_LOOP, new_loop); sc->config.loop_back = ioctl->data; } break; } case IOCTL_SET_STATUS: { #if 0 if (ioctl->data) mii16_set_bits(sc, MII16_T1_XOE); else mii16_clr_bits(sc, MII16_T1_XOE); #endif break; } default: error = EINVAL; break; } return error; } /* Must not sleep. */ static void t1_attach(softc_t *sc, struct config *config) { int i; u_int8_t pulse, lbo, gain; if (config == NULL) /* startup config */ { /* Disable transmitter output drivers. */ mii16_clr_bits(sc, MII16_T1_XOE); /* Bt8370 occasionally powers up in a loopback mode. */ /* Data sheet says zero LOOP reg and do a sw-reset. */ framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */ framer_write(sc, Bt8370_CR0, 0x80); /* sw-reset */ for (i=0; i<10; i++) /* wait for sw-reset to clear; max 10 ms */ if (framer_read(sc, Bt8370_CR0) & 0x80) DELAY(1000); sc->status.card_type = CSID_LMC_T1E1; sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.tx_clk_src = CFG_CLKMUX_RT; /* loop timed */ #if 1 /* USA */ /* decide using time zone? */ sc->config.format = CFG_FORMAT_T1ESF; #else /* REST OF PLANET */ sc->config.format = CFG_FORMAT_E1FASCRC; #endif sc->config.time_slots = 0xFFFFFFFF; sc->config.cable_len = 10; sc->config.tx_pulse = CFG_PULSE_AUTO; sc->config.rx_gain_max = CFG_GAIN_AUTO; sc->config.tx_lbo = CFG_LBO_AUTO; } else if (config != &sc->config) /* change config */ { if ((sc->config.crc_len == config->crc_len) && (sc->config.loop_back == config->loop_back) && (sc->config.tx_clk_src == config->tx_clk_src) && (sc->config.format == config->format) && (sc->config.time_slots == config->time_slots) && (sc->config.cable_len == config->cable_len) && (sc->config.tx_pulse == config->tx_pulse) && (sc->config.rx_gain_max == config->rx_gain_max) && (sc->config.tx_lbo == config->tx_lbo)) return; /* nothing changed */ sc->config.crc_len = config->crc_len; sc->config.loop_back = config->loop_back; sc->config.tx_clk_src = config->tx_clk_src; sc->config.format = config->format; sc->config.cable_len = config->cable_len; sc->config.time_slots = config->time_slots; sc->config.tx_pulse = config->tx_pulse; sc->config.rx_gain_max = config->rx_gain_max; sc->config.tx_lbo = config->tx_lbo; } /* Set CRC length. */ if (sc->config.crc_len == CFG_CRC_32) mii16_set_bits(sc, MII16_T1_CRC32); else mii16_clr_bits(sc, MII16_T1_CRC32); /* Invert HDLC payload data in SF/AMI mode. */ /* HDLC stuff bits satisfy T1 pulse density. */ if (FORMAT_T1SF) mii16_set_bits(sc, MII16_T1_INVERT); else mii16_clr_bits(sc, MII16_T1_INVERT); /* Set the transmitter output impedance. */ if (FORMAT_E1ANY) mii16_set_bits(sc, MII16_T1_Z); /* 001:CR0 -- Control Register 0 - T1/E1 and frame format */ framer_write(sc, Bt8370_CR0, sc->config.format); /* 002:JAT_CR -- Jitter Attenuator Control Register */ if (sc->config.tx_clk_src == CFG_CLKMUX_RT) /* loop timing */ framer_write(sc, Bt8370_JAT_CR, 0xA3); /* JAT in RX path */ else { /* 64-bit elastic store; free-running JCLK and CLADO */ framer_write(sc, Bt8370_JAT_CR, 0x4B); /* assert jcenter */ framer_write(sc, Bt8370_JAT_CR, 0x43); /* release jcenter */ } /* 00C-013:IERn -- Interrupt Enable Registers */ for (i=Bt8370_IER7; i<=Bt8370_IER0; i++) framer_write(sc, i, 0); /* no interrupts; polled */ /* 014:LOOP -- loopbacks */ if (sc->config.loop_back == CFG_LOOP_PAYLOAD) framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD); else if (sc->config.loop_back == CFG_LOOP_LINE) framer_write(sc, Bt8370_LOOP, LOOP_LINE); else if (sc->config.loop_back == CFG_LOOP_OTHER) framer_write(sc, Bt8370_LOOP, LOOP_ANALOG); else if (sc->config.loop_back == CFG_LOOP_INWARD) framer_write(sc, Bt8370_LOOP, LOOP_FRAMER); else if (sc->config.loop_back == CFG_LOOP_DUAL) framer_write(sc, Bt8370_LOOP, LOOP_DUAL); else framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */ /* 015:DL3_TS -- Data Link 3 */ framer_write(sc, Bt8370_DL3_TS, 0x00); /* disabled */ /* 018:PIO -- Programmable I/O */ framer_write(sc, Bt8370_PIO, 0xFF); /* all pins are outputs */ /* 019:POE -- Programmable Output Enable */ framer_write(sc, Bt8370_POE, 0x00); /* all outputs are enabled */ /* 01A;CMUX -- Clock Input Mux */ if (sc->config.tx_clk_src == CFG_CLKMUX_EXT) framer_write(sc, Bt8370_CMUX, 0x0C); /* external timing */ else framer_write(sc, Bt8370_CMUX, 0x0F); /* internal timing */ /* 020:LIU_CR -- Line Interface Unit Config Register */ framer_write(sc, Bt8370_LIU_CR, 0xC1); /* reset LIU, squelch */ /* 022:RLIU_CR -- RX Line Interface Unit Config Reg */ /* Errata sheet says do not use freeze-short, but we do anyway! */ framer_write(sc, Bt8370_RLIU_CR, 0xB1); /* AGC=2048, Long Eye */ /* Select Rx sensitivity based on cable length. */ if ((gain = sc->config.rx_gain_max) == CFG_GAIN_AUTO) { if (sc->config.cable_len > 2000) gain = CFG_GAIN_EXTEND; else if (sc->config.cable_len > 1000) gain = CFG_GAIN_LONG; else if (sc->config.cable_len > 100) gain = CFG_GAIN_MEDIUM; else gain = CFG_GAIN_SHORT; } /* 024:VGA_MAX -- Variable Gain Amplifier Max gain */ framer_write(sc, Bt8370_VGA_MAX, gain); /* 028:PRE_EQ -- Pre Equalizer */ if (gain == CFG_GAIN_EXTEND) framer_write(sc, Bt8370_PRE_EQ, 0xE6); /* ON; thresh 6 */ else framer_write(sc, Bt8370_PRE_EQ, 0xA6); /* OFF; thresh 6 */ /* 038-03C:GAINn -- RX Equalizer gain thresholds */ framer_write(sc, Bt8370_GAIN0, 0x24); framer_write(sc, Bt8370_GAIN1, 0x28); framer_write(sc, Bt8370_GAIN2, 0x2C); framer_write(sc, Bt8370_GAIN3, 0x30); framer_write(sc, Bt8370_GAIN4, 0x34); /* 040:RCR0 -- Receiver Control Register 0 */ if (FORMAT_T1ESF) framer_write(sc, Bt8370_RCR0, 0x05); /* B8ZS, 2/5 FErrs */ else if (FORMAT_T1SF) framer_write(sc, Bt8370_RCR0, 0x84); /* AMI, 2/5 FErrs */ else if (FORMAT_E1NONE) framer_write(sc, Bt8370_RCR0, 0x41); /* HDB3, rabort */ else if (FORMAT_E1CRC) framer_write(sc, Bt8370_RCR0, 0x09); /* HDB3, 3 FErrs or 915 CErrs */ else /* E1 no CRC */ framer_write(sc, Bt8370_RCR0, 0x19); /* HDB3, 3 FErrs */ /* 041:RPATT -- Receive Test Pattern configuration */ framer_write(sc, Bt8370_RPATT, 0x3E); /* looking for framed QRSS */ /* 042:RLB -- Receive Loop Back code detector config */ framer_write(sc, Bt8370_RLB, 0x09); /* 6 bits down; 5 bits up */ /* 043:LBA -- Loop Back Activate code */ framer_write(sc, Bt8370_LBA, 0x08); /* 10000 10000 10000 ... */ /* 044:LBD -- Loop Back Deactivate code */ framer_write(sc, Bt8370_LBD, 0x24); /* 100100 100100 100100 ... */ /* 045:RALM -- Receive Alarm signal configuration */ framer_write(sc, Bt8370_RALM, 0x0C); /* yel_intg rlof_intg */ /* 046:LATCH -- Alarm/Error/Counter Latch register */ framer_write(sc, Bt8370_LATCH, 0x1F); /* stop_cnt latch_{cnt,err,alm} */ /* Select Pulse Shape based on cable length (T1 only). */ if ((pulse = sc->config.tx_pulse) == CFG_PULSE_AUTO) { if (FORMAT_T1ANY) { if (sc->config.cable_len > 200) pulse = CFG_PULSE_T1CSU; else if (sc->config.cable_len > 160) pulse = CFG_PULSE_T1DSX4; else if (sc->config.cable_len > 120) pulse = CFG_PULSE_T1DSX3; else if (sc->config.cable_len > 80) pulse = CFG_PULSE_T1DSX2; else if (sc->config.cable_len > 40) pulse = CFG_PULSE_T1DSX1; else pulse = CFG_PULSE_T1DSX0; } else pulse = CFG_PULSE_E1TWIST; } /* Select Line Build Out based on cable length (T1CSU only). */ if ((lbo = sc->config.tx_lbo) == CFG_LBO_AUTO) { if (pulse == CFG_PULSE_T1CSU) { if (sc->config.cable_len > 1500) lbo = CFG_LBO_0DB; else if (sc->config.cable_len > 1000) lbo = CFG_LBO_7DB; else if (sc->config.cable_len > 500) lbo = CFG_LBO_15DB; else lbo = CFG_LBO_22DB; } else lbo = 0; } /* 068:TLIU_CR -- Transmit LIU Control Register */ framer_write(sc, Bt8370_TLIU_CR, (0x40 | (lbo & 0x30) | (pulse & 0x0E))); /* 070:TCR0 -- Transmit Framer Configuration */ framer_write(sc, Bt8370_TCR0, sc->config.format>>1); /* 071:TCR1 -- Transmitter Configuration */ if (FORMAT_T1SF) framer_write(sc, Bt8370_TCR1, 0x43); /* tabort, AMI PDV enforced */ else framer_write(sc, Bt8370_TCR1, 0x41); /* tabort, B8ZS or HDB3 */ /* 072:TFRM -- Transmit Frame format MYEL YEL MF FE CRC FBIT */ if (sc->config.format == CFG_FORMAT_T1ESF) framer_write(sc, Bt8370_TFRM, 0x0B); /* - YEL MF - CRC FBIT */ else if (sc->config.format == CFG_FORMAT_T1SF) framer_write(sc, Bt8370_TFRM, 0x19); /* - YEL MF - - FBIT */ else if (sc->config.format == CFG_FORMAT_E1FAS) framer_write(sc, Bt8370_TFRM, 0x11); /* - YEL - - - FBIT */ else if (sc->config.format == CFG_FORMAT_E1FASCRC) framer_write(sc, Bt8370_TFRM, 0x1F); /* - YEL MF FE CRC FBIT */ else if (sc->config.format == CFG_FORMAT_E1FASCAS) framer_write(sc, Bt8370_TFRM, 0x31); /* MYEL YEL - - - FBIT */ else if (sc->config.format == CFG_FORMAT_E1FASCRCCAS) framer_write(sc, Bt8370_TFRM, 0x3F); /* MYEL YEL MF FE CRC FBIT */ else if (sc->config.format == CFG_FORMAT_E1NONE) framer_write(sc, Bt8370_TFRM, 0x00); /* NO FRAMING BITS AT ALL! */ /* 073:TERROR -- Transmit Error Insert */ framer_write(sc, Bt8370_TERROR, 0x00); /* no errors, please! */ /* 074:TMAN -- Transmit Manual Sa-byte/FEBE configuration */ framer_write(sc, Bt8370_TMAN, 0x00); /* none */ /* 075:TALM -- Transmit Alarm Signal Configuration */ if (FORMAT_E1ANY) framer_write(sc, Bt8370_TALM, 0x38); /* auto_myel auto_yel auto_ais */ else if (FORMAT_T1ANY) framer_write(sc, Bt8370_TALM, 0x18); /* auto_yel auto_ais */ /* 076:TPATT -- Transmit Test Pattern Configuration */ framer_write(sc, Bt8370_TPATT, 0x00); /* disabled */ /* 077:TLB -- Transmit Inband Loopback Code Configuration */ framer_write(sc, Bt8370_TLB, 0x00); /* disabled */ /* 090:CLAD_CR -- Clack Rate Adapter Configuration */ if (FORMAT_T1ANY) framer_write(sc, Bt8370_CLAD_CR, 0x06); /* loop filter gain 1/2^6 */ else framer_write(sc, Bt8370_CLAD_CR, 0x08); /* loop filter gain 1/2^8 */ /* 091:CSEL -- CLAD frequency Select */ if (FORMAT_T1ANY) framer_write(sc, Bt8370_CSEL, 0x55); /* 1544 kHz */ else framer_write(sc, Bt8370_CSEL, 0x11); /* 2048 kHz */ /* 092:CPHASE -- CLAD Phase detector */ if (FORMAT_T1ANY) framer_write(sc, Bt8370_CPHASE, 0x22); /* phase compare @ 386 kHz */ else framer_write(sc, Bt8370_CPHASE, 0x00); /* phase compare @ 2048 kHz */ if (FORMAT_T1ESF) /* BOP & PRM are enabled in T1ESF mode only. */ { /* 0A0:BOP -- Bit Oriented Protocol messages */ framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF); /* 0A4:DL1_TS -- Data Link 1 Time Slot Enable */ framer_write(sc, Bt8370_DL1_TS, 0x40); /* FDL bits in odd frames */ /* 0A6:DL1_CTL -- Data Link 1 Control */ framer_write(sc, Bt8370_DL1_CTL, 0x03); /* FCS mode, TX on, RX on */ /* 0A7:RDL1_FFC -- Rx Data Link 1 Fifo Fill Control */ framer_write(sc, Bt8370_RDL1_FFC, 0x30); /* assert "near full" at 48 */ /* 0AA:PRM -- Performance Report Messages */ framer_write(sc, Bt8370_PRM, 0x80); } /* 0D0:SBI_CR -- System Bus Interface Configuration Register */ if (FORMAT_T1ANY) framer_write(sc, Bt8370_SBI_CR, 0x47); /* 1.544 with 24 TS +Fbits */ else framer_write(sc, Bt8370_SBI_CR, 0x46); /* 2.048 with 32 TS */ /* 0D1:RSB_CR -- Receive System Bus Configuration Register */ /* Change RINDO & RFSYNC on falling edge of RSBCLKI. */ framer_write(sc, Bt8370_RSB_CR, 0x70); /* 0D2,0D3:RSYNC_{TS,BIT} -- Receive frame Sync offset */ framer_write(sc, Bt8370_RSYNC_BIT, 0x00); framer_write(sc, Bt8370_RSYNC_TS, 0x00); /* 0D4:TSB_CR -- Transmit System Bus Configuration Register */ /* Change TINDO & TFSYNC on falling edge of TSBCLKI. */ framer_write(sc, Bt8370_TSB_CR, 0x30); /* 0D5,0D6:TSYNC_{TS,BIT} -- Transmit frame Sync offset */ framer_write(sc, Bt8370_TSYNC_BIT, 0x00); framer_write(sc, Bt8370_TSYNC_TS, 0x00); /* 0D7:RSIG_CR -- Receive SIGnalling Configuration Register */ framer_write(sc, Bt8370_RSIG_CR, 0x00); /* Assign and configure 64Kb TIME SLOTS. */ /* TS24..TS1 must be assigned for T1, TS31..TS0 for E1. */ /* Timeslots with no user data have RINDO and TINDO off. */ for (sc->status.time_slots = 0, i=0; i<32; i++) { /* 0E0-0FF:SBCn -- System Bus Per-Channel Control */ if (FORMAT_T1ANY && (i==0 || i>24)) framer_write(sc, Bt8370_SBCn +i, 0x00); /* not assigned in T1 mode */ else if (FORMAT_E1ANY && (i==0) && !FORMAT_E1NONE) framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS0 o/h bits */ else if (FORMAT_E1CAS && (i==16) && !FORMAT_E1NONE) framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS16 o/h bits */ else if ((sc->status.time_slots |= (sc->config.time_slots & (1<config.time_slots & (1<config.debug) printf("%s: netgraph_ioctl() was called\n", NAME_UNIT); return EINVAL; } static void /* context: interrupt */ netgraph_input(softc_t *sc, struct mbuf *m) { int error; /* ignore error */ NG_SEND_DATA_ONLY(error, sc->ng_hook, m); } static void /* context: interrupt */ netgraph_output(softc_t *sc) { if (!IFQ_IS_EMPTY(&sc->ng_fastq)) IFQ_DEQUEUE(&sc->ng_fastq, sc->tx_mbuf); else IFQ_DEQUEUE(&sc->ng_sndq, sc->tx_mbuf); } static void /* context: softirq */ netgraph_watchdog(softc_t *sc) { sc->status.stack = STACK_NETGRAPH; sc->status.proto = PROTO_NONE; } static int netgraph_open(softc_t *sc, struct config *config) { sc->config.proto = PROTO_NONE; return 0; } static int netgraph_attach(softc_t *sc, struct config *config) { int error; if ((error = ng_attach(sc))) return error; sc->config.proto = PROTO_NONE; sc->stack = &netgraph_stack; return 0; } static int /* never fails */ netgraph_detach(softc_t *sc) { ng_detach(sc); sc->config.stack = STACK_NONE; sc->config.proto = PROTO_NONE; sc->stack = NULL; return 0; } #endif /* NETGRAPH */ #if SYNC_PPP /* Linux */ static struct stack sync_ppp_stack = { .ioctl = sync_ppp_ioctl, .type = sync_ppp_type, .mtu = sync_ppp_mtu, .watchdog = sync_ppp_watchdog, .open = sync_ppp_open, .attach = sync_ppp_attach, .detach = sync_ppp_detach, }; static int /* context: process */ sync_ppp_ioctl(softc_t *sc, struct ifreq *ifr, int cmd) { return sppp_do_ioctl(sc->netdev, ifr, cmd); } static int /* context: interrupt */ sync_ppp_type(softc_t *sc, struct sk_buff *skb) { return htons(ETH_P_WAN_PPP); } static int /* context: process */ sync_ppp_mtu(softc_t *sc, int mtu) { return ((mtu < 128) || (mtu > PPP_MTU)) ? -EINVAL : 0; } static void /* context: softirq */ sync_ppp_watchdog(softc_t *sc) { /* Notice when the link comes up. */ if ((sc->last_link_state != STATE_UP) && (sc->status.link_state == STATE_UP)) sppp_reopen(sc->netdev); /* Notice when the link goes down. */ if ((sc->last_link_state == STATE_UP) && (sc->status.link_state != STATE_UP)) sppp_close(sc->netdev); /* Report current line protocol. */ sc->status.stack = STACK_SYNC_PPP; if (sc->sppp->pp_flags & PP_CISCO) sc->status.proto = PROTO_C_HDLC; else sc->status.proto = PROTO_PPP; /* Report keep-alive status. */ sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE; } static int /* never fails */ sync_ppp_open(softc_t *sc, struct config *config) { /* Refresh the keep_alive flag. */ if (config->keep_alive) sc->sppp->pp_flags |= PP_KEEPALIVE; else sc->sppp->pp_flags &= ~PP_KEEPALIVE; sc->config.keep_alive = config->keep_alive; /* Done if proto is not changing. */ if (config->proto == sc->config.proto) return 0; /* Close */ sppp_close(sc->netdev); /* Change line protocol. */ switch (config->proto) { case PROTO_PPP: sc->sppp->pp_flags &= ~PP_CISCO; sc->netdev->type = ARPHRD_PPP; sc->config.proto = PROTO_PPP; break; default: case PROTO_C_HDLC: sc->sppp->pp_flags |= PP_CISCO; sc->netdev->type = ARPHRD_CISCO; sc->config.proto = PROTO_C_HDLC; break; } /* Open */ sppp_open(sc->netdev); return 0; } static int /* never fails */ sync_ppp_attach(softc_t *sc, struct config *config) { sc->ppd = &sc->ppp_dev; /* struct ppp_device* */ sc->netdev->priv = &sc->ppd; /* struct ppp_device** */ sc->ppp_dev.dev = sc->netdev; sc->sppp = &sc->ppp_dev.sppp; sppp_attach(&sc->ppp_dev); sc->netdev->do_ioctl = netdev_ioctl; config->keep_alive = 1; sc->config.stack = STACK_SYNC_PPP; sc->stack = &sync_ppp_stack; return 0; } static int /* never fails */ sync_ppp_detach(softc_t *sc) { sppp_close(sc->netdev); sppp_detach(sc->netdev); netdev_setup(sc->netdev); sc->config.stack = STACK_NONE; sc->config.proto = PROTO_NONE; sc->stack = NULL; return 0; } #endif /* SYNC_PPP */ #if GEN_HDLC /* Linux only */ static struct stack gen_hdlc_stack = { .ioctl = gen_hdlc_ioctl, .type = gen_hdlc_type, .mtu = gen_hdlc_mtu, .watchdog = gen_hdlc_watchdog, .open = gen_hdlc_open, .attach = gen_hdlc_attach, .detach = gen_hdlc_detach, }; static int /* context: process */ gen_hdlc_ioctl(softc_t *sc, struct ifreq *ifr, int cmd) { te1_settings settings; int error = 0; if (cmd == SIOCWANDEV) switch (ifr->ifr_settings.type) { case IF_GET_IFACE: /* get interface config */ { unsigned int size; /* NOTE: This assumes struct sync_serial_settings has the */ /* same layout as the first part of struct te1_settings. */ if (sc->status.card_type == CSID_LMC_T1E1) { if (FORMAT_T1ANY) ifr->ifr_settings.type = IF_IFACE_T1; if (FORMAT_E1ANY) ifr->ifr_settings.type = IF_IFACE_E1; size = sizeof(te1_settings); } else { ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; size = sizeof(sync_serial_settings); } if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; return -ENOBUFS; } ifr->ifr_settings.size = size; if (sc->config.tx_clk_src == CFG_CLKMUX_ST) settings.clock_type = CLOCK_EXT; if (sc->config.tx_clk_src == CFG_CLKMUX_INT) settings.clock_type = CLOCK_TXINT; if (sc->config.tx_clk_src == CFG_CLKMUX_RT) settings.clock_type = CLOCK_TXFROMRX; settings.loopback = (sc->config.loop_back != CFG_LOOP_NONE) ? 1:0; settings.clock_rate = sc->status.tx_speed; if (sc->status.card_type == CSID_LMC_T1E1) settings.slot_map = sc->status.time_slots; error = copy_to_user(ifr->ifr_settings.ifs_ifsu.te1, &settings, size); break; } case IF_IFACE_SYNC_SERIAL: /* set interface config */ case IF_IFACE_T1: case IF_IFACE_E1: { struct config config = sc->config; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (ifr->ifr_settings.size > sizeof(te1_settings)) return -ENOBUFS; error = copy_from_user(&settings, ifr->ifr_settings.ifs_ifsu.te1, sizeof(te1_settings)); if (settings.clock_type == CLOCK_EXT) config.tx_clk_src = CFG_CLKMUX_ST; else if (settings.clock_type == CLOCK_TXINT) config.tx_clk_src = CFG_CLKMUX_INT; else if (settings.clock_type == CLOCK_TXFROMRX) config.tx_clk_src = CFG_CLKMUX_RT; if (settings.loopback) config.loop_back = CFG_LOOP_TULIP; else config.loop_back = CFG_LOOP_NONE; tulip_loop(sc, &config); sc->card->attach(sc, &config); break; } default: /* Pass the rest to the line pkg. */ { error = hdlc_ioctl(sc->netdev, ifr, cmd); break; } } else error = -EINVAL; return error; } static int /* context: interrupt */ gen_hdlc_type(softc_t *sc, struct sk_buff *skb) { return hdlc_type_trans(skb, sc->netdev); } static int /* context: process */ gen_hdlc_mtu(softc_t *sc, int mtu) { return ((mtu < 68) || (mtu > HDLC_MAX_MTU)) ? -EINVAL : 0; } static void /* context: softirq */ gen_hdlc_watchdog(softc_t *sc) { /* Notice when the link comes up. */ if ((sc->last_link_state != STATE_UP) && (sc->status.link_state == STATE_UP)) hdlc_set_carrier(1, sc->netdev); /* Notice when the link goes down. */ if ((sc->last_link_state == STATE_UP) && (sc->status.link_state != STATE_UP)) hdlc_set_carrier(0, sc->netdev); /* Report current line protocol. */ sc->status.stack = STACK_GEN_HDLC; switch (sc->hdlcdev->proto.id) { case IF_PROTO_PPP: { struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp; sc->status.keep_alive = sppp->pp_flags & PP_KEEPALIVE; sc->status.proto = PROTO_PPP; break; } case IF_PROTO_CISCO: sc->status.proto = PROTO_C_HDLC; break; case IF_PROTO_FR: sc->status.proto = PROTO_FRM_RLY; break; case IF_PROTO_HDLC: sc->status.proto = PROTO_IP_HDLC; break; case IF_PROTO_X25: sc->status.proto = PROTO_X25; break; case IF_PROTO_HDLC_ETH: sc->status.proto = PROTO_ETH_HDLC; break; default: sc->status.proto = PROTO_NONE; break; } } static int gen_hdlc_open(softc_t *sc, struct config *config) { int error = 0; /* Refresh the keep_alive flag. */ if (sc->hdlcdev->proto.id == IF_PROTO_PPP) { struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp; if (config->keep_alive) sppp->pp_flags |= PP_KEEPALIVE; else sppp->pp_flags &= ~PP_KEEPALIVE; sc->config.keep_alive = config->keep_alive; } /* Done if proto is not changing. */ if (config->proto == sc->config.proto) return 0; /* Close */ hdlc_close(sc->netdev); /* Generic-HDLC gets protocol params using copy_from_user(). * This is a problem for a kernel-resident device driver. * Luckily, PPP does not need any params so no copy_from_user(). */ /* Change line protocol. */ if (config->proto == PROTO_PPP) { struct ifreq ifr; ifr.ifr_settings.size = 0; ifr.ifr_settings.type = IF_PROTO_PPP; hdlc_ioctl(sc->netdev, &ifr, SIOCWANDEV); } /* Changing to any protocol other than PPP */ /* requires using the 'sethdlc' program. */ /* Open */ if ((error = hdlc_open(sc->netdev))) { if (sc->config.debug) printk("%s: hdlc_open(): error %d\n", NAME_UNIT, error); if (error == -ENOSYS) printk("%s: Try 'sethdlc %s hdlc|ppp|cisco|fr'\n", NAME_UNIT, NAME_UNIT); sc->config.proto = PROTO_NONE; } else sc->config.proto = config->proto; return error; } static int /* never fails */ gen_hdlc_attach(softc_t *sc, struct config *config) { sc->netdev->priv = sc->hdlcdev; /* hdlc_attach(sc->netdev); */ sc->netdev->mtu = HDLC_MAX_MTU; sc->hdlcdev->attach = gen_hdlc_card_params; sc->hdlcdev->xmit = netdev_start; config->keep_alive = 1; sc->config.stack = STACK_GEN_HDLC; sc->stack = &gen_hdlc_stack; return 0; } static int /* never fails */ gen_hdlc_detach(softc_t *sc) { hdlc_close(sc->netdev); /* hdlc_detach(sc->netdev); */ hdlc_proto_detach(sc->hdlcdev); memset(&sc->hdlcdev->proto, 0, sizeof sc->hdlcdev->proto); netdev_setup(sc->netdev); sc->config.stack = STACK_NONE; sc->config.proto = PROTO_NONE; sc->stack = NULL; return 0; } static int gen_hdlc_card_params(struct net_device *netdev, unsigned short encoding, unsigned short parity) { softc_t *sc = NETDEV2SC(netdev); struct config config = sc->config; /* Encoding does not seem to apply to synchronous interfaces, */ /* but Parity seems to be generic-HDLC's name for CRC. */ if (parity == PARITY_CRC32_PR1_CCITT) config.crc_len = CFG_CRC_32; if (parity == PARITY_CRC16_PR1_CCITT) config.crc_len = CFG_CRC_16; sc->card->attach(sc, &config); return 0; } #endif /* GEN_HDLC */ #if P2P /* BSD/OS */ static struct stack p2p_stack = { .ioctl = p2p_stack_ioctl, .input = p2p_stack_input, .output = p2p_stack_output, .watchdog = p2p_stack_watchdog, .open = p2p_stack_open, .attach = p2p_stack_attach, .detach = p2p_stack_detach, }; static int /* context: process */ p2p_stack_ioctl(softc_t *sc, u_long cmd, void *data) { return p2p_ioctl(sc->ifp, cmd, data); } static void /* context: interrupt */ p2p_stack_input(softc_t *sc, struct mbuf *mbuf) { struct mbuf *new_mbuf = mbuf; while (new_mbuf) { sc->p2p->p2p_hdrinput(sc->p2p, new_mbuf->m_data, new_mbuf->m_len); new_mbuf = new_mbuf->m_next; } sc->p2p->p2p_input(sc->p2p, NULL); m_freem(mbuf); } static void /* context: interrupt */ p2p_stack_output(softc_t *sc) { if (!IFQ_IS_EMPTY(&sc->p2p->p2p_isnd)) IFQ_DEQUEUE(&sc->p2p->p2p_isnd, sc->tx_mbuf); else IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf); } static void /* context: softirq */ p2p_stack_watchdog(softc_t *sc) { /* Notice change in link status. */ if ((sc->last_link_state != sc->status.link_state) && /* if_slowtimo() can run before raw_init() has inited rawcb. */ (sc->p2p->p2p_modem != NULL) && (rawcb.rcb_next != NULL)) (*sc->p2p->p2p_modem)(sc->p2p, sc->status.link_state==STATE_UP); /* Report current line protocol. */ sc->status.stack = STACK_P2P; switch (sc->ifp->if_type) { case IFT_PPP: sc->status.proto = PROTO_PPP; break; case IFT_PTPSERIAL: sc->status.proto = PROTO_C_HDLC; break; case IFT_FRELAY: sc->status.proto = PROTO_FRM_RLY; break; default: sc->status.proto = PROTO_NONE; break; } } static int p2p_stack_open(softc_t *sc, struct config *config) { int error = 0; /* Done if proto is not changing. */ if (config->proto == sc->config.proto) return 0; if (error = p2p_stack_detach(sc)) return error; /* Change line protocol. */ switch (config->proto) { case PROTO_PPP: sc->ifp->if_type = IFT_PPP; sc->config.proto = PROTO_PPP; break; case PROTO_C_HDLC: sc->ifp->if_type = IFT_PTPSERIAL; sc->config.proto = PROTO_C_HDLC; break; case PROTO_FRM_RLY: sc->ifp->if_type = IFT_FRELAY; sc->config.proto = PROTO_FRM_RLY; break; default: case PROTO_NONE: sc->ifp->if_type = IFT_NONE; sc->config.proto = PROTO_NONE; return 0; } error = p2p_stack_attach(sc, config); return error; } static int p2p_stack_attach(softc_t *sc, struct config *config) { int error; sc->p2p = &sc->p2pcom; sc->p2p->p2p_proto = 0; /* force p2p_attach to re-init */ if ((error = p2p_attach(sc->p2p))) /* calls bpfattach() */ { if (sc->config.debug) printf("%s: p2p_attach(): error %d\n", NAME_UNIT, error); if (error == EPFNOSUPPORT) printf("%s: Try 'ifconfig %s linktype ppp|frelay|chdlc'\n", NAME_UNIT, NAME_UNIT); sc->config.stack = STACK_NONE; /* not attached to P2P */ return error; } sc->p2p->p2p_mdmctl = p2p_mdmctl; sc->p2p->p2p_getmdm = p2p_getmdm; sc->config.stack = STACK_P2P; sc->stack = &p2p_stack; return 0; } static int p2p_stack_detach(softc_t *sc) { int error = 0; if ((error = p2p_detach(sc->p2p))) /* calls bfpdetach() */ { if (sc->config.debug) printf("%s: p2p_detach(): error %d\n", NAME_UNIT, error); if (error == EBUSY) printf("%s: Try 'ifconfig %s down -remove'\n", NAME_UNIT, NAME_UNIT); sc->config.stack = STACK_P2P; /* still attached to P2P */ return error; } ifnet_setup(sc->ifp); sc->config.stack = STACK_NONE; sc->config.proto = PROTO_NONE; sc->stack = NULL; return error; } /* Callout from P2P: */ /* Get the state of DCD (Data Carrier Detect). */ static int /* never fails */ p2p_getmdm(struct p2pcom *p2p, void *result) { softc_t *sc = IFP2SC(&p2p->p2p_if); /* Non-zero is not good enough; TIOCM_CAR is 0x40. */ *(int *)result = (sc->status.link_state==STATE_UP) ? TIOCM_CAR : 0; return 0; } /* Callout from P2P: */ /* Set the state of DTR (Data Terminal Ready). */ static int /* never fails */ p2p_mdmctl(struct p2pcom *p2p, int flag) { softc_t *sc = IFP2SC(&p2p->p2p_if); set_ready(sc, flag); return 0; } #endif /* P2P */ #if SPPP /* FreeBSD, NetBSD, OpenBSD */ static struct stack sppp_stack = { .ioctl = sppp_stack_ioctl, .input = sppp_stack_input, .output = sppp_stack_output, .watchdog = sppp_stack_watchdog, .open = sppp_stack_open, .attach = sppp_stack_attach, .detach = sppp_stack_detach, }; # if !defined(PP_FR) # define PP_FR 0 # endif # if !defined(DLT_C_HDLC) # define DLT_C_HDLC DLT_PPP # endif # if !defined(DLT_FRELAY) # define DLT_FRELAY DLT_PPP # endif static int /* context: process */ sppp_stack_ioctl(softc_t *sc, u_long cmd, void *data) { return sppp_ioctl(sc->ifp, cmd, data); } static void /* context: interrupt */ sppp_stack_input(softc_t *sc, struct mbuf *mbuf) { sppp_input(sc->ifp, mbuf); } static void /* context: interrupt */ sppp_stack_output(softc_t *sc) { sc->tx_mbuf = sppp_dequeue(sc->ifp); } static void /* context: softirq */ sppp_stack_watchdog(softc_t *sc) { /* Notice when the link comes up. */ if ((sc->last_link_state != STATE_UP) && (sc->status.link_state == STATE_UP)) sppp_tls(sc->sppp); /* Notice when the link goes down. */ if ((sc->last_link_state == STATE_UP) && (sc->status.link_state != STATE_UP)) sppp_tlf(sc->sppp); /* Report current line protocol. */ sc->status.stack = STACK_SPPP; # if defined(__FreeBSD__) if (sc->sppp->pp_flags & PP_FR) sc->status.proto = PROTO_FRM_RLY; else if (sc->ifp->if_flags & IFF_LINK2) # elif defined(__NetBSD__) || defined(__OpenBSD__) if (sc->sppp->pp_flags & PP_CISCO) # endif sc->status.proto = PROTO_C_HDLC; else sc->status.proto = PROTO_PPP; /* Report keep-alive status. */ sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE; } static int /* never fails */ sppp_stack_open(softc_t *sc, struct config *config) { /* Refresh the keep_alive flag. */ if (config->keep_alive) sc->sppp->pp_flags |= PP_KEEPALIVE; else sc->sppp->pp_flags &= ~PP_KEEPALIVE; sc->config.keep_alive = config->keep_alive; /* Done if proto is not changing. */ if (config->proto == sc->config.proto) return 0; /* Close */ sc->ifp->if_flags &= ~IFF_UP; /* down */ sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); /* Change line protocol. */ LMC_BPF_DETACH(sc); switch (config->proto) { case PROTO_PPP: { # if defined(__FreeBSD__) sc->ifp->if_flags &= ~IFF_LINK2; sc->sppp->pp_flags &= ~PP_FR; # elif defined(__NetBSD__) || defined(__OpenBSD__) sc->sppp->pp_flags &= ~PP_CISCO; # endif LMC_BPF_ATTACH(sc, DLT_PPP, 4); sc->config.proto = PROTO_PPP; break; } default: case PROTO_C_HDLC: { # if defined(__FreeBSD__) sc->ifp->if_flags |= IFF_LINK2; sc->sppp->pp_flags &= ~PP_FR; # elif defined(__NetBSD__) || defined(__OpenBSD__) sc->sppp->pp_flags |= PP_CISCO; # endif LMC_BPF_ATTACH(sc, DLT_C_HDLC, 4); sc->config.proto = PROTO_C_HDLC; break; } # if defined(__FreeBSD__) case PROTO_FRM_RLY: { sc->ifp->if_flags &= ~IFF_LINK2; sc->sppp->pp_flags |= PP_FR; sc->sppp->pp_flags |= PP_KEEPALIVE; sc->config.keep_alive = 1; LMC_BPF_ATTACH(sc, DLT_FRELAY, 4); sc->config.proto = PROTO_FRM_RLY; break; } # endif } /* switch(config->proto) */ /* Open */ sc->ifp->if_flags |= IFF_UP; /* up and not running */ sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); return 0; } static int /* never fails */ sppp_stack_attach(softc_t *sc, struct config *config) { # if defined(__FreeBSD__) sc->sppp = sc->ifp->if_l2com; # else sc->sppp = &sc->spppcom; # endif LMC_BPF_ATTACH(sc, DLT_RAW, 0); sppp_attach(sc->ifp); sc->sppp->pp_tls = sppp_tls; sc->sppp->pp_tlf = sppp_tlf; config->keep_alive = 1; sc->config.stack = STACK_SPPP; sc->stack = &sppp_stack; return 0; } static int /* never fails */ sppp_stack_detach(softc_t *sc) { sc->ifp->if_flags &= ~IFF_UP; /* down */ sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); /* close() */ sppp_detach(sc->ifp); LMC_BPF_DETACH(sc); ifnet_setup(sc->ifp); sc->config.stack = STACK_NONE; sc->config.proto = PROTO_NONE; sc->stack = NULL; return 0; } /* Callout from SPPP: */ static void sppp_tls(struct sppp *sppp) { /* Calling pp_up/down() required by PPP mode in OpenBSD. */ /* Calling pp_up/down() panics PPP mode in NetBSD. */ /* Calling pp_up/down() breaks Cisco mode in FreeBSD. */ # if defined(__FreeBSD__) if (!(sppp->pp_mode & IFF_LINK2) && /* not Cisco */ !(sppp->pp_flags & PP_FR)) /* not FrmRly */ # elif defined(__NetBSD__) || defined(__OpenBSD__) if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */ # endif sppp->pp_up(sppp); } /* Callout from SPPP: */ static void sppp_tlf(struct sppp *sppp) { /* Calling pp_up/down() required by PPP mode in OpenBSD. */ /* Calling pp_up/down() panics PPP mode in NetBSD. */ /* Calling pp_up/down() breaks Cisco mode in FreeBSD. */ # if defined(__FreeBSD__) if (!(sppp->pp_mode & IFF_LINK2) && /* not Cisco */ !(sppp->pp_flags & PP_FR)) /* not FrmRly */ # elif defined(__NetBSD__) || defined(__OpenBSD__) if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */ # endif sppp->pp_down(sppp); } #endif /* SPPP */ /* RawIP is built into the driver. */ static struct stack rawip_stack = { #if IFNET .ioctl = rawip_ioctl, .input = rawip_input, .output = rawip_output, #elif NETDEV .ioctl = rawip_ioctl, .type = rawip_type, .mtu = rawip_mtu, #endif .watchdog = rawip_watchdog, .open = rawip_open, .attach = rawip_attach, .detach = rawip_detach, }; #if IFNET static int /* context: process */ rawip_ioctl(softc_t *sc, u_long cmd, void *data) { struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (cmd) { case SIOCADDMULTI: case SIOCDELMULTI: if (sc->config.debug) printf("%s: rawip_ioctl: SIOCADD/DELMULTI\n", NAME_UNIT); case SIOCSIFFLAGS: error = ifioctl_common(sc->ifp, cmd, data); break; case SIOCAIFADDR: case SIOCSIFDSTADDR: break; case SIOCINITIFADDR: sc->ifp->if_flags |= IFF_UP; /* a Unix tradition */ break; case SIOCSIFMTU: if ((ifr->ifr_mtu < 72) || (ifr->ifr_mtu > 65535)) error = EINVAL; else if ((error = ifioctl_common(sc->ifp, cmd, data)) == ENETRESET) error = 0; break; default: error = EINVAL; break; } return error; } static void /* context: interrupt */ rawip_input(softc_t *sc, struct mbuf *mbuf) { ifnet_input(sc->ifp, mbuf); } static void /* context: interrupt */ rawip_output(softc_t *sc) { IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf); } #elif NETDEV static int /* context: process */ rawip_ioctl(softc_t *sc, struct ifreq *ifr, int cmd) { if (sc->config.debug) printk("%s: rawip_ioctl; cmd=0x%08x\n", NAME_UNIT, cmd); return -EINVAL; } static int /* context: interrupt */ rawip_type(softc_t *sc, struct sk_buff *skb) { if (skb->data[0]>>4 == 4) return htons(ETH_P_IP); else if (skb->data[0]>>4 == 6) return htons(ETH_P_IPV6); else return htons(ETH_P_HDLC); } static int /* Process Context */ rawip_mtu(softc_t *sc, int mtu) { return ((mtu < 72) || (mtu > 65535)) ? -EINVAL : 0; } #endif /* IFNET */ static void /* context: softirq */ rawip_watchdog(softc_t *sc) { #if IFNET if ((sc->status.link_state == STATE_UP) && (sc->ifp->if_flags & IFF_UP)) # if defined(__FreeBSD__) sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; # else sc->ifp->if_flags |= IFF_RUNNING; # endif if ((sc->status.link_state != STATE_UP) || !(sc->ifp->if_flags & IFF_UP)) # if defined(__FreeBSD__) sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; # else sc->ifp->if_flags &= ~IFF_RUNNING; # endif #endif /* IFNET */ /* Report current line protocol. */ sc->status.stack = STACK_RAWIP; sc->status.proto = PROTO_IP_HDLC; } static int rawip_open(softc_t *sc, struct config *config) { sc->config.proto = PROTO_IP_HDLC; return 0; } static int rawip_attach(softc_t *sc, struct config *config) { #if IFNET LMC_BPF_ATTACH(sc, DLT_RAW, 0); #endif sc->config.stack = STACK_RAWIP; sc->stack = &rawip_stack; return 0; } static int rawip_detach(softc_t *sc) { #if IFNET LMC_BPF_DETACH(sc); ifnet_setup(sc->ifp); #elif NETDEV netdev_setup(sc->netdev); #endif sc->config.stack = STACK_NONE; sc->config.proto = PROTO_NONE; sc->stack = NULL; return 0; } #if IFNET /* Called to give a newly arrived pkt to higher levels. */ /* Called from rxintr_cleanup() with bottom_lock held. */ /* This is only used with rawip_stack on a BSD. */ static void ifnet_input(struct ifnet *ifp, struct mbuf *mbuf) { softc_t *sc = IFP2SC(ifp); struct ifqueue *intrq; int isr = 0; intrq = NULL; /* surpress compiler warning */ # if INET if (mbuf->m_data[0]>>4 == 4) { isr = NETISR_IP; # if !defined(__FreeBSD__) intrq = &ipintrq; # endif } # endif /* INET */ # if INET6 if (mbuf->m_data[0]>>4 == 6) { isr = NETISR_IPV6; # if !defined(__FreeBSD__) intrq = &ip6intrq; # endif } # endif /* INET6 */ if (isr) { # if defined(__FreeBSD__) netisr_dispatch(isr, mbuf); # else if (!IF_QFULL(intrq)) { /* ifnet_input() ENQUEUES in a hard interrupt. */ /* ip_input() DEQUEUES in a soft interrupt. */ /* Some BSD QUEUE routines are not interrupt-safe. */ DISABLE_INTR; /* noop in FreeBSD */ IF_ENQUEUE(intrq, mbuf); ENABLE_INTR; /* noop in FreeBSD */ schednetisr(isr); /* wake up the network code */ } else /* intrq is full */ { m_freem(mbuf); sc->status.cntrs.idrops++; if (sc->config.debug) printf("%s: ifnet_input: rx pkt dropped: intrq full\n", NAME_UNIT); } # endif /* __FreeBSD__ */ } else /* isr is zero */ { m_freem(mbuf); sc->status.cntrs.idrops++; if (sc->config.debug) printf("%s: ifnet_input: rx pkt dropped: not IPv4 or IPv6\n", NAME_UNIT); } } /* sppp and p2p replace this with their own proc. * This is only used with rawip_stack on a BSD. * This procedure is very similar to ng_rcvdata(). */ static int /* context: process */ ifnet_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct rtentry *rt) { softc_t *sc = IFP2SC(ifp); int error = 0; /* Fail if the link is down. */ if (sc->status.link_state != STATE_UP) { m_freem(m); sc->status.cntrs.odrops++; if (sc->config.debug) printf("%s: ifnet_output: tx pkt dropped: link down\n", NAME_UNIT); return ENETDOWN; } /* ifnet_output() ENQUEUEs in a syscall or softirq. */ /* txintr_setup() DEQUEUEs in a hard interrupt. */ /* Some BSD QUEUE routines are not interrupt-safe. */ { DISABLE_INTR; /* noop in FreeBSD */ #if defined(__FreeBSD__) IFQ_ENQUEUE(&ifp->if_snd, m, error); #else IFQ_ENQUEUE(&ifp->if_snd, m, NULL, error); #endif ENABLE_INTR; /* noop in FreeBSD */ } if (error) { sc->status.cntrs.odrops++; if (sc->config.debug) printf("%s: ifnet_output: tx pkt dropped: IFQ_ENQUEUE(): error %d\n", NAME_UNIT, error); } else /* Process tx pkts; do not process rx pkts. */ lmc_interrupt(sc, 0, 0); return error; } static int /* context: process */ ifnet_ioctl(struct ifnet *ifp, u_long cmd, void *data) { softc_t *sc = IFP2SC(ifp); struct ifreq *ifr = (struct ifreq *) data; int error = 0; /* Aquire ioctl/watchdog interlock. */ if ((error = TOP_LOCK(sc))) return error; switch (cmd) { /* Catch the IOCTLs used by lmcconfig. */ case LMCIOCGSTAT: case LMCIOCGCFG: case LMCIOCSCFG: case LMCIOCREAD: case LMCIOCWRITE: case LMCIOCTL: error = lmc_ioctl(sc, cmd, data); break; # if defined(__FreeBSD__) || defined(__NetBSD__) case SIOCSIFCAP: # if DEVICE_POLLING if ((ifr->ifr_reqcap & IFCAP_POLLING) && !(ifp->if_capenable & IFCAP_POLLING) && !(error = ether_poll_register(bsd_poll, ifp))) { /* enable polling */ WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE); ifp->if_capenable |= IFCAP_POLLING; } else if (!(ifr->ifr_reqcap & IFCAP_POLLING) && (ifp->if_capenable & IFCAP_POLLING) && !(error = ether_poll_deregister(ifp))) { /* disable polling */ ifp->if_capenable &= ~IFCAP_POLLING; WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX); } else error = EINVAL; # endif /* DEVICE_POLLING */ break; # endif /* FreeBSD || NetBSD */ case SIOCSIFMEDIA: /* calls lmc_ifmedia_change() */ case SIOCGIFMEDIA: /* calls ifmedia_status() */ error = ifmedia_ioctl(ifp, ifr, &sc->ifm, cmd); break; # if defined(__OpenBSD__) case SIOCSIFTIMESLOT: if (sc->status.card_type == CSID_LMC_T1E1) { struct config config = sc->config; if ((error = copyin(ifr->ifr_data, &config.time_slots, sizeof sc->config.time_slots))) break; sc->card->attach(sc, &config); } else error = EINVAL; break; case SIOCGIFTIMESLOT: if (sc->status.card_type == CSID_LMC_T1E1) error = copyout(&sc->status.time_slots, ifr->ifr_data, sizeof sc->status.time_slots); else error = EINVAL; break; # endif /* OpenBSD */ /* Pass the rest to the line protocol. */ default: if (sc->stack) error = sc->stack->ioctl(sc, cmd, data); else error = ENOSYS; break; } /* release ioctl/watchdog interlock */ TOP_UNLOCK(sc); if (error && sc->config.debug) printf("%s: ifnet_ioctl: op=IO%s%s len=%3lu grp='%c' num=%3lu err=%d\n", NAME_UNIT, cmd&IOC_IN ? "W":"", cmd&IOC_OUT ? "R":"", IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xFF, error); return error; } static void /* context: process */ ifnet_start(struct ifnet *ifp) { softc_t *sc = IFP2SC(ifp); /* Process tx pkts; do not process rx pkts. */ lmc_interrupt(sc, 0, 0); } static void /* context: softirq */ ifnet_watchdog(struct ifnet *ifp) { softc_t *sc = IFP2SC(ifp); struct cntrs *cntrs = &sc->status.cntrs; lmc_watchdog(sc); /* updates link_state */ # if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) if (sc->status.link_state == STATE_UP) ifp->if_link_state = LINK_STATE_UP; else ifp->if_link_state = LINK_STATE_DOWN; # endif /* Copy statistics from sc to ifp. */ ifp->if_baudrate = sc->status.tx_speed; ifp->if_ibytes = cntrs->ibytes; ifp->if_obytes = cntrs->obytes; ifp->if_ipackets = cntrs->ipackets; ifp->if_opackets = cntrs->opackets; ifp->if_ierrors = cntrs->ierrors; ifp->if_oerrors = cntrs->oerrors; ifp->if_iqdrops = cntrs->idrops; /* If the interface debug flag is set, set the driver debug flag. */ if (sc->ifp->if_flags & IFF_DEBUG) sc->config.debug = 1; /* Call this procedure again after one second. */ ifp->if_timer = 1; } /* This setup is for RawIP; SPPP and P2P change many items. */ /* Note the similarity to linux's netdev_setup(). */ static void ifnet_setup(struct ifnet *ifp) { ifp->if_flags = IFF_POINTOPOINT; ifp->if_flags |= IFF_SIMPLEX; ifp->if_flags |= IFF_NOARP; # if defined(__FreeBSD__) || defined(__NetBSD__) ifp->if_input = ifnet_input; # endif ifp->if_output = ifnet_output; ifp->if_start = ifnet_start; ifp->if_ioctl = ifnet_ioctl; ifp->if_watchdog = ifnet_watchdog; ifp->if_timer = 1; ifp->if_type = IFT_PTPSERIAL; ifp->if_addrlen = 0; ifp->if_hdrlen = 0; ifp->if_mtu = MAX_DESC_LEN; } /* Attach the ifnet kernel interface. */ /* context: kernel (boot) or process (syscall) */ static int ifnet_attach(softc_t *sc) { # if defined(__FreeBSD__) sc->ifp = if_alloc(SPPP ? IFT_PPP : IFT_OTHER); if (sc->ifp == NULL) return ENOMEM; # elif SPPP sc->ifp = &sc->spppcom.pp_if; # elif P2P sc->ifp = &sc->p2pcom.p2p_if; # else sc->ifp = &sc->ifnet; # endif sc->ifp->if_softc = sc; ifnet_setup(sc->ifp); # if defined(__FreeBSD__) || defined(__OpenBSD__) sc->ifp->if_capabilities |= IFCAP_JUMBO_MTU; # endif # if DEVICE_POLLING sc->ifp->if_capabilities |= IFCAP_POLLING; # endif /* Every OS does it differently! */ # if defined(__FreeBSD__) sc->ifp->if_dname = device_get_name(sc->dev); sc->ifp->if_dunit = device_get_unit(sc->dev); strlcpy(sc->ifp->if_xname, device_get_nameunit(sc->dev), IFNAMSIZ); # elif defined(__NetBSD__) strlcpy(sc->ifp->if_xname, device_xname(&sc->dev), IFNAMSIZ); # elif defined(__OpenBSD__) bcopy(sc->dev.dv_xname, sc->ifp->if_xname, IFNAMSIZ); # elif defined(__bsdi__) sc->ifp->if_name = sc->dev.dv_cfdata->cf_driver->cd_name; sc->ifp->if_unit = sc->dev.dv_unit; # endif IFQ_SET_MAXLEN(&sc->ifp->if_snd, SNDQ_MAXLEN); IFQ_SET_READY(&sc->ifp->if_snd); if_attach(sc->ifp); # if defined(__NetBSD__) || defined(__OpenBSD__) if_alloc_sadl(sc->ifp); # endif ifmedia_setup(sc); return 0; } /* Detach the ifnet kernel interface. */ /* context: kernel (boot) or process (syscall). */ static void ifnet_detach(softc_t *sc) { # if defined(__FreeBSD__) ifmedia_removeall(&sc->ifm); # elif defined(__NetBSD__) || defined(__OpenBSD__) ifmedia_delete_instance(&sc->ifm, IFM_INST_ANY); # endif # if DEVICE_POLLING if (sc->ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(sc->ifp); # endif IFQ_PURGE(&sc->ifp->if_snd); # if defined(__NetBSD__) || defined(__OpenBSD__) if_free_sadl(sc->ifp); # endif if_detach(sc->ifp); # if defined(__FreeBSD__) if_free_type(sc->ifp, SPPP ? IFT_PPP : IFT_OTHER); # endif } static void ifmedia_setup(softc_t *sc) { /* Initialize ifmedia mechanism. */ ifmedia_init(&sc->ifm, IFM_OMASK | IFM_GMASK | IFM_IMASK, lmc_ifmedia_change, ifmedia_status); # if defined(__OpenBSD__) if (sc->status.card_type == CSID_LMC_T3) { ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T3, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T3_M13, 0, NULL); ifmedia_set(&sc->ifm, IFM_TDM | IFM_TDM_T3); } else if (sc->status.card_type == CSID_LMC_T1E1) { ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T1, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T1_AMI, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1_G704, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1_G704_CRC4, 0, NULL); ifmedia_set(&sc->ifm, IFM_TDM | IFM_TDM_T1); } else { ifmedia_add(&sc->ifm, IFM_TDM | IFM_NONE, 0, NULL); ifmedia_set(&sc->ifm, IFM_TDM | IFM_NONE); } # else /* FreeBSD, NetBSD, BSD/OS */ ifmedia_add(&sc->ifm, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&sc->ifm, IFM_ETHER | IFM_NONE); # endif /* OpenBSD */ } /* SIOCSIFMEDIA: context: process. */ static int lmc_ifmedia_change(struct ifnet *ifp) { softc_t *sc = IFP2SC(ifp); struct config config = sc->config; int media = sc->ifm.ifm_media; int error; # if defined(__OpenBSD__) /* ifconfig lmc0 media t1 */ if (sc->status.card_type == CSID_LMC_T3) { if ((media & IFM_TMASK) == IFM_TDM_T3) config.format = CFG_FORMAT_T3CPAR; else if ((media & IFM_TMASK) == IFM_TDM_T3_M13) config.format = CFG_FORMAT_T3M13; } else if (sc->status.card_type == CSID_LMC_T1E1) { if ((media & IFM_TMASK) == IFM_TDM_T1) config.format = CFG_FORMAT_T1ESF; else if ((media & IFM_TMASK) == IFM_TDM_T1_AMI) config.format = CFG_FORMAT_T1SF; else if ((media & IFM_TMASK) == IFM_TDM_E1) config.format = CFG_FORMAT_E1NONE; else if ((media & IFM_TMASK) == IFM_TDM_E1_G704) config.format = CFG_FORMAT_E1FAS; else if ((media & IFM_TMASK) == IFM_TDM_E1_G704_CRC4) config.format = CFG_FORMAT_E1FASCRC; } /* ifconfig lmc0 mediaopt hdlc-crc16 */ if (media & IFM_TDM_HDLC_CRC16) config.proto = PROTO_C_HDLC; /* ifconfig lmc0 mediaopt ppp */ if (media & IFM_TDM_PPP) config.proto = PROTO_PPP; /* ifconfig lmc0 mediaopt framerelay-ansi */ if (media & IFM_TDM_FR_ANSI) config.proto = PROTO_FRM_RLY; /* ifconfig lmc0 mediaopt master */ if ((media & IFM_TDM_MASTER) && (sc->status.card_type == CSID_LMC_T1E1)) config.tx_clk_src = CFG_CLKMUX_INT; /* xtal */ else config.tx_clk_src = CFG_CLKMUX_RT; /* loop */ # endif /* OpenBSD */ /* ifconfig lmc0 mediaopt loopback */ if (media & IFM_LOOP) config.loop_back = CFG_LOOP_TULIP; else config.loop_back = CFG_LOOP_NONE; error = open_proto(sc, &config); tulip_loop(sc, &config); sc->card->attach(sc, &config); return error; } /* SIOCGIFMEDIA: context: process. */ static void ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) { softc_t *sc = IFP2SC(ifp); ifmr->ifm_status = IFM_AVALID; if (sc->status.link_state == STATE_UP) ifmr->ifm_status |= IFM_ACTIVE; if (sc->config.loop_back != CFG_LOOP_NONE) ifmr->ifm_active |= IFM_LOOP; # if defined(__OpenBSD__) if (sc->status.proto == PROTO_C_HDLC) ifmr->ifm_active |= IFM_TDM_HDLC_CRC16; if (sc->status.proto == PROTO_PPP) ifmr->ifm_active |= IFM_TDM_PPP; if (sc->status.proto == PROTO_FRM_RLY) ifmr->ifm_active |= IFM_TDM_FR_ANSI; if (sc->config.tx_clk_src == CFG_CLKMUX_INT) ifmr->ifm_active |= IFM_TDM_MASTER; # endif /* OpenBSD */ } #endif /* IFNET */ #if NETDEV /* This net_device method is called when IFF_UP goes true. */ static int /* context: process */ netdev_open(struct net_device *netdev) { softc_t *sc = NETDEV2SC(netdev); WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX); netif_start_queue(sc->netdev); set_ready(sc, 1); return 0; } /* This net_device method is called when IFF_UP goes false. */ static int /* context: process */ netdev_stop(struct net_device *netdev) { softc_t *sc = NETDEV2SC(netdev); set_ready(sc, 0); netif_stop_queue(sc->netdev); WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE); return 0; } /* This net_device method hands outgoing packets to the transmitter. */ /* With txintr_setup(), it implements output flow control. */ static int /* context: netdev->xmit_lock held; BHs disabled */ netdev_start(struct sk_buff *skb, struct net_device *netdev) { softc_t *sc = NETDEV2SC(netdev); if (sc->tx_skb == NULL) { /* Put this skb where the transmitter will see it. */ sc->tx_skb = skb; /* Process tx pkts; do not process rx pkts. */ lmc_interrupt(sc, 0, 0); return NETDEV_TX_OK; } else { /* txintr_setup() calls netif_wake_queue(). */ netif_stop_queue(netdev); return NETDEV_TX_BUSY; } } # if NAPI /* This net_device method services the card without interrupts. */ /* With rxintr_cleanup(), it implements input flow control. */ static int /* context: softirq */ netdev_poll(struct net_device *netdev, int *budget) { softc_t *sc = NETDEV2SC(netdev); int received; /* Handle the card interrupt with kernel ints enabled. */ /* Allow processing up to netdev->quota incoming packets. */ /* This is the ONLY time lmc_interrupt() may process rx pkts. */ /* Otherwise (sc->quota == 0) and rxintr_cleanup() is a NOOP. */ lmc_interrupt(sc, min(netdev->quota, *budget), 0); /* Report number of rx packets processed. */ received = netdev->quota - sc->quota; netdev->quota -= received; *budget -= received; /* If quota prevented processing all rx pkts, leave rx ints disabled. */ if (sc->quota == 0) /* this is off by one...but harmless */ { WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TX); return 1; /* more pkts to handle -- reschedule */ } /* Remove self from poll list. */ netif_rx_complete(netdev); /* Enable card interrupts. */ WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX); return 0; /* all pkts handled -- success */ } # endif /* NAPI */ /* This net_device method handles IOCTL syscalls. */ static int /* context: process */ netdev_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { softc_t *sc = NETDEV2SC(netdev); int error = 0; /* Aquire ioctl/watchdog interlock. */ if ((error = TOP_LOCK(sc))) return error; if ((cmd >= SIOCDEVPRIVATE) && (cmd <= SIOCDEVPRIVATE+15)) { struct iohdr *iohdr = (struct iohdr *)ifr; u_int16_t direction = iohdr->direction; u_int16_t length = iohdr->length; char *user_addr = (char *)iohdr->iohdr; char *kern_addr = NULL; if (iohdr->cookie != NGM_LMC_COOKIE) error = -EINVAL; /* Emulate a BSD-style IOCTL syscall. */ if (!error) error = (kern_addr = kmalloc(length, GFP_KERNEL)) ? 0: -ENOMEM; if (!error && (direction & DIR_IOW)) error = copy_from_user(kern_addr, user_addr, length); if (!error) error = -lmc_ioctl(sc, (unsigned long)cmd, kern_addr); if (!error && (direction & DIR_IOR)) error = copy_to_user(user_addr, kern_addr, length); kfree(kern_addr); } else if (sc->stack) error = sc->stack->ioctl(sc, ifr, cmd); else error = -ENOSYS; # if GEN_HDLC /* If generic-HDLC is present but not the currently-attached * stack, call hdlc_ioctl() anyway because proto must * be set using SIOCWANDEV or hdlc_open() will fail. */ if (sc->stack != &gen_hdlc_stack) hdlc_ioctl(sc->netdev, ifr, cmd); /* ignore error result */ # endif /* Release ioctl/watchdog interlock. */ TOP_UNLOCK(sc); if (error && sc->config.debug) printk("%s: netdev_ioctl; cmd=0x%08x error=%d\n", NAME_UNIT, cmd, error); return error; } /* This net_device method sets the Maximum Tranmit Unit. */ /* This driver does not limit MTU; stacks and protos do. */ static int netdev_mtu(struct net_device *netdev, int mtu) { softc_t *sc = NETDEV2SC(netdev); int error = 0; if (sc->stack) error = sc->stack->mtu(sc, mtu); else error = -ENOSYS; if (!error) netdev->mtu = mtu; return error; } /* This net_device method restarts the transmitter if it hangs. */ static void /* BHs disabled */ netdev_timeout(struct net_device *netdev) { softc_t *sc = NETDEV2SC(netdev); /* Process tx pkts; do not process rx pkts. */ lmc_interrupt(sc, 0, 0); } /* This net_device method returns a pointer to device statistics. */ static struct net_device_stats * /* context: process */ netdev_stats(struct net_device *netdev) { softc_t *sc = NETDEV2SC(netdev); # if GEN_HDLC return &sc->hdlcdev->stats; # else return &sc->netdev_stats; # endif } static void /* context: softirq */ netdev_watchdog(unsigned long softc) { softc_t *sc = (softc_t *)softc; struct cntrs *cntrs = &sc->status.cntrs; struct net_device_stats *stats = netdev_stats(sc->netdev); lmc_watchdog(sc); /* updates link_state */ /* Notice when the link comes up. */ if ((sc->last_link_state != STATE_UP) && (sc->status.link_state == STATE_UP)) { netif_wake_queue(sc->netdev); netif_carrier_on(sc->netdev); } /* Notice when the link goes down. */ if ((sc->last_link_state == STATE_UP) && (sc->status.link_state != STATE_UP)) { netif_tx_disable(sc->netdev); netif_carrier_off(sc->netdev); } /* Copy statistics from sc to netdev. */ stats->rx_bytes = cntrs->ibytes; stats->tx_bytes = cntrs->obytes; stats->rx_packets = cntrs->ipackets; stats->tx_packets = cntrs->opackets; stats->rx_errors = cntrs->ierrors; stats->tx_errors = cntrs->oerrors; stats->rx_dropped = cntrs->idrops; stats->rx_missed_errors = cntrs->missed; stats->tx_dropped = cntrs->odrops; stats->rx_fifo_errors = cntrs->fifo_over; stats->rx_over_errors = cntrs->overruns; stats->tx_fifo_errors = cntrs->fifo_under; /*stats->tx_under_errors = cntrs=>underruns; */ /* If the interface debug flag is set, set the driver debug flag. */ if (sc->netdev->flags & IFF_DEBUG) sc->config.debug = 1; /* Call this procedure again after one second. */ sc->wd_timer.expires = jiffies + HZ -8; /* -8 is a FUDGE factor */ add_timer(&sc->wd_timer); } /* This setup is for RawIP; Generic-HDLC changes many items. */ /* Note the similarity to BSD's ifnet_setup(). */ static void netdev_setup(struct net_device *netdev) { netdev->flags = IFF_POINTOPOINT; netdev->flags |= IFF_NOARP; netdev->open = netdev_open; netdev->stop = netdev_stop; netdev->hard_start_xmit = netdev_start; # if NAPI netdev->poll = netdev_poll; netdev->weight = 32; /* sc->rxring.num_descs; */ # endif netdev->rebuild_header = NULL; /* no arp */ netdev->hard_header = NULL; /* no arp */ netdev->do_ioctl = netdev_ioctl; netdev->change_mtu = netdev_mtu; netdev->tx_timeout = netdev_timeout; netdev->get_stats = netdev_stats; netdev->watchdog_timeo = 1 * HZ; netdev->mtu = MAX_DESC_LEN; netdev->type = ARPHRD_HDLC; netdev->hard_header_len = 16; netdev->addr_len = 0; netdev->tx_queue_len = SNDQ_MAXLEN; /* The receiver generates frag-lists for packets >4032 bytes. */ /* The transmitter accepts scatter/gather lists and frag-lists. */ /* However Linux linearizes outgoing packets since our hardware */ /* does not compute soft checksums. All that work for nothing! */ /*netdev->features |= NETIF_F_SG; */ /*netdev->features |= NETIF_F_FRAGLIST; */ } /* Attach the netdevice kernel interface. */ /* context: kernel (boot) or process (syscall). */ static int netdev_attach(softc_t *sc) { int error; # if GEN_HDLC /* generic-hdlc line protocol pkg configured */ /* Allocate space for the HDLC network device struct. */ /* Allocating a netdev and attaching to generic-HDLC should be separate. */ if ((sc->netdev = alloc_hdlcdev(sc)) == NULL) { printk("%s: netdev_attach: alloc_hdlcdev() failed\n", DEVICE_NAME); return -ENOMEM; } /* Initialize the basic network device struct. */ /* This clobbers some netdev stuff set by alloc_hdlcdev(). */ /* Our get_stats() and change_mtu() do the right thing. */ netdev_setup(sc->netdev); /* HACK: make the private eco-net pointer -> struct softc. */ sc->netdev->ec_ptr = sc; /* Cross-link pcidev and netdev. */ SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev); sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1); sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1); sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0); sc->netdev->irq = sc->pcidev->irq; /* Initialize the HDLC extension to the network device. */ sc->hdlcdev = sc->netdev->priv; sc->hdlcdev->attach = gen_hdlc_card_params; sc->hdlcdev->xmit = netdev_start; /* the REAL hard_start_xmit() */ if ((error = register_hdlc_device(sc->netdev))) { printk("%s: register_hdlc_device(): error %d\n", DEVICE_NAME, error); free_netdev(sc->netdev); return error; } # else /* Allocate and initialize the basic network device struct. */ if ((sc->netdev = alloc_netdev(0, DEVICE_NAME"%d", netdev_setup)) == NULL) { printk("%s: netdev_attach: alloc_netdev() failed\n", DEVICE_NAME); return -ENOMEM; } /* HACK: make the private eco-net pointer -> struct softc. */ sc->netdev->ec_ptr = sc; /* Cross-link pcidev and netdev. */ SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev); sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1); sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1); sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0); sc->netdev->irq = sc->pcidev->irq; if ((error = register_netdev(sc->netdev))) { printk("%s: register_netdev(): error %d\n", DEVICE_NAME, error); free_netdev(sc->netdev); return error; } # endif /* GEN_HDLC */ /* Arrange to call netdev_watchdog() once a second. */ init_timer(&sc->wd_timer); sc->wd_timer.expires = jiffies + HZ; /* now plus one second */ sc->wd_timer.function = &netdev_watchdog; sc->wd_timer.data = (unsigned long) sc; add_timer(&sc->wd_timer); return 0; /* success */ } /* Detach the netdevice kernel interface. */ /* context: kernel (boot) or process (syscall). */ static void netdev_detach(softc_t *sc) { if (sc->pcidev == NULL) return; if (sc->netdev == NULL) return; netdev_stop(sc->netdev); /* check for not inited */ del_timer(&sc->wd_timer); # if GEN_HDLC unregister_hdlc_device(sc->netdev); # else unregister_netdev(sc->netdev); # endif free_netdev(sc->netdev); } #endif /* NETDEV */ #if NETGRAPH /* These next two macros should be added to netgraph */ # define NG_TYPE_REF(type) atomic_add_int(&(type)->refs, 1) # define NG_TYPE_UNREF(type) \ do { \ if ((type)->refs == 1) \ ng_rmtype(type); \ else \ atomic_subtract_int(&(type)->refs, 1); \ } while (0) /* It is an error to construct new copies of this Netgraph node. */ /* All instances are constructed by ng_attach and are persistent. */ static int ng_constructor(node_p node) { return EINVAL; } /* Incoming Netgraph control message. */ static int ng_rcvmsg(node_p node, item_p item, hook_p lasthook) { struct ng_mesg *msg; struct ng_mesg *resp = NULL; softc_t *sc = NG_NODE_PRIVATE(node); int error = 0; if ((error = TOP_LOCK(sc))) return error; NGI_GET_MSG(item, msg); if (msg->header.typecookie == NGM_LMC_COOKIE) { switch (msg->header.cmd) { case LMCIOCGSTAT: case LMCIOCGCFG: case LMCIOCSCFG: case LMCIOCREAD: case LMCIOCWRITE: case LMCIOCTL: { /* Call the core ioctl procedure. */ error = lmc_ioctl(sc, msg->header.cmd, msg->data); if (msg->header.cmd & IOC_OUT) { /* synchronous response */ NG_MKRESPONSE(resp, msg, sizeof(struct ng_mesg) + IOCPARM_LEN(msg->header.cmd), M_NOWAIT); if (resp == NULL) error = ENOMEM; else memcpy(resp->data, msg->data, IOCPARM_LEN(msg->header.cmd)); } break; } default: error = EINVAL; break; } } else if ((msg->header.typecookie == NGM_GENERIC_COOKIE) && (msg->header.cmd == NGM_TEXT_STATUS)) { /* synchronous response */ NG_MKRESPONSE(resp, msg, sizeof(struct ng_mesg) + NG_TEXTRESPONSE, M_NOWAIT); if (resp == NULL) error = ENOMEM; else { char *s = resp->data; sprintf(s, "Card type = <%s>\n" "This driver considers the link to be %s.\n" "Use lmcconfig to configure this interface.\n", sc->dev_desc, (sc->status.link_state==STATE_UP) ? "UP" : "DOWN"); resp->header.arglen = strlen(s) +1; } } else error = EINVAL; /* Netgraph should be able to read and write these * parameters with text-format control messages: * SSI HSSI T1E1 T3 * crc crc crc crc * loop loop loop loop * clksrc clksrc * dte dte format format * synth synth cablen cablen * cable timeslot scram * gain * pulse * lbo * Someday I'll implement this... */ /* Handle synchronous response. */ NG_RESPOND_MSG(error, node, item, resp); NG_FREE_MSG(msg); TOP_UNLOCK(sc); return error; } /* This is a persistent netgraph node. */ static int ng_shutdown(node_p node) { /* unless told to really die, bounce back to life */ if ((node->nd_flags & NG_REALLY_DIE)==0) node->nd_flags &= ~NG_INVALID; /* bounce back to life */ return 0; } /* ng_disconnect is the opposite of this procedure. */ static int ng_newhook(node_p node, hook_p hook, const char *name) { softc_t *sc = NG_NODE_PRIVATE(node); /* Hook name must be 'rawdata'. */ if (strncmp(name, "rawdata", 7)) return EINVAL; /* Is netgraph the current package? */ if (sc->stack != &netgraph_stack) return EBUSY; /* Is our hook connected? */ if (sc->ng_hook) return EBUSY; /* Accept the hook. */ sc->ng_hook = hook; return 0; } /* Both ends have accepted their hooks and the links have been made. */ /* This is the last chance to reject the connection request. */ static int ng_connect(hook_p hook) { /* Probably not at splnet, force outward queueing. */ NG_HOOK_FORCE_QUEUE(NG_HOOK_PEER(hook)); return 0; /* always accept */ } /* Receive data in mbufs from another Netgraph node. * Transmit an mbuf-chain on the communication link. * This procedure is very similar to ifnet_output(). */ static int /* context: process */ ng_rcvdata(hook_p hook, item_p item) { softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook)); int error = 0; struct mbuf *m; meta_p meta = NULL; NGI_GET_M(item, m); NGI_GET_META(item, meta); NG_FREE_ITEM(item); NG_FREE_META(meta); /* Fail if the link is down. */ if (sc->status.link_state != STATE_UP) { m_freem(m); sc->status.cntrs.odrops++; if (sc->config.debug) printf("%s: ng_rcvdata: tx pkt dropped: link down\n", NAME_UNIT); return ENETDOWN; } /* ng_rcvdata() ENQUEUEs in a syscall or softirq. */ /* txintr_setup() DEQUEUEs in a hard interrupt. */ /* Some BSD QUEUE routines are not interrupt-safe. */ { DISABLE_INTR; /* noop in FreeBSD */ # if defined(__FreeBSD__) if (meta==NULL) IFQ_ENQUEUE(&sc->ng_sndq, m, error); else IFQ_ENQUEUE(&sc->ng_fastq, m, error); # else if (meta==NULL) IFQ_ENQUEUE(&sc->ng_sndq, m, NULL, error); else IFQ_ENQUEUE(&sc->ng_fastq, m, NULL, error); # endif ENABLE_INTR; /* noop in FreeBSD */ } if (error) { sc->status.cntrs.odrops++; if (sc->config.debug) printf("%s: ng_rcvdata: tx pkt dropped: IFQ_ENQUEUE(): error %d\n", NAME_UNIT, error); } else /* Process tx pkts; do not process rx pkts. */ lmc_interrupt(sc, 0, 0); return error; } /* ng_newhook is the opposite of this procedure, not */ /* ng_connect, as you might expect from the names. */ static int ng_disconnect(hook_p hook) { softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook)); /* Disconnect the hook. */ sc->ng_hook = NULL; return 0; } static struct ng_type ng_type = { .version = NG_ABI_VERSION, .name = NG_LMC_NODE_TYPE, .mod_event = NULL, .constructor = ng_constructor, .rcvmsg = ng_rcvmsg, .close = NULL, .shutdown = ng_shutdown, .newhook = ng_newhook, .findhook = NULL, .connect = ng_connect, .rcvdata = ng_rcvdata, .disconnect = ng_disconnect, }; static void /* context: softirq */ ng_watchdog(void *arg) { softc_t *sc = arg; /* Call the core watchdog procedure. */ lmc_watchdog(sc); /* Call this procedure again after one second. */ callout_reset(&sc->ng_callout, hz, ng_watchdog, sc); } /* Attach the Netgraph kernel interface. */ /* This is effectively ng_constructor. */ /* context: kernel (boot) or process (syscall) */ static int ng_attach(softc_t *sc) { int error; /* If this node type is not known to Netgraph then register it. */ if (ng_findtype(ng_type.name) == NULL) { if ((error = ng_newtype(&ng_type))) { printf("%s: ng_newtype(): error %d\n", NAME_UNIT, error); return error; } } else NG_TYPE_REF(&ng_type); /* Call the superclass node constructor. */ if ((error = ng_make_node_common(&ng_type, &sc->ng_node))) { NG_TYPE_UNREF(&ng_type); printf("%s: ng_make_node_common(): error %d\n", NAME_UNIT, error); return error; } /* Associate a name with this netgraph node. */ if ((error = ng_name_node(sc->ng_node, NAME_UNIT))) { NG_NODE_UNREF(sc->ng_node); NG_TYPE_UNREF(&ng_type); printf("%s: ng_name_node(): error %d\n", NAME_UNIT, error); return error; } /* Initialize the send queue mutexes. */ mtx_init(&sc->ng_sndq.ifq_mtx, NAME_UNIT, "ng sndq", MTX_DEF); mtx_init(&sc->ng_fastq.ifq_mtx, NAME_UNIT, "ng fastq", MTX_DEF); /* Put a backpointer to softc in the netgraph node. */ NG_NODE_SET_PRIVATE(sc->ng_node, sc); /* ALTQ output queue initialization. */ IFQ_SET_MAXLEN(&sc->ng_fastq, SNDQ_MAXLEN); IFQ_SET_READY(&sc->ng_fastq); IFQ_SET_MAXLEN(&sc->ng_sndq, SNDQ_MAXLEN); IFQ_SET_READY(&sc->ng_sndq); /* If ifnet is present, it will call watchdog. */ /* Otherwise, arrange to call watchdog here. */ if (IFNET==0) { /* Arrange to call ng_watchdog() once a second. */ callout_init(&sc->ng_callout, 0); callout_reset(&sc->ng_callout, hz, ng_watchdog, sc); } return 0; } /* Detach the Netgraph kernel interface. */ /* context: kernel (boot) or process (syscall) */ static void ng_detach(softc_t *sc) { if (IFNET==0) callout_stop(&sc->ng_callout); IFQ_PURGE(&sc->ng_fastq); IFQ_PURGE(&sc->ng_sndq); mtx_destroy(&sc->ng_sndq.ifq_mtx); mtx_destroy(&sc->ng_fastq.ifq_mtx); ng_rmnode_self(sc->ng_node); /* free hook */ NG_NODE_UNREF(sc->ng_node); /* free node */ NG_TYPE_UNREF(&ng_type); } #endif /* NETGRAPH */ #if BSD /* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD. * Handling Linux and the BSDs with CPP directives would * make the code unreadable, so there are two versions. * Conceptually, the two versions do the same thing and * lmc_interrupt() does not know they are different. * * We are "standing on the head of a pin" in these routines. * Tulip CSRs can be accessed, but nothing else is interrupt-safe! * Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC. */ /* Initialize a DMA descriptor ring. */ /* context: kernel (boot) or process (syscall) */ static int /* BSD version */ create_ring(softc_t *sc, struct desc_ring *ring, int num_descs) { struct dma_desc *descs; int size_descs = sizeof(struct dma_desc)*num_descs; int i, error = 0; /* The DMA descriptor array must not cross a page boundary. */ if (size_descs > PAGE_SIZE) { printf("%s: DMA descriptor array > PAGE_SIZE (%d)\n", NAME_UNIT, (u_int)PAGE_SIZE); return EINVAL; } # if defined(__FreeBSD__) /* Create a DMA tag for descriptors and buffers. */ if ((error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 2, PAGE_SIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &ring->tag))) { printf("%s: bus_dma_tag_create(): error %d\n", NAME_UNIT, error); return error; } /* Allocate wired physical memory for DMA descriptor array */ /* and map physical address to kernel virtual address. */ if ((error = bus_dmamem_alloc(ring->tag, (void**)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->map))) { printf("%s: bus_dmamem_alloc(): error %d\n", NAME_UNIT, error); return error; } descs = ring->first; /* Map kernel virt addr to PCI bus addr for DMA descriptor array. */ if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs, fbsd_dmamap_load, ring, 0))) { printf("%s: bus_dmamap_load(): error %d\n", NAME_UNIT, error); return error; } ring->dma_addr = ring->segs[0].ds_addr; /* Allocate dmamaps for each DMA descriptor. */ for (i=0; itag, 0, &descs[i].map))) { printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error); return error; } # elif defined(__NetBSD__) || defined(__OpenBSD__) /* Use the DMA tag passed to attach() for descriptors and buffers. */ ring->tag = sc->pa_dmat; /* Allocate wired physical memory for DMA descriptor array. */ if ((error = bus_dmamem_alloc(ring->tag, size_descs, PAGE_SIZE, 0, ring->segs, 1, &ring->nsegs, BUS_DMA_NOWAIT))) { printf("%s: bus_dmamem_alloc(): error %d\n", NAME_UNIT, error); return error; } /* Map physical address to kernel virtual address. */ if ((error = bus_dmamem_map(ring->tag, ring->segs, ring->nsegs, size_descs, (void **)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))) { printf("%s: bus_dmamem_map(): error %d\n", NAME_UNIT, error); return error; } descs = ring->first; /* suppress compiler warning about aliasing */ memset(descs, 0, size_descs); /* Allocate dmamap for PCI access to DMA descriptor array. */ if ((error = bus_dmamap_create(ring->tag, size_descs, 1, size_descs, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ring->map))) { printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error); return error; } /* Map kernel virt addr to PCI bus addr for DMA descriptor array. */ if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs, 0, BUS_DMA_NOWAIT))) { printf("%s: bus_dmamap_load(): error %d\n", NAME_UNIT, error); return error; } ring->dma_addr = ring->map->dm_segs[0].ds_addr; /* Allocate dmamaps for each DMA descriptor. */ for (i=0; itag, MAX_DESC_LEN, 2, MAX_CHUNK_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &descs[i].map))) { printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error); return error; } # elif defined(__bsdi__) /* Allocate wired physical memory for DMA descriptor array. */ if ((ring->first = malloc(size_descs, M_DEVBUF, M_NOWAIT)) == NULL) { printf("%s: malloc() failed for DMA descriptor array\n", NAME_UNIT); return ENOMEM; } descs = ring->first; memset(descs, 0, size_descs); /* Map kernel virt addr to PCI bus addr for DMA descriptor array. */ ring->dma_addr = vtophys(descs); /* Relax! BSD/OS only. */ # endif ring->read = descs; ring->write = descs; ring->first = descs; ring->last = descs + num_descs -1; ring->last->control = TLP_DCTL_END_RING; ring->num_descs = num_descs; ring->size_descs = size_descs; ring->head = NULL; ring->tail = NULL; return 0; } /* Destroy a DMA descriptor ring */ /* context: kernel (boot) or process (syscall) */ static void /* BSD version */ destroy_ring(softc_t *sc, struct desc_ring *ring) { struct dma_desc *desc; struct mbuf *m; /* Free queued mbufs. */ while ((m = mbuf_dequeue(ring))) m_freem(m); /* TX may have one pkt that is not on any queue. */ if (sc->tx_mbuf) { m_freem(sc->tx_mbuf); sc->tx_mbuf = NULL; } /* Unmap active DMA descriptors. */ while (ring->read != ring->write) { bus_dmamap_unload(ring->tag, ring->read->map); if (ring->read++ == ring->last) ring->read = ring->first; } # if defined(__FreeBSD__) /* Free the dmamaps of all DMA descriptors. */ for (desc=ring->first; desc!=ring->last+1; desc++) if (desc->map) bus_dmamap_destroy(ring->tag, desc->map); /* Unmap PCI address for DMA descriptor array. */ if (ring->dma_addr) bus_dmamap_unload(ring->tag, ring->map); /* Free kernel memory for DMA descriptor array. */ if (ring->first) bus_dmamem_free(ring->tag, ring->first, ring->map); /* Free the DMA tag created for this ring. */ if (ring->tag) bus_dma_tag_destroy(ring->tag); # elif defined(__NetBSD__) || defined(__OpenBSD__) /* Free the dmamaps of all DMA descriptors. */ for (desc=ring->first; desc!=ring->last+1; desc++) if (desc->map) bus_dmamap_destroy(ring->tag, desc->map); /* Unmap PCI address for DMA descriptor array. */ if (ring->dma_addr) bus_dmamap_unload(ring->tag, ring->map); /* Free dmamap for DMA descriptor array. */ if (ring->map) bus_dmamap_destroy(ring->tag, ring->map); /* Unmap kernel address for DMA descriptor array. */ if (ring->first) bus_dmamem_unmap(ring->tag, (void *)ring->first, ring->size_descs); /* Free kernel memory for DMA descriptor array. */ if (ring->segs[0].ds_addr) bus_dmamem_free(ring->tag, ring->segs, ring->nsegs); # elif defined(__bsdi__) /* Free kernel memory for DMA descriptor array. */ if (ring->first) free(ring->first, M_DEVBUF); # endif } /* Singly-linked tail-queues hold mbufs with active DMA. * For RX, single mbuf clusters; for TX, mbuf chains are queued. * NB: mbufs are linked through their m_nextpkt field. * Callers must hold sc->bottom_lock; not otherwise locked. */ /* Put an mbuf (chain) on the tail of the descriptor ring queue. */ static void /* BSD version */ mbuf_enqueue(struct desc_ring *ring, struct mbuf *m) { m->m_nextpkt = NULL; if (ring->tail == NULL) ring->head = m; else ring->tail->m_nextpkt = m; ring->tail = m; } /* Get an mbuf (chain) from the head of the descriptor ring queue. */ static struct mbuf* /* BSD version */ mbuf_dequeue(struct desc_ring *ring) { struct mbuf *m = ring->head; if (m) if ((ring->head = m->m_nextpkt) == NULL) ring->tail = NULL; return m; } /* Clean up after a packet has been received. */ static int /* BSD version */ rxintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *first_desc, *last_desc; struct mbuf *first_mbuf=NULL, *last_mbuf=NULL; struct mbuf *new_mbuf; int pkt_len, desc_len; /* Input packet flow control (livelock prevention): */ /* Give pkts to higher levels only if quota is > 0. */ if (sc->quota <= 0) return 0; /* This looks complicated, but remember: typically packets up */ /* to 2048 bytes long fit in one mbuf and use one descriptor. */ first_desc = last_desc = ring->read; /* ASSERTION: If there is a descriptor in the ring and the hardware has */ /* finished with it, then that descriptor will have RX_FIRST_DESC set. */ if ((ring->read != ring->write) && /* descriptor ring not empty */ !(ring->read->status & TLP_DSTS_OWNER) && /* hardware done */ !(ring->read->status & TLP_DSTS_RX_FIRST_DESC)) /* should be set */ panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT); /* First decide if a complete packet has arrived. */ /* Run down DMA descriptors looking for one marked "last". */ /* Bail out if an active descriptor is encountered. */ /* Accumulate most significant bits of packet length. */ pkt_len = 0; for (;;) { if (last_desc == ring->write) return 0; /* no more descs */ if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */ if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */ pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */ if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */ } /* A complete packet has arrived; how long is it? */ /* H/w ref man shows RX pkt length as a 14-bit field. */ /* An experiment found that only the 12 LSBs work. */ if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */ pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF); /* Subtract the CRC length unless doing so would underflow. */ if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len; /* Run down DMA descriptors again doing the following: * 1) put pkt info in pkthdr of first mbuf, * 2) link mbufs, * 3) set mbuf lengths. */ first_desc = ring->read; do { /* Read a DMA descriptor from the ring. */ last_desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* Dequeue the corresponding cluster mbuf. */ new_mbuf = mbuf_dequeue(ring); if (new_mbuf == NULL) panic("%s: rxintr_cleanup: expected an mbuf\n", NAME_UNIT); desc_len = last_desc->length1 + last_desc->length2; /* If bouncing, copy bounce buf to mbuf. */ DMA_SYNC(last_desc->map, desc_len, BUS_DMASYNC_POSTREAD); /* Unmap kernel virtual address to PCI bus address. */ bus_dmamap_unload(ring->tag, last_desc->map); /* 1) Put pkt info in pkthdr of first mbuf. */ if (last_desc == first_desc) { first_mbuf = new_mbuf; first_mbuf->m_pkthdr.len = pkt_len; /* total pkt length */ # if IFNET first_mbuf->m_pkthdr.rcvif = sc->ifp; /* how it got here */ # else first_mbuf->m_pkthdr.rcvif = NULL; # endif } else /* 2) link mbufs. */ { KASSERT(last_mbuf != NULL); last_mbuf->m_next = new_mbuf; /* M_PKTHDR should be set in the first mbuf only. */ new_mbuf->m_flags &= ~M_PKTHDR; } last_mbuf = new_mbuf; /* 3) Set mbuf lengths. */ new_mbuf->m_len = (pkt_len >= desc_len) ? desc_len : pkt_len; pkt_len -= new_mbuf->m_len; } while ((last_desc->status & TLP_DSTS_RX_LAST_DESC)==0); /* Decide whether to accept or to drop this packet. */ /* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */ if (!(last_desc->status & TLP_DSTS_RX_BAD) && (sc->status.link_state == STATE_UP) && (first_mbuf->m_pkthdr.len > 0)) { /* Optimization: copy a small pkt into a small mbuf. */ if (first_mbuf->m_pkthdr.len <= COPY_BREAK) { MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA); if (new_mbuf) { new_mbuf->m_pkthdr.rcvif = first_mbuf->m_pkthdr.rcvif; new_mbuf->m_pkthdr.len = first_mbuf->m_pkthdr.len; new_mbuf->m_len = first_mbuf->m_len; memcpy(new_mbuf->m_data, first_mbuf->m_data, first_mbuf->m_pkthdr.len); m_freem(first_mbuf); first_mbuf = new_mbuf; } } /* Include CRC and one flag byte in input byte count. */ sc->status.cntrs.ibytes += first_mbuf->m_pkthdr.len + sc->config.crc_len +1; sc->status.cntrs.ipackets++; /* Berkeley Packet Filter */ LMC_BPF_MTAP(sc, first_mbuf); /* Give this good packet to the network stacks. */ sc->quota--; if (sc->stack) sc->stack->input(sc, first_mbuf); else { m_freem(first_mbuf); sc->status.cntrs.idrops++; } } else if (sc->status.link_state != STATE_UP) { /* If the link is down, this packet is probably noise. */ m_freem(first_mbuf); sc->status.cntrs.idrops++; if (sc->config.debug) printf("%s: rxintr_cleanup: rx pkt dropped: link down\n", NAME_UNIT); } else /* Log and drop this bad packet. */ { if (sc->config.debug) printf("%s: RX bad pkt; len=%d %s%s%s%s\n", NAME_UNIT, first_mbuf->m_pkthdr.len, (last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "", (last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "", (last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "", (last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : ""); if (last_desc->status & TLP_DSTS_RX_OVERRUN) sc->status.cntrs.fifo_over++; else sc->status.cntrs.ierrors++; m_freem(first_mbuf); } return 1; /* did something */ } /* Setup (prepare) to receive a packet. */ /* Try to keep the RX descriptor ring full of empty buffers. */ static int /* BSD version */ rxintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *desc; struct mbuf *m; int desc_len; int error; /* Ring is full if (wrap(write+1)==read) */ if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read) return 0; /* ring is full; nothing to do */ /* Allocate a small mbuf and attach an mbuf cluster. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { sc->status.cntrs.rxbuf++; if (sc->config.debug) printf("%s: rxintr_setup: MGETHDR() failed\n", NAME_UNIT); return 0; } MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT)==0) { m_freem(m); sc->status.cntrs.rxbuf++; if (sc->config.debug) printf("%s: rxintr_setup: MCLGET() failed\n", NAME_UNIT); return 0; } /* Queue the mbuf for later processing by rxintr_cleanup. */ mbuf_enqueue(ring, m); /* Write a DMA descriptor into the ring. */ /* Hardware will not see it until the OWNER bit is set. */ desc = ring->write; /* Advance the ring write pointer. */ if (ring->write++ == ring->last) ring->write = ring->first; desc_len = (MCLBYTES < MAX_DESC_LEN) ? MCLBYTES : MAX_DESC_LEN; /* Map kernel virt addr to PCI bus addr. */ if ((error = DMA_LOAD(desc->map, m->m_data, desc_len))) printf("%s: bus_dmamap_load(rx): error %d\n", NAME_UNIT, error); /* Invalidate the cache for this mbuf. */ DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREREAD); /* Set up the DMA descriptor. */ # if defined(__FreeBSD__) desc->address1 = ring->segs[0].ds_addr; # elif defined(__NetBSD__) || defined(__OpenBSD__) desc->address1 = desc->map->dm_segs[0].ds_addr; # elif defined(__bsdi__) desc->address1 = vtophys(m->m_data); /* Relax! BSD/OS only. */ # endif desc->length1 = desc_len>>1; desc->address2 = desc->address1 + desc->length1; desc->length2 = desc_len>>1; /* Before setting the OWNER bit, flush cache backing DMA descriptors. */ DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE); /* Commit the DMA descriptor to the hardware. */ desc->status = TLP_DSTS_OWNER; /* Notify the receiver that there is another buffer available. */ WRITE_CSR(sc, TLP_RX_POLL, 1); return 1; /* did something */ } /* Clean up after a packet has been transmitted. */ /* Free the mbuf chain and update the DMA descriptor ring. */ static int /* BSD version */ txintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; while ((ring->read != ring->write) && /* while ring is not empty */ !(ring->read->status & TLP_DSTS_OWNER)) { /* Read a DMA descriptor from the ring. */ desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* This is a no-op on most architectures. */ DMA_SYNC(desc->map, desc->length1 + desc->length2, BUS_DMASYNC_POSTWRITE); /* Unmap kernel virtual address to PCI bus address. */ bus_dmamap_unload(ring->tag, desc->map); /* If this descriptor is the last segment of a packet, */ /* then dequeue and free the corresponding mbuf chain. */ if (desc->control & TLP_DCTL_TX_LAST_SEG) { struct mbuf *m; if ((m = mbuf_dequeue(ring)) == NULL) panic("%s: txintr_cleanup: expected an mbuf\n", NAME_UNIT); /* The only bad TX status is fifo underrun. */ if (desc->status & TLP_DSTS_TX_UNDERRUN) { if (sc->config.debug) printf("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT); sc->status.cntrs.fifo_under++; sc->status.cntrs.oerrors++; } else { /* Include CRC and one flag byte in output byte count. */ sc->status.cntrs.obytes += m->m_pkthdr.len + sc->config.crc_len +1; sc->status.cntrs.opackets++; /* Berkeley Packet Filter */ LMC_BPF_MTAP(sc, m); } m_freem(m); return 1; /* did something */ } } return 0; } /* Build DMA descriptors for a transmit packet mbuf chain. */ static int /* 0=success; 1=error */ /* BSD version */ txintr_setup_mbuf(softc_t *sc, struct mbuf *m) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; unsigned int desc_len; /* build DMA descriptors for a chain of mbufs. */ while (m) { char *data = m->m_data; int length = m->m_len; /* zero length mbufs happen! */ /* Build DMA descriptors for one mbuf. */ while (length > 0) { int error; /* Ring is full if (wrap(write+1)==read) */ if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read) { /* Not enough DMA descriptors; try later. */ for (; ring->temp!=ring->write; ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1) bus_dmamap_unload(ring->tag, ring->temp->map); sc->status.cntrs.txdma++; /* IFF_OACTIVE? */ return 1; } /* Provisionally, write a descriptor into the ring. */ /* But do not change the REAL ring write pointer. */ /* Hardware will not see it until the OWNER bit is set. */ desc = ring->temp; /* Advance the temporary ring write pointer. */ if (ring->temp++ == ring->last) ring->temp = ring->first; /* Clear all control bits except the END_RING bit. */ desc->control &= TLP_DCTL_END_RING; /* Do not pad short packets up to 64 bytes. */ desc->control |= TLP_DCTL_TX_NO_PAD; /* Use Tulip's CRC-32 generator, if appropriate. */ if (sc->config.crc_len != CFG_CRC_32) desc->control |= TLP_DCTL_TX_NO_CRC; /* Set the OWNER bit, except in the first descriptor. */ if (desc != ring->write) desc->status = TLP_DSTS_OWNER; desc_len = (length > MAX_CHUNK_LEN) ? MAX_CHUNK_LEN : length; /* Map kernel virt addr to PCI bus addr. */ if ((error = DMA_LOAD(desc->map, data, desc_len))) printf("%s: bus_dmamap_load(tx): error %d\n", NAME_UNIT, error); /* Flush the cache and if bouncing, copy mbuf to bounce buf. */ DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREWRITE); /* Prevent wild fetches if mapping fails (nsegs==0). */ desc->length1 = desc->length2 = 0; desc->address1 = desc->address2 = 0; # if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) { # if defined(__FreeBSD__) bus_dma_segment_t *segs = ring->segs; int nsegs = ring->nsegs; # elif defined(__NetBSD__) || defined(__OpenBSD__) bus_dma_segment_t *segs = desc->map->dm_segs; int nsegs = desc->map->dm_nsegs; # endif if (nsegs >= 1) { desc->address1 = segs[0].ds_addr; desc->length1 = segs[0].ds_len; } if (nsegs == 2) { desc->address2 = segs[1].ds_addr; desc->length2 = segs[1].ds_len; } } # elif defined(__bsdi__) desc->address1 = vtophys(data); /* Relax! BSD/OS only. */ desc->length1 = desc_len; # endif data += desc_len; length -= desc_len; } /* while (length > 0) */ m = m->m_next; } /* while (m) */ return 0; /* success */ } /* Setup (prepare) to transmit a packet. */ /* Select a packet, build DMA descriptors and give packet to hardware. */ /* If DMA descriptors run out, abandon the attempt and return 0. */ static int /* BSD version */ txintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *first_desc, *last_desc; /* Protect against half-up links: Do not transmit */ /* if the receiver can not hear the far end. */ if (sc->status.link_state != STATE_UP) return 0; /* Pick a packet to transmit. */ if ((sc->tx_mbuf == NULL) && sc->stack) sc->stack->output(sc); if (sc->tx_mbuf == NULL) return 0; /* no pkt to transmit */ /* Build DMA descriptors for an outgoing mbuf chain. */ ring->temp = ring->write; /* temporary ring write pointer */ if (txintr_setup_mbuf(sc, sc->tx_mbuf)) return 0; /* Enqueue the mbuf; txintr_cleanup will free it. */ mbuf_enqueue(ring, sc->tx_mbuf); /* The transmitter has room for another packet. */ sc->tx_mbuf = NULL; /* Set first & last segment bits. */ /* last_desc is the desc BEFORE the one pointed to by ring->temp. */ first_desc = ring->write; first_desc->control |= TLP_DCTL_TX_FIRST_SEG; last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1; last_desc->control |= TLP_DCTL_TX_LAST_SEG; /* Interrupt at end-of-transmission? Why bother the poor computer! */ /* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */ /* Make sure the OWNER bit is not set in the next descriptor. */ /* The OWNER bit may have been set if a previous call aborted. */ ring->temp->status = 0; /* Commit the DMA descriptors to the software. */ ring->write = ring->temp; /* Before setting the OWNER bit, flush cache backing DMA descriptors. */ DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE); /* Commit the DMA descriptors to the hardware. */ first_desc->status = TLP_DSTS_OWNER; /* Notify the transmitter that there is another packet to send. */ WRITE_CSR(sc, TLP_TX_POLL, 1); return 1; /* did something */ } /* BSD kernels call this when a hardware interrupt happens. */ static intr_return_t /* context: interrupt */ bsd_interrupt(void *arg) { softc_t *sc = arg; # if DEVICE_POLLING if (sc->ifp->if_capenable & IFCAP_POLLING) return IRQ_NONE; # endif /* Cut losses early if this is not our interrupt. */ if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0) return IRQ_NONE; /* Process tx and rx pkts. */ lmc_interrupt(sc, sc->rxring.num_descs, 0); return IRQ_HANDLED; } #endif /* BSD */ # if DEVICE_POLLING /* This procedure services the card without interrupts. */ /* With rxintr_cleanup(), it implements input flow control. */ static void /* context: softirq */ bsd_poll(struct ifnet *ifp, enum poll_cmd cmd, int quota) { softc_t *sc = IFP2SC(ifp); /* Cut losses early if this is not our interrupt. */ if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0) return; /* Process all tx pkts and up to quota rx pkts. */ lmc_interrupt(sc, quota, (cmd==POLL_AND_CHECK_STATUS)); } # endif /* DEVICE_POLLING */ #if defined(__linux__) /* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD. * Handling Linux and the BSDs with CPP directives would * make the code unreadable, so there are two versions. * Conceptually, the two versions do the same thing and * lmc_interrupt() does not know they are different. * * We are "standing on the head of a pin" in these routines. * Tulip CSRs can be accessed, but nothing else is interrupt-safe! * Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC. */ /* Initialize a DMA descriptor ring. */ /* context: kernel (boot) or process (syscall) */ static int /* Linux version */ create_ring(softc_t *sc, struct desc_ring *ring, int num_descs) { struct dma_desc *descs; int size_descs = sizeof(struct dma_desc)*num_descs; /* Allocate and map CACHE COHERENT memory for DMA descriptor array. */ if ((descs = pci_alloc_consistent(sc->pcidev, size_descs, &ring->dma_addr)) == NULL) { printk("%s: pci_alloc_consistent() failed\n", NAME_UNIT); return -ENOMEM; } memset(descs, 0, size_descs); ring->read = descs; ring->write = descs; ring->first = descs; ring->last = descs + num_descs -1; ring->last->control = TLP_DCTL_END_RING; ring->num_descs = num_descs; ring->size_descs = size_descs; ring->head = NULL; ring->tail = NULL; return 0; } /* Destroy a DMA descriptor ring */ /* context: kernel (boot) or process (syscall) */ static void /* Linux version */ destroy_ring(softc_t *sc, struct desc_ring *ring) { struct sk_buff *skb; /* Free queued skbuffs. */ while ((skb = skbuff_dequeue(ring))) dev_kfree_skb(skb); /* TX may have one pkt that is not on any queue. */ if (sc->tx_skb) { dev_kfree_skb(sc->tx_skb); sc->tx_skb = NULL; } if (ring->first) { /* Unmap active DMA descriptors. */ while (ring->read != ring->write) { pci_unmap_single(sc->pcidev, ring->read->address1, ring->read->length1 + ring->read->length2, PCI_DMA_BIDIRECTIONAL); if (ring->read++ == ring->last) ring->read = ring->first; } /* Unmap and free memory for DMA descriptor array. */ pci_free_consistent(sc->pcidev, ring->size_descs, ring->first, ring->dma_addr); } } /* Singly-linked tail-queues hold sk_buffs with active DMA. * skbuffs are linked through their sk_buff.next field. * Callers must hold sc->bottom_lock; not otherwise locked. */ /* Put an skbuff on the tail of the descriptor ring queue. */ static void /* Linux version */ skbuff_enqueue(struct desc_ring *ring, struct sk_buff *skb) { skb->next = NULL; if (ring->tail == NULL) ring->head = skb; else ring->tail->next = skb; ring->tail = skb; } /* Get an skbuff from the head of the descriptor ring queue. */ static struct sk_buff* /* Linux version */ skbuff_dequeue(struct desc_ring *ring) { struct sk_buff *skb = ring->head; if (skb) if ((ring->head = skb->next) == NULL) ring->tail = NULL; return skb; } static int /* Linux version */ rxintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *first_desc, *last_desc; struct sk_buff *first_skb=NULL, *last_skb=NULL; struct sk_buff *new_skb; int pkt_len, desc_len; /* Input packet flow control (livelock prevention): */ /* Give pkts to higher levels only if quota is > 0. */ if (sc->quota <= 0) return 0; /* This looks complicated, but remember: packets up to 4032 */ /* bytes long fit in one skbuff and use one DMA descriptor. */ first_desc = last_desc = ring->read; /* ASSERTION: If there is a descriptor in the ring and the hardware has */ /* finished with it, then that descriptor will have RX_FIRST_DESC set. */ if ((ring->read != ring->write) && /* descriptor ring not empty */ !(ring->read->status & TLP_DSTS_OWNER) && /* hardware done */ !(ring->read->status & TLP_DSTS_RX_FIRST_DESC)) /* should be set */ panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT); /* First decide if a complete packet has arrived. */ /* Run down DMA descriptors looking for one marked "last". */ /* Bail out if an active descriptor is encountered. */ /* Accumulate most significant bits of packet length. */ pkt_len = 0; for (;;) { if (last_desc == ring->write) return 0; /* no more descs */ if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */ if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */ pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */ if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */ } sc->netdev->last_rx = jiffies; /* timestamp arrival of new packet */ /* A complete packet has arrived; how long is it? */ /* H/w ref man shows RX pkt length as a 14-bit field. */ /* An experiment found that only the 12 LSBs work. */ if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */ pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF); /* Subtract the CRC length unless doing so would underflow. */ if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len; /* Run down DMA descriptors again doing the following: * 1) put pkt info in hdr of first skbuff. * 2) put additional skbuffs on frag_list. * 3) set skbuff lengths. */ first_desc = ring->read; do { /* Read a DMA descriptor from the ring. */ last_desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* Dequeue the corresponding skbuff. */ new_skb = skbuff_dequeue(ring); if (new_skb == NULL) panic("%s: rxintr_cleanup: expected an skbuff\n", NAME_UNIT); desc_len = last_desc->length1 + last_desc->length2; /* Unmap kernel virtual addresss to PCI bus address. */ pci_unmap_single(sc->pcidev, last_desc->address1, desc_len, PCI_DMA_FROMDEVICE); /* Set skbuff length. */ skb_put(new_skb, (pkt_len >= desc_len) ? desc_len : pkt_len); pkt_len -= new_skb->len; /* 1) Put pkt info in hdr of first skbuff. */ if (last_desc == first_desc) { first_skb = new_skb; if (sc->stack) first_skb->protocol = sc->stack->type(sc, first_skb); else first_skb->protocol = htons(ETH_P_HDLC); first_skb->pkt_type = PACKET_HOST; first_skb->mac.raw = first_skb->data; first_skb->ip_summed = CHECKSUM_NONE; first_skb->dev = sc->netdev; } else /* 2) link skbuffs. */ { /* Put this skbuff on the frag_list of the first skbuff. */ new_skb->next = NULL; if (skb_shinfo(first_skb)->frag_list == NULL) skb_shinfo(first_skb)->frag_list = new_skb; else /* ASSERT(last_skb != NULL); */ last_skb->next = new_skb; /* 3) set skbuff lengths. */ first_skb->len += new_skb->len; first_skb->data_len += new_skb->len; } last_skb = new_skb; } while ((last_desc->status & TLP_DSTS_RX_LAST_DESC)==0); /* Decide whether to accept or to drop this packet. */ /* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */ if (!(last_desc->status & TLP_DSTS_RX_BAD) && (sc->status.link_state == STATE_UP) && (first_skb->len > 0)) { /* Optimization: copy a small pkt into a small skbuff. */ if (first_skb->len <= COPY_BREAK) if ((new_skb = skb_copy(first_skb, GFP_ATOMIC))) { dev_kfree_skb_any(first_skb); first_skb = new_skb; } /* Include CRC and one flag byte in input byte count. */ sc->status.cntrs.ibytes += first_skb->len + sc->config.crc_len +1; sc->status.cntrs.ipackets++; /* Give this good packet to the network stacks. */ sc->quota--; # if NAPI netif_receive_skb(first_skb); # else if (netif_rx(first_skb) == NET_RX_DROP) { sc->status.cntrs.idrops++; if (sc->config.debug && printk_ratelimit()) printk("%s: rxintr_cleanup: rx pkt dropped by kernel\n", NAME_UNIT); } # endif } else if (sc->status.link_state != STATE_UP) { /* If the link is down, this packet is probably noise. */ dev_kfree_skb_any(first_skb); sc->status.cntrs.idrops++; if (sc->config.debug && printk_ratelimit()) printk("%s: rxintr_cleanup: rx pkt dropped: link down\n", NAME_UNIT); } else /* Log and drop this bad packet. */ { if (sc->config.debug && printk_ratelimit()) printk("%s: RX bad pkt; len=%d %s%s%s%s\n", NAME_UNIT, first_skb->len, (last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "", (last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "", (last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "", (last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : ""); if (last_desc->status & TLP_DSTS_RX_OVERRUN) sc->status.cntrs.fifo_over++; else sc->status.cntrs.ierrors++; dev_kfree_skb_any(first_skb); } return 1; /* did something */ } /* Setup (prepare) to receive a packet. */ /* Try to keep the RX descriptor ring full of empty buffers. */ static int /* Linux version */ rxintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *desc; struct sk_buff *skb; u_int32_t dma_addr; /* Ring is full if (wrap(write+1)==read) */ if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read) return 0; /* ring is full; nothing to do */ /* Allocate an skbuff. */ if ((skb = dev_alloc_skb(MAX_DESC_LEN)) == NULL) { sc->status.cntrs.rxbuf++; if (sc->config.debug && printk_ratelimit()) printk("%s: rxintr_setup: dev_alloc_skb() failed\n", NAME_UNIT); return 0; } skb->dev = sc->netdev; /* Queue the skbuff for later processing by rxintr_cleanup. */ skbuff_enqueue(ring, skb); /* Write a DMA descriptor into the ring. */ /* Hardware will not see it until the OWNER bit is set. */ desc = ring->write; /* Advance the ring write pointer. */ if (ring->write++ == ring->last) ring->write = ring->first; /* Map kernel virt addr to PCI bus addr; invalidate cache. */ dma_addr = pci_map_single(sc->pcidev, skb->data, MAX_DESC_LEN, PCI_DMA_FROMDEVICE); /* Set up the DMA descriptor. */ desc->address1 = dma_addr; desc->length1 = MAX_CHUNK_LEN; desc->address2 = desc->address1 + desc->length1; desc->length2 = MAX_CHUNK_LEN; /* Before setting the OWNER bit, force descriptor writes to complete. */ wmb(); /* write memory barrier */ /* Commit the DMA descriptor to the hardware. */ desc->status = TLP_DSTS_OWNER; /* Notify the receiver that there is another buffer available. */ WRITE_CSR(sc, TLP_RX_POLL, 1); return 1; /* did something */ } /* Clean up after a packet has been transmitted. */ /* Free the sk_buff and update the DMA descriptor ring. */ static int /* Linux version */ txintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; while ((ring->read != ring->write) && /* ring is not empty */ !(ring->read->status & TLP_DSTS_OWNER)) { /* Read a DMA descriptor from the ring. */ desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* Unmap kernel virtual address to PCI bus address. */ pci_unmap_single(sc->pcidev, desc->address1, desc->length1 + desc->length2, PCI_DMA_TODEVICE); /* If this descriptor is the last segment of a packet, */ /* then dequeue and free the corresponding skbuff. */ if (desc->control & TLP_DCTL_TX_LAST_SEG) { struct sk_buff *skb; if ((skb = skbuff_dequeue(ring)) == NULL) panic("%s: txintr_cleanup: expected an sk_buff\n", NAME_UNIT); /* The only bad TX status is fifo underrun. */ if (desc->status & TLP_DSTS_TX_UNDERRUN) { if (sc->config.debug) printk("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT); sc->status.cntrs.fifo_under++; sc->status.cntrs.oerrors++; } else { /* Include CRC and one flag byte in output byte count. */ sc->status.cntrs.obytes += skb->len + sc->config.crc_len +1; sc->status.cntrs.opackets++; } dev_kfree_skb_any(skb); return 1; /* did something */ } } return 0; } /* Build DMA descriptors for a tranmit packet fragment, */ /* Assertion: fragment is contiguous in physical memory. */ static int /* 0=success; 1=error */ /* linux version */ txintr_setup_frag(softc_t *sc, char *data, int length) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; unsigned int desc_len; u_int32_t dma_addr; while (length > 0) { /* Ring is full if (wrap(write+1)==read) */ if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read) { /* Not enough DMA descriptors; try later. */ for (; ring->temp!=ring->write; ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1) pci_unmap_single(sc->pcidev, ring->temp->address1, ring->temp->length1 + ring->temp->length2, PCI_DMA_FROMDEVICE); sc->status.cntrs.txdma++; return 1; } /* Provisionally, write a DMA descriptor into the ring. */ /* But do not change the REAL ring write pointer. */ /* Hardware will not see it until the OWNER bit is set. */ desc = ring->temp; /* Advance the temporary ring write pointer. */ if (ring->temp++ == ring->last) ring->temp = ring->first; /* Clear all control bits except the END_RING bit. */ desc->control &= TLP_DCTL_END_RING; /* Do not pad short packets up to 64 bytes */ desc->control |= TLP_DCTL_TX_NO_PAD; /* Use Tulip's CRC-32 generator, if appropriate. */ if (sc->config.crc_len != CFG_CRC_32) desc->control |= TLP_DCTL_TX_NO_CRC; /* Set the OWNER bit, except in the first descriptor. */ if (desc != ring->write) desc->status = TLP_DSTS_OWNER; desc_len = (length >= MAX_DESC_LEN) ? MAX_DESC_LEN : length; /* Map kernel virt addr to PCI bus addr; flush cache. */ dma_addr = pci_map_single(sc->pcidev, data, desc_len, PCI_DMA_TODEVICE); /* If it will fit in one chunk, do so, otherwise split it. */ if (desc_len <= MAX_CHUNK_LEN) { desc->address1 = dma_addr; desc->length1 = desc_len; desc->address2 = 0; desc->length2 = 0; } else { desc->address1 = dma_addr; desc->length1 = desc_len>>1; desc->address2 = desc->address1 + desc->length1; desc->length2 = desc_len>>1; if (desc_len & 1) desc->length2++; } data += desc_len; length -= desc_len; } /* while (length > 0) */ return 0; /* success */ } /* NB: this procedure is recursive! */ static int /* 0=success; 1=error */ txintr_setup_skb(softc_t *sc, struct sk_buff *skb) { struct sk_buff *list; int i; /* First, handle the data in the skbuff itself. */ if (txintr_setup_frag(sc, skb->data, skb_headlen(skb))) return 1; /* Next, handle the VM pages in the Scatter/Gather list. */ if (skb_shinfo(skb)->nr_frags) for (i=0; inr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (txintr_setup_frag(sc, page_address(frag->page) + frag->page_offset, frag->size)) return 1; } /* Finally, handle the skbuffs in the frag_list. */ if ((list = skb_shinfo(skb)->frag_list)) for (; list; list=list->next) if (txintr_setup_skb(sc, list)) /* recursive! */ return 1; return 0; } /* Setup (prepare) to transmit a packet. */ /* Select a packet, build DMA descriptors and give packet to hardware. */ /* If DMA descriptors run out, abandon the attempt and return 0. */ static int /* Linux version */ txintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *first_desc, *last_desc; /* Protect against half-up links: Do not transmit */ /* if the receiver can not hear the far end. */ if (sc->status.link_state != STATE_UP) return 0; /* Pick a packet to transmit. */ /* netdev_start() puts packets in sc->tx_skb. */ if (sc->tx_skb == NULL) { /* netdev_start() calls netif_stop_queue() sometimes. */ if (netif_queue_stopped(sc->netdev)) netif_wake_queue(sc->netdev); return 0; /* no pkt to transmit */ } /* Build DMA descriptors for an outgoing skbuff. */ ring->temp = ring->write; /* temporary ring write pointer */ if (txintr_setup_skb(sc, sc->tx_skb)) return 0; /* Enqueue the skbuff; txintr_cleanup will free it. */ skbuff_enqueue(ring, sc->tx_skb); /* The transmitter has room for another packet. */ sc->tx_skb = NULL; /* Set first & last segment bits. */ /* last_desc is the desc BEFORE the one pointed to by ring->temp. */ first_desc = ring->write; first_desc->control |= TLP_DCTL_TX_FIRST_SEG; last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1; last_desc->control |= TLP_DCTL_TX_LAST_SEG; /* Interrupt at end-of-transmission? Why bother the poor computer! */ /* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */ /* Make sure the OWNER bit is not set in the next descriptor. */ /* The OWNER bit may have been set if a previous call aborted. */ ring->temp->status = 0; /* Commit the DMA descriptors to the software. */ ring->write = ring->temp; /* Before setting the OWNER bit, force descriptor writes to complete. */ wmb(); /* write memory barrier */ /* Commit the DMA descriptors to the hardware. */ first_desc->status = TLP_DSTS_OWNER; /* Notify the transmitter that there is another packet to send. */ WRITE_CSR(sc, TLP_TX_POLL, 1); sc->netdev->trans_start = jiffies; return 1; /* did something */ } /* Linux kernels call this when a hardware interrupt happens. */ static irqreturn_t /* context: interrupt */ linux_interrupt(int irq, void *arg, struct pt_regs *regs) { softc_t *sc = arg; /* Cut losses early if this is not our interrupt. */ if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0) return IRQ_NONE; # if NAPI /* Disable card interrupts. */ WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE); /* Add self to poll list. */ if (netif_rx_schedule_prep(sc->netdev)) __netif_rx_schedule(sc->netdev); else printk("%s: interrupt while on poll list\n", NAME_UNIT); # else /* not NAPI */ /* Process tx and rx pkts. */ lmc_interrupt(sc, sc->rxring,num_descs, 0); # endif /* NAPI */ return IRQ_HANDLED; } #endif /* __linux__ */ /* Open a line protocol. */ /* context: kernel (boot) or process (syscall) */ static int open_proto(softc_t *sc, struct config *config) { int error = 0; if (sc->stack) error = sc->stack->open(sc, config); else error = BSD ? ENOSYS : -ENOSYS; return error; } /* Attach a line protocol stack. */ /* context: kernel (boot) or process (syscall) */ static int attach_stack(softc_t *sc, struct config *config) { int error = 0; struct stack *stack = NULL; /* Done if stack is not changing. */ if (sc->config.stack == config->stack) return 0; /* Detach the current stack. */ if (sc->stack && ((error = sc->stack->detach(sc)))) return error; switch (config->stack) { case STACK_RAWIP: /* built-in */ stack = &rawip_stack; break; #if SPPP case STACK_SPPP: stack = &sppp_stack; break; #endif #if P2P case STACK_P2P: stack = &p2p_stack; break; #endif #if GEN_HDLC case STACK_GEN_HDLC: stack = &gen_hdlc_stack; break; #endif #if SYNC_PPP case STACK_SYNC_PPP: stack = &sync_ppp_stack; break; #endif #if NETGRAPH case STACK_NETGRAPH: stack = &netgraph_stack; break; #endif default: stack = NULL; break; } if (stack) error = stack->attach(sc, config); else error = BSD ? ENOSYS : -ENOSYS; return error; } /* * This handles IOCTLs from lmcconfig(8). * Must not run when card watchdogs run. * Always called with top_lock held. */ static int /* context: process */ lmc_ioctl(softc_t *sc, u_long cmd, void *data) { struct iohdr *iohdr = (struct iohdr *) data; struct ioctl *ioctl = (struct ioctl *) data; struct status *status = (struct status *) data; struct config *config = (struct config *) data; int error = 0; /* All structs start with a string and a cookie. */ if (iohdr->cookie != NGM_LMC_COOKIE) return EINVAL; switch (cmd) { case LMCIOCGSTAT: { *status = sc->status; iohdr->cookie = NGM_LMC_COOKIE; break; } case LMCIOCGCFG: { *config = sc->config; iohdr->cookie = NGM_LMC_COOKIE; break; } case LMCIOCSCFG: { if ((error = CHECK_CAP)) break; if ((error = attach_stack(sc, config))); else error = open_proto(sc, config); tulip_loop(sc, config); sc->card->attach(sc, config); sc->config.debug = config->debug; break; } case LMCIOCREAD: { if (ioctl->cmd == IOCTL_RW_PCI) { if (ioctl->address > 252) { error = EFAULT; break; } ioctl->data = READ_PCI_CFG(sc, ioctl->address); } else if (ioctl->cmd == IOCTL_RW_CSR) { if (ioctl->address > 15) { error = EFAULT; break; } ioctl->data = READ_CSR(sc, ioctl->address*TLP_CSR_STRIDE); } else if (ioctl->cmd == IOCTL_RW_SROM) { if (ioctl->address > 63) { error = EFAULT; break; } ioctl->data = srom_read(sc, ioctl->address); } else if (ioctl->cmd == IOCTL_RW_BIOS) ioctl->data = bios_read(sc, ioctl->address); else if (ioctl->cmd == IOCTL_RW_MII) ioctl->data = mii_read(sc, ioctl->address); else if (ioctl->cmd == IOCTL_RW_FRAME) ioctl->data = framer_read(sc, ioctl->address); else error = EINVAL; break; } case LMCIOCWRITE: { if ((error = CHECK_CAP)) break; if (ioctl->cmd == IOCTL_RW_PCI) { if (ioctl->address > 252) { error = EFAULT; break; } WRITE_PCI_CFG(sc, ioctl->address, ioctl->data); } else if (ioctl->cmd == IOCTL_RW_CSR) { if (ioctl->address > 15) { error = EFAULT; break; } WRITE_CSR(sc, ioctl->address*TLP_CSR_STRIDE, ioctl->data); } else if (ioctl->cmd == IOCTL_RW_SROM) { if (ioctl->address > 63) { error = EFAULT; break; } srom_write(sc, ioctl->address, ioctl->data); /* can sleep */ } else if (ioctl->cmd == IOCTL_RW_BIOS) { if (ioctl->address == 0) bios_erase(sc); bios_write(sc, ioctl->address, ioctl->data); /* can sleep */ } else if (ioctl->cmd == IOCTL_RW_MII) mii_write(sc, ioctl->address, ioctl->data); else if (ioctl->cmd == IOCTL_RW_FRAME) framer_write(sc, ioctl->address, ioctl->data); else if (ioctl->cmd == IOCTL_WO_SYNTH) synth_write(sc, (struct synth *)&ioctl->data); else if (ioctl->cmd == IOCTL_WO_DAC) { dac_write(sc, 0x9002); /* set Vref = 2.048 volts */ dac_write(sc, ioctl->data & 0xFFF); } else error = EINVAL; break; } case LMCIOCTL: { if ((error = CHECK_CAP)) break; if (ioctl->cmd == IOCTL_XILINX_RESET) { xilinx_reset(sc); sc->card->attach(sc, &sc->config); } else if (ioctl->cmd == IOCTL_XILINX_ROM) { xilinx_load_from_rom(sc); sc->card->attach(sc, &sc->config); } else if (ioctl->cmd == IOCTL_XILINX_FILE) { error = xilinx_load_from_file(sc, ioctl->ucode, ioctl->data); if (error) xilinx_load_from_rom(sc); /* try the rom */ sc->card->attach(sc, &sc->config); } else if (ioctl->cmd == IOCTL_RESET_CNTRS) reset_cntrs(sc); else error = sc->card->ioctl(sc, ioctl); break; } default: error = EINVAL; break; } return error; } /* This is the core watchdog procedure. * ioctl syscalls and card watchdog routines must be interlocked. * Called by ng_watchdog(), ifnet_watchdog() and netdev_watchdog(). */ static void /* context: softirq */ lmc_watchdog(softc_t *sc) { /* Read and restart the Tulip timer. */ u_int32_t tx_speed = READ_CSR(sc, TLP_TIMER); WRITE_CSR(sc, TLP_TIMER, 0xFFFF); /* Measure MII clock using a timer in the Tulip chip. * This timer counts transmitter bits divided by 4096. * Since this is called once a second the math is easy. * This is only correct when the link is NOT sending pkts. * On a fully-loaded link, answer will be HALF actual rate. * Clock rate during pkt is HALF clk rate between pkts. * Measuring clock rate really measures link utilization! */ sc->status.tx_speed = (0xFFFF - (tx_speed & 0xFFFF)) << 12; /* Call the card-specific watchdog routine. */ if (TOP_TRYLOCK(sc)) { /* Remember link_state before updating it. */ sc->last_link_state = sc->status.link_state; /* Update status.link_state. */ sc->card->watchdog(sc); /* Increment a counter which tells user-land */ /* observers that SNMP state has been updated. */ sc->status.ticks++; TOP_UNLOCK(sc); } else sc->status.cntrs.lck_watch++; /* Kernel date/time can take up to 5 seconds to start running. */ if ((sc->status.ticks > 3) && /* h/w should be stable by now */ (sc->status.cntrs.reset_time.tv_sec < 1000)) { microtime(&sc->status.cntrs.reset_time); if (sc->status.cntrs.reset_time.tv_sec > 1000) reset_cntrs(sc); } /* Call the stack-specific watchdog routine. */ if (sc->stack) sc->stack->watchdog(sc); /* In case an interrupt gets lost, process tx and rx pkts */ lmc_interrupt(sc, sc->rxring.num_descs, 1); } /* Administrative status of the driver (UP or DOWN) has changed. * A card-specific action is taken: * HSSI: drop TA. * (T3: send T3 idle ckt signal. ) * SSI: drop RTS, DTR and DCD * (T1: disable line interface tx; ) */ static void set_ready(softc_t *sc, int status) { struct ioctl ioctl; ioctl.cmd = IOCTL_SET_STATUS; ioctl.data = status; sc->card->ioctl(sc, &ioctl); } static void reset_cntrs(softc_t *sc) { memset(&sc->status.cntrs, 0, sizeof(struct cntrs)); microtime(&sc->status.cntrs.reset_time); } static void /* context: process, softirq, interrupt! */ lmc_interrupt(void *arg, int quota, int check_status) { softc_t *sc = arg; int activity; /* Do this FIRST! Otherwise UPs deadlock and MPs spin. */ WRITE_CSR(sc, TLP_STATUS, READ_CSR(sc, TLP_STATUS)); /* If any CPU is inside this critical section, then */ /* other CPUs should go away without doing anything. */ if (BOTTOM_TRYLOCK(sc) == 0) { sc->status.cntrs.lck_intr++; return; } /* In Linux, pci_alloc_consistent() means DMA */ /* descriptors do not need explicit syncing? */ #if BSD { struct desc_ring *ring = &sc->txring; DMA_SYNC(sc->txring.map, sc->txring.size_descs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ring = &sc->rxring; DMA_SYNC(sc->rxring.map, sc->rxring.size_descs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } #endif /* This is the main loop for interrupt processing. */ sc->quota = quota; do { activity = txintr_cleanup(sc); activity += txintr_setup(sc); activity += rxintr_cleanup(sc); activity += rxintr_setup(sc); } while (activity); #if BSD { struct desc_ring *ring = &sc->txring; DMA_SYNC(sc->txring.map, sc->txring.size_descs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ring = &sc->rxring; DMA_SYNC(sc->rxring.map, sc->rxring.size_descs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } #endif /* As the interrupt is dismissed, check for four unusual events. */ if (check_status) check_intr_status(sc); BOTTOM_UNLOCK(sc); } /* Check for four unusual events: * 1) fatal PCI bus errors - some are recoverable * 2) transmitter FIFO underruns - increase fifo threshold * 3) receiver FIFO overruns - clear potential hangup * 4) no receive descs or bufs - count missed packets */ static void check_intr_status(softc_t *sc) { u_int32_t status, cfcs, op_mode; u_int32_t missed, overruns; /* 1) A fatal bus error causes a Tulip to stop initiating bus cycles. * Module unload/load or boot are the only fixes for Parity Errors. * Master and Target Aborts can be cleared and life may continue. */ status = READ_CSR(sc, TLP_STATUS); if (status & TLP_STAT_FATAL_ERROR) { u_int32_t fatal = (status & TLP_STAT_FATAL_BITS)>>TLP_STAT_FATAL_SHIFT; printf("%s: FATAL PCI BUS ERROR: %s%s%s%s\n", NAME_UNIT, (fatal == 0) ? "PARITY ERROR" : "", (fatal == 1) ? "MASTER ABORT" : "", (fatal == 2) ? "TARGET ABORT" : "", (fatal >= 3) ? "RESERVED (?)" : ""); cfcs = READ_PCI_CFG(sc, TLP_CFCS); /* try to clear it */ cfcs &= ~(TLP_CFCS_MSTR_ABORT | TLP_CFCS_TARG_ABORT); WRITE_PCI_CFG(sc, TLP_CFCS, cfcs); } /* 2) If the transmitter fifo underruns, increase the transmit fifo * threshold: the number of bytes required to be in the fifo * before starting the transmitter (cost: increased tx delay). * The TX_FSM must be stopped to change this parameter. */ if (status & TLP_STAT_TX_UNDERRUN) { op_mode = READ_CSR(sc, TLP_OP_MODE); /* enable store-and-forward mode if tx_threshold tops out? */ if ((op_mode & TLP_OP_TX_THRESH) < TLP_OP_TX_THRESH) { op_mode += 0x4000; /* increment TX_THRESH field; can not overflow */ WRITE_CSR(sc, TLP_OP_MODE, op_mode & ~TLP_OP_TX_RUN); /* Wait for the TX FSM to stop; it might be processing a pkt. */ while (READ_CSR(sc, TLP_STATUS) & TLP_STAT_TX_FSM); /* XXX HANG */ WRITE_CSR(sc, TLP_OP_MODE, op_mode); /* restart tx */ if (sc->config.debug) printf("%s: tx fifo underrun; threshold now %d bytes\n", NAME_UNIT, 128<<((op_mode>>TLP_OP_TR_SHIFT)&3)); sc->status.cntrs.underruns++; } } /* 3) Errata memo from Digital Equipment Corp warns that 21140A * receivers through rev 2.2 can hang if the fifo overruns. * Recommended fix: stop and start the RX FSM after an overrun. */ missed = READ_CSR(sc, TLP_MISSED); if ((overruns = ((missed & TLP_MISS_OVERRUN)>>TLP_OVERRUN_SHIFT))) { if ((READ_PCI_CFG(sc, TLP_CFRV) & 0xFF) <= 0x22) { op_mode = READ_CSR(sc, TLP_OP_MODE); WRITE_CSR(sc, TLP_OP_MODE, op_mode & ~TLP_OP_RX_RUN); /* Wait for the RX FSM to stop; it might be processing a pkt. */ while (READ_CSR(sc, TLP_STATUS) & TLP_STAT_RX_FSM); /* XXX HANG */ WRITE_CSR(sc, TLP_OP_MODE, op_mode); /* restart rx */ } if (sc->config.debug) printf("%s: rx fifo overruns=%d\n", NAME_UNIT, overruns); sc->status.cntrs.overruns += overruns; } /* 4) When the receiver is enabled and a packet arrives, but no DMA * descriptor is available, the packet is counted as 'missed'. * The receiver should never miss packets; warn if it happens. */ if ((missed = (missed & TLP_MISS_MISSED))) { if (sc->config.debug) printf("%s: rx missed %d pkts\n", NAME_UNIT, missed); sc->status.cntrs.missed += missed; } } /* Initialize the driver. */ /* context: kernel (boot) or process (syscall) */ static int lmc_attach(softc_t *sc) { int error = 0; struct config config; /* Attach the Tulip PCI bus interface. */ if ((error = tulip_attach(sc))) return error; /* Reset the Xilinx Field Programmable Gate Array. */ xilinx_reset(sc); /* side effect: turns on all four LEDs */ /* Attach card-specific stuff. */ sc->card->attach(sc, NULL); /* changes sc->config */ /* Reset the FIFOs between Gate array and Tulip chip. */ mii16_set_bits(sc, MII16_FIFO); mii16_clr_bits(sc, MII16_FIFO); #if IFNET /* Attach the ifnet kernel interface. */ if ((error = ifnet_attach(sc))) return error; #endif #if NETDEV /* Attach the netdevice kernel interface. */ if ((error = netdev_attach(sc))) return error; #endif /* Attach a protocol stack and open a line protocol. */ config = sc->config; config.stack = STACK_RAWIP; attach_stack(sc, &config); config.proto = PROTO_IP_HDLC; open_proto(sc, &config); /* Print obscure card information. */ if (BOOT_VERBOSE) { u_int32_t cfrv = READ_PCI_CFG(sc, TLP_CFRV); u_int16_t mii3 = mii_read(sc, 3); u_int16_t srom[3]; u_int8_t *ieee = (u_int8_t *)srom; int i; printf("%s", NAME_UNIT); printf(": PCI rev %d.%d", (cfrv>>4) & 0xF, cfrv & 0xF); printf(", MII rev %d.%d", (mii3>>4) & 0xF, mii3 & 0xF); for (i=0; i<3; i++) srom[i] = srom_read(sc, 10+i); printf(", IEEE addr %02x:%02x:%02x:%02x:%02x:%02x", ieee[0], ieee[1], ieee[2], ieee[3], ieee[4], ieee[5]); sc->card->ident(sc); } /* BSDs enable card interrupts and appear "ready" here. */ /* Linux does this in netdev_open(). */ #if BSD set_ready(sc, 1); WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX); #endif return 0; } /* context: kernel (boot) or process (syscall) */ static void lmc_detach(softc_t *sc) { /* Disable card interrupts and appear "not ready". */ set_ready(sc, 0); WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE); /* Detach the line protocol package. */ if (sc->stack) sc->stack->detach(sc); #if IFNET /* Detach the ifnet kernel interface. */ ifnet_detach(sc); #endif #if NETDEV /* Detach the netdevice kernel interface. */ netdev_detach(sc); #endif /* Detach framers, line interfaces, etc. on the card. */ sc->card->detach(sc); /* Detach the Tulip PCI bus interface. */ tulip_detach(sc); } /* Loop back through the TULIP Ethernet chip; (no CRC). * Data sheet says stop DMA before changing OPMODE register. * But that's not as simple as it sounds; works anyway. */ static void tulip_loop(softc_t *sc, struct config *config) { /* Check for enabling loopback thru Tulip chip. */ if ((sc->config.loop_back != CFG_LOOP_TULIP) && (config->loop_back == CFG_LOOP_TULIP)) { u_int32_t op_mode = READ_CSR(sc, TLP_OP_MODE); op_mode |= TLP_OP_INT_LOOP; WRITE_CSR(sc, TLP_OP_MODE, op_mode); config->crc_len = CFG_CRC_0; } /* Check for disabling loopback thru Tulip chip. */ if ((sc->config.loop_back == CFG_LOOP_TULIP) && (config->loop_back != CFG_LOOP_TULIP)) { u_int32_t op_mode = READ_CSR(sc, TLP_OP_MODE); op_mode &= ~TLP_OP_LOOP_MODE; WRITE_CSR(sc, TLP_OP_MODE, op_mode); config->crc_len = CFG_CRC_16; } sc->config.loop_back = config->loop_back; } /* Attach the Tulip PCI bus interface. * Allocate DMA descriptors and enable DMA. * Returns 0 on success; error code on failure. * context: kernel (boot) or process (syscall) */ static int tulip_attach(softc_t *sc) { int num_rx_descs, error = 0; u_int32_t bus_pbl, bus_cal, op_tr; u_int32_t cfdd, cfcs, cflt, csid, cfit; /* Make sure the COMMAND bits are reasonable. */ cfcs = READ_PCI_CFG(sc, TLP_CFCS); cfcs &= ~TLP_CFCS_MWI_ENABLE; cfcs |= TLP_CFCS_BUS_MASTER; cfcs |= TLP_CFCS_MEM_ENABLE; cfcs |= TLP_CFCS_IO_ENABLE; cfcs |= TLP_CFCS_PAR_ERROR; cfcs |= TLP_CFCS_SYS_ERROR; WRITE_PCI_CFG(sc, TLP_CFCS, cfcs); /* Set the LATENCY TIMER to the recommended value, */ /* and make sure the CACHE LINE SIZE is reasonable. */ cfit = READ_PCI_CFG(sc, TLP_CFIT); cflt = READ_PCI_CFG(sc, TLP_CFLT); cflt &= ~TLP_CFLT_LATENCY; cflt |= (cfit & TLP_CFIT_MAX_LAT)>>16; /* "prgmbl burst length" and "cache alignment" used below. */ switch(cflt & TLP_CFLT_CACHE) { case 8: /* 8 bytes per cache line */ { bus_pbl = 32; bus_cal = 1; break; } case 16: { bus_pbl = 32; bus_cal = 2; break; } case 32: { bus_pbl = 32; bus_cal = 3; break; } default: { bus_pbl = 32; bus_cal = 1; cflt &= ~TLP_CFLT_CACHE; cflt |= 8; break; } } WRITE_PCI_CFG(sc, TLP_CFLT, cflt); /* Make sure SNOOZE and SLEEP modes are disabled. */ cfdd = READ_PCI_CFG(sc, TLP_CFDD); cfdd &= ~TLP_CFDD_SLEEP; cfdd &= ~TLP_CFDD_SNOOZE; WRITE_PCI_CFG(sc, TLP_CFDD, cfdd); DELAY(11*1000); /* Tulip wakes up in 10 ms max */ /* Software Reset the Tulip chip; stops DMA and Interrupts. */ /* This does not change the PCI config regs just set above. */ WRITE_CSR(sc, TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */ DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */ /* Initialize the PCI busmode register. */ /* The PCI bus cycle type "Memory Write and Invalidate" does NOT */ /* work cleanly in any version of the 21140A, so do not enable it! */ WRITE_CSR(sc, TLP_BUS_MODE, (bus_cal ? TLP_BUS_READ_LINE : 0) | (bus_cal ? TLP_BUS_READ_MULT : 0) | (bus_pbl<txring, NUM_TX_DESCS))) return error; WRITE_CSR(sc, TLP_TX_LIST, sc->txring.dma_addr); if ((error = create_ring(sc, &sc->rxring, num_rx_descs))) return error; WRITE_CSR(sc, TLP_RX_LIST, sc->rxring.dma_addr); /* Initialize the operating mode register. */ WRITE_CSR(sc, TLP_OP_MODE, TLP_OP_INIT | (op_tr<txring); destroy_ring(sc, &sc->rxring); } /* Called during config probing -- softc does not yet exist. */ static void print_driver_info(void) { /* Print driver information once only. */ if (driver_announced++ == 0) { printf("LMC driver version %d/%d/%d; options", VER_YEAR, VER_MONTH, VER_DAY); if (ALTQ) printf(" ALTQ"); if (NBPFILTER) printf(" BPF"); if (NAPI) printf(" NAPI"); if (DEVICE_POLLING) printf(" POLL"); if (P2P) printf(" P2P"); if (SPPP) printf(" SPPP"); if (GEN_HDLC) printf(" GEN_HDLC"); if (SYNC_PPP) printf(" SYNC_PPP"); if (NETGRAPH) printf(" NETGRAPH"); printf(".\n"); } } #if defined(__FreeBSD__) /* This is the I/O configuration interface for FreeBSD */ /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ /* context: kernel (boot) or process (syscall) */ static int fbsd_probe(device_t dev) { u_int32_t cfid = pci_read_config(dev, TLP_CFID, 4); u_int32_t csid = pci_read_config(dev, TLP_CSID, 4); if (cfid != TLP_CFID_TULIP) return ENXIO; switch (csid) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: device_set_desc(dev, HSSI_DESC); break; case CSID_LMC_T3: device_set_desc(dev, T3_DESC); break; case CSID_LMC_SSI: device_set_desc(dev, SSI_DESC); break; case CSID_LMC_T1E1: device_set_desc(dev, T1E1_DESC); break; default: return ENXIO; } print_driver_info(); return 0; } /* FreeBSD bottom-half initialization. */ /* context: kernel (boot) or process (syscall) */ static int fbsd_attach(device_t dev) { softc_t *sc = device_get_softc(dev); int error; /* for READ/WRITE_PCI_CFG() */ sc->dev = dev; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case CSID_LMC_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case CSID_LMC_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case CSID_LMC_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; } /* Allocate PCI memory or IO resources to access the Tulip chip CSRs. */ # if IOREF_CSR sc->csr_res_id = TLP_CBIO; sc->csr_res_type = SYS_RES_IOPORT; # else sc->csr_res_id = TLP_CBMA; sc->csr_res_type = SYS_RES_MEMORY; # endif sc->csr_res = bus_alloc_resource(dev, sc->csr_res_type, &sc->csr_res_id, 0, ~0, 1, RF_ACTIVE); if (sc->csr_res == NULL) { printf("%s: bus_alloc_resource(csr) failed\n", NAME_UNIT); return ENXIO; } sc->csr_tag = rman_get_bustag(sc->csr_res); sc->csr_handle = rman_get_bushandle(sc->csr_res); /* Allocate PCI interrupt resources for the card. */ sc->irq_res_id = 0; sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_res_id, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); if (sc->irq_res == NULL) { printf("%s: bus_alloc_resource(irq) failed\n", NAME_UNIT); fbsd_detach(dev); return ENXIO; } if ((error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE, bsd_interrupt, sc, &sc->irq_cookie))) { printf("%s: bus_setup_intr(): error %d\n", NAME_UNIT, error); fbsd_detach(dev); return error; } /* Initialize the top-half and bottom-half locks. */ mtx_init(&sc->top_lock, NAME_UNIT, "top-half lock", MTX_DEF); sc->bottom_lock = 0; /* Initialize the driver. */ if ((error = lmc_attach(sc))) fbsd_detach(dev); return error; } /* context: kernel (boot) or process (syscall) */ static int fbsd_detach(device_t dev) { softc_t *sc = device_get_softc(dev); /* Detach from the bus and the kernel. */ lmc_detach(sc); /* Release resources. */ if (sc->irq_cookie) bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie); if (sc->irq_res) bus_release_resource(dev, SYS_RES_IRQ, sc->irq_res_id, sc->irq_res); if (sc->csr_res) bus_release_resource(dev, sc->csr_res_type, sc->csr_res_id, sc->csr_res); /* Destroy locks. */ mtx_destroy(&sc->top_lock); return 0; } static void fbsd_shutdown(device_t dev) { tulip_detach(device_get_softc(dev)); } static void /* Callout from bus_dmamap_load() */ fbsd_dmamap_load(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct desc_ring *ring = arg; ring->nsegs = error ? 0 : nsegs; ring->segs[0] = segs[0]; ring->segs[1] = segs[1]; } static device_method_t methods[] = { DEVMETHOD(device_probe, fbsd_probe), DEVMETHOD(device_attach, fbsd_attach), DEVMETHOD(device_detach, fbsd_detach), DEVMETHOD(device_shutdown, fbsd_shutdown), /* This driver does not suspend and resume. */ { 0, 0 } }; static driver_t driver = { .name = DEVICE_NAME, .methods = methods, .size = sizeof(softc_t), }; static devclass_t devclass; DRIVER_MODULE(if_lmc, pci, driver, devclass, 0, 0); MODULE_VERSION(if_lmc, 2); MODULE_DEPEND(if_lmc, pci, 1, 1, 1); # if NETGRAPH MODULE_DEPEND(if_lmc, netgraph, NG_ABI_VERSION, NG_ABI_VERSION, NG_ABI_VERSION); # endif # if SPPP MODULE_DEPEND(if_lmc, sppp, 1, 1, 1); # endif #endif /* __FreeBSD__ */ #if defined(__NetBSD__) /* This is the I/O configuration interface for NetBSD. */ /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ /* context: kernel (boot) or process (syscall) */ static int nbsd_match(struct device *parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = aux; u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID); u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID); if (cfid != TLP_CFID_TULIP) return 0; switch (csid) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: case CSID_LMC_T3: case CSID_LMC_SSI: case CSID_LMC_T1E1: print_driver_info(); return 100; default: return 0; } } /* NetBSD bottom-half initialization. */ /* context: kernel (boot) or process (syscall) */ static void nbsd_attach(struct device *parent, struct device *self, void *aux) { softc_t *sc = (softc_t *)self; /* device is first in softc */ struct pci_attach_args *pa = aux; const char *intrstr; bus_addr_t csr_addr; int error; /* for READ/WRITE_PCI_CFG() */ sc->pa_pc = pa->pa_pc; sc->pa_tag = pa->pa_tag; sc->pa_dmat = pa->pa_dmat; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case CSID_LMC_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case CSID_LMC_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case CSID_LMC_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: return; } /* Allocate PCI resources to access the Tulip chip CSRs. */ # if IOREF_CSR csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2; sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */ # else csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA); sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */ # endif if ((error = bus_space_map(sc->csr_tag, csr_addr, TLP_CSR_SIZE, 0, &sc->csr_handle))) { aprint_error("%s: bus_space_map(): error %d\n", NAME_UNIT, error); return; } /* Allocate PCI interrupt resources. */ if (pci_intr_map(pa, &sc->intr_handle)) { aprint_error("%s: pci_intr_map() failed\n", NAME_UNIT); nbsd_detach(self, 0); return; } if ((sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle, IPL_NET, bsd_interrupt, sc)) == NULL) { aprint_error("%s: pci_intr_establish() failed\n", NAME_UNIT); nbsd_detach(self, 0); return; } intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle); aprint_normal(" %s: %s\n", intrstr, sc->dev_desc); aprint_naive(": %s\n", sc->dev_desc); /* Install a shutdown hook. */ if ((sc->sdh_cookie = shutdownhook_establish(tulip_detach, sc)) == NULL) { aprint_error("%s: shutdown_hook_establish() failed\n", NAME_UNIT); nbsd_detach(self, 0); return; } /* Initialize the top-half and bottom-half locks. */ mutex_init(&sc->top_lock, MUTEX_DEFAULT, IPL_VM); __cpu_simple_lock_init(&sc->bottom_lock); /* Initialize the driver. */ if ((error = lmc_attach(sc))) nbsd_detach(self, 0); } /* context: kernel (boot) or process (syscall) */ static int nbsd_detach(struct device *self, int flags) { softc_t *sc = (softc_t *)self; /* device is first in softc */ /* Detach from the bus and the kernel. */ lmc_detach(sc); /* Release resources. */ if (sc->sdh_cookie) shutdownhook_disestablish(sc->sdh_cookie); if (sc->irq_cookie) pci_intr_disestablish(sc->pa_pc, sc->irq_cookie); if (sc->csr_handle) bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE); /* Destroy locks. */ mutex_destroy(&sc->top_lock); return 0; } CFATTACH_DECL(lmc, sizeof(softc_t), /* lmc_ca */ nbsd_match, nbsd_attach, nbsd_detach, NULL); #endif /* __NetBSD__ */ #if defined(__OpenBSD__) /* This is the I/O configuration interface for OpenBSD. */ /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ /* context: kernel (boot) or process (syscall) */ static int obsd_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID); u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID); if (cfid != TLP_CFID_TULIP) return 0; switch (csid) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: case CSID_LMC_T3: case CSID_LMC_SSI: case CSID_LMC_T1E1: print_driver_info(); return 100; /* match better than other 21140 drivers */ default: return 0; } } /* OpenBSD bottom-half initialization. */ /* context: kernel (boot) or process (syscall) */ static void obsd_attach(struct device *parent, struct device *self, void *aux) { softc_t *sc = (softc_t *)self; /* device is first in softc */ struct pci_attach_args *pa = aux; const char *intrstr; bus_addr_t csr_addr; int error; /* for READ/WRITE_PCI_CFG() */ sc->pa_pc = pa->pa_pc; sc->pa_tag = pa->pa_tag; sc->pa_dmat = pa->pa_dmat; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case CSID_LMC_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case CSID_LMC_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case CSID_LMC_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: return; } /* Allocate PCI resources to access the Tulip chip CSRs. */ # if IOREF_CSR csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2; sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */ # else csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA); sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */ # endif if ((error = bus_space_map(sc->csr_tag, csr_addr, TLP_CSR_SIZE, 0, &sc->csr_handle))) { printf("%s: bus_space_map(): error %d\n", NAME_UNIT, error); return; } /* Allocate PCI interrupt resources. */ if (pci_intr_map(pa, &sc->intr_handle)) { printf("%s: pci_intr_map() failed\n", NAME_UNIT); obsd_detach(self, 0); return; } if ((sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle, IPL_NET, bsd_interrupt, sc, device_xname(self))) == NULL) { printf("%s: pci_intr_establish() failed\n", NAME_UNIT); obsd_detach(self, 0); return; } intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle); printf(" %s: %s\n", intrstr, sc->dev_desc); /* Install a shutdown hook. */ if ((sc->sdh_cookie = shutdownhook_establish(tulip_detach, sc)) == NULL) { printf("%s: shutdown_hook_establish() failed\n", NAME_UNIT); obsd_detach(self, 0); return; } /* Initialize the top-half and bottom-half locks. */ __cpu_simple_lock_init(&sc->top_lock); __cpu_simple_lock_init(&sc->bottom_lock); /* Initialize the driver. */ if ((error = lmc_attach(sc))) obsd_detach(self, 0); } /* context: kernel (boot) or process (syscall) */ static int obsd_detach(struct device *self, int flags) { softc_t *sc = (softc_t *)self; /* device is first in softc */ /* Detach from the bus and the kernel. */ lmc_detach(sc); /* Release resources. */ if (sc->sdh_cookie) shutdownhook_disestablish(sc->sdh_cookie); if (sc->irq_cookie) pci_intr_disestablish(sc->pa_pc, sc->irq_cookie); if (sc->csr_handle) bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE); return 0; } struct cfattach lmc_ca = { .ca_devsize = sizeof(softc_t), .ca_match = obsd_match, .ca_attach = obsd_attach, .ca_detach = obsd_detach, .ca_activate = NULL, }; # if defined(_MODULE) struct cfdriver lmc_cd = { .cd_name = DEVICE_NAME, .cd_devs = NULL, .cd_class = DV_IFNET, .cd_indirect = 0, .cd_ndevs = 0, }; /* cfdata is declared static, unseen outside this module. */ /* It is used for LKM; config builds its own in ioconf.c. */ static struct cfdata lmc_cfdata = { .cf_attach = &lmc_ca, .cf_driver = &lmc_cd, .cf_unit = 0, .cf_fstate = FSTATE_STAR, }; static struct lkm_any _module = { .lkm_name = "if_"DEVICE_NAME, .lkm_type = LM_MISC, .lkm_offset = 0, .lkm_ver = LKM_VERSION, }; /* From /sys/dev/pci/pci.c (no public prototype). */ int pciprint(void *, const char *); /* struct cfdriver for pci bus; lmc cards are all pci devices. */ extern struct cfdriver pci_cd; /* XXX This has only been tested on the i386 architecture. */ /* XXX To do this right, need struct pcibus_attach_args. */ /* XXX struct pcibus_attach_args exists only while booting. */ /* LKM finds this by appending "_lkmentry" to filename "if_lmc"(.o). */ int if_lmc_lkmentry(struct lkm_table *lkmtp, int cmd, int ver) { int i, error = 0; if (ver != LKM_VERSION) return EINVAL; switch (cmd) { case LKM_E_LOAD: { lkmtp->private.lkm_any = &_module; for (i=0; ipc; pa.pa_iot = 0; /* XXX arch_BUS_SPACE_IO */ pa.pa_memt = 1; /* XXX arch_BUS_SPACE_MEM; */ pa.pa_dmat = &pci_bus_dma_tag; pa.pa_bus = parent->dv_unit; pa.pa_function = 0; /* DEC-21140A has function 0 only */ maxdevs = pci_bus_maxdevs(pa.pa_pc, pa.pa_bus); for (devnum=0; devnum=0; i--) { device_t dev = device_lookup(&lmc_cd, i); if (dev == NULL) continue; if ((error = config_detach(dev, 0))) printf("%s: config_detach(): error %d\n", device_xname(dev), error); } break; } case LKM_E_STAT: break; } return error; } # endif /* _MODULE */ #endif /* __OpenBSD__ */ #if defined(__bsdi__) /* This is the I/O configuration interface for BSD/OS. */ /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ /* context: kernel (boot) or process (syscall) */ static int bsdi_match(pci_devaddr_t *pa) { u_int32_t cfid = pci_inl(pa, TLP_CFID); u_int32_t csid = pci_inl(pa, TLP_CSID); if (cfid != TLP_CFID_TULIP) return 0; switch (csid) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: case CSID_LMC_T3: case CSID_LMC_SSI: case CSID_LMC_T1E1: return 1; default: return 0; } } static int /* context: kernel (boot) */ bsdi_probe(struct device *parent, cfdata_t cf, void *aux) { struct isa_attach_args *ia = aux; pci_devaddr_t *pa = NULL; pci_devres_t res; /* This must be a PCI bus. */ if (ia->ia_bustype != BUS_PCI) return 0; /* Scan PCI bus for our cards. */ if ((pa = pci_scan(bsdi_match)) == NULL) return 0; print_driver_info(); /* found a card */ /* Scan config space for IO and MEM base registers and IRQ info. */ pci_getres(pa, &res, 1, ia); /* Pass matching PCI addr (bus+device+function) in ia_aux. */ ia->ia_aux = (void *)pa; return 1; } /* BSD/OS bottom-half initialization. */ static void /* context: kernel (boot) */ bsdi_attach(struct device *parent, struct device *self, void *aux) { softc_t *sc = (softc_t *)self; /* device is first in softc */ struct isa_attach_args *ia = aux; pci_devaddr_t *pa = ia->ia_aux; int error; /* for READ/WRITE_PCI_CFG() */ sc->cfgbase = *pa; /* bus+device+function */ /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case CSID_LMC_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case CSID_LMC_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case CSID_LMC_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: return; } aprint_naive(": %s\n", sc->dev_desc); aprint_normal(": %s\n", sc->dev_desc); /* Allocate PCI memory or IO resources to access the Tulip chip CSRs. */ sc->csr_iobase = ia->ia_iobase; sc->csr_membase = (u_int32_t *)mapphys((vm_offset_t)ia->ia_maddr, TLP_CSR_SIZE); /* Attach to the PCI bus. */ isa_establish(&sc->id, &sc->dev); /* Allocate PCI interrupt resources for the card. */ sc->ih.ih_fun = bsd_interrupt; sc->ih.ih_arg = sc; intr_establish(ia->ia_irq, &sc->ih, DV_NET); /* Install a shutdown hook. */ sc->ats.func = tulip_detach; sc->ats.arg = sc; atshutdown(&sc->ats, ATSH_ADD); /* Initialize the top-half and bottom-half locks. */ simple_lock_init(&sc->top_lock); simple_lock_init(&sc->bottom_lock); /* Initialize the driver. */ if ((error = lmc_attach(sc))) lmc_detach(sc); } struct cfdriver lmccd = { .cd_devs = NULL, .cd_name = DEVICE_NAME, .cd_match = bsdi_probe, .cd_attach = bsdi_attach, .cd_class = DV_IFNET, .cd_devsize = sizeof(softc_t), }; #endif /* __bsdi__ */ #if defined(__linux__) /* This is the I/O configuration interface for Linux. */ /* This pci_driver method is called during boot or module-load. */ /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ /* context: kernel (boot) or process (syscall) */ static int __init linux_probe(struct pci_dev *pcidev, const struct pci_device_id *id) { u_int32_t cfid; u_int32_t csid; pci_read_config_dword(pcidev, TLP_CFID, &cfid); pci_read_config_dword(pcidev, TLP_CSID, &csid); if (cfid != TLP_CFID_TULIP) return -ENXIO; switch (csid) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: case CSID_LMC_T3: case CSID_LMC_SSI: case CSID_LMC_T1E1: print_driver_info(); break; default: return -ENXIO; } /* Factor this task the way BSDs do. */ return linux_attach(pcidev); } /* Linux bottom-half initialization. */ /* context: kernel (boot) or process (syscall) */ static int __init linux_attach(struct pci_dev *pcidev) { softc_t *sc; int error; /* Allocate the software context, softc, also known as sc. */ if ((sc = kzalloc(sizeof(softc_t), GFP_KERNEL)) == NULL) { printk("%s: kzalloc() failed\n", DEVICE_NAME); return -ENOMEM; } /* for linux_remove() */ pci_set_drvdata(pcidev, sc); /* for READ/WRITE_PCI_CFG() */ sc->pcidev = pcidev; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case CSID_LMC_HSSI: case CSID_LMC_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case CSID_LMC_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case CSID_LMC_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case CSID_LMC_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: /* should not happen! */ kfree(sc); return -ENXIO; } /* Declare that these cards use 32-bit single-address PCI cycles. */ if ((error = pci_set_dma_mask(pcidev, DMA_32BIT_MASK))) { printk("%s: pci_set_dma_mask(): error %d\n", DEVICE_NAME, error); linux_remove(pcidev); return error; } pci_set_consistent_dma_mask(pcidev, DMA_32BIT_MASK); /* can not fail */ /* Allocate PCI resources to access the Tulip chip CSRs. */ /* Since PCI resources will not change, request them now. */ if ((error = pci_request_regions(pcidev, DEVICE_NAME))) { printk("%s: pci_request_regions(): error %d\n", DEVICE_NAME, error); linux_remove(pcidev); return error; } if ((sc->csr_cookie = pci_iomap(pcidev, (IOREF_CSR ? 0:1), TLP_CSR_SIZE)) == NULL) { printk("%s: pci_iomap() failed\n", DEVICE_NAME); linux_remove(pcidev); return -EFAULT; } /* Set cfcs.master, enabling busmaster DMA; check bus latency value. */ pci_set_master(pcidev); /* Set cfcs.io and cfcs.mem; set pcidev->irq based on cfit.int. */ if ((error = pci_enable_device(pcidev))) { printk("%s: pci_enable_device(): error %d\n", DEVICE_NAME, error); linux_remove(pcidev); return error; } /* Allocate PCI interrupt resources for the card. */ /* Since the interrupt is shared, request it now. */ if ((error = request_irq(pcidev->irq, &linux_interrupt, SA_SHIRQ, DEVICE_NAME, sc))) { printk("%s: request_irq(): error %d\n", DEVICE_NAME, error); linux_remove(pcidev); return error; } /* Initialize the top-half and bottom-half locks. */ /* Top_lock must be initialized before lmc_attach() is called. */ init_MUTEX(&sc->top_lock); sc->bottom_lock = 0; /* Install module parameter. */ sc->config.debug = debug; /* Initialize the driver. */ /* The NAME_UNIT macro works after lmc_attach. */ /* Use DEVICE_NAME before this. */ if ((error = lmc_attach(sc))) linux_remove(pcidev); else { /* Describe the hardware. */ printk("%s: <%s> at pci %s irq %d\n", NAME_UNIT, sc->dev_desc, pci_name(pcidev), pcidev->irq); if (BOOT_VERBOSE) printk("%s: io 0x%04lx/9 mem 0x%08lx/25 rom 0x%08lx/14\n", NAME_UNIT, pci_resource_start(pcidev, 0), pci_resource_start(pcidev, 1), pci_resource_start(pcidev, 6)); } return error; } /* This pci_driver method is called during shutdown or module-unload. */ /* context: kernel (boot) or process (syscall) */ static void __exit /* This is detach() in BSD parlance. */ linux_remove(struct pci_dev *pcidev) { softc_t *sc = pci_get_drvdata(pcidev); /* Detach from the bus and the kernel. */ lmc_detach(sc); /* Release resources. */ free_irq(pcidev->irq, sc); if (sc->csr_cookie) pci_iounmap(pcidev, sc->csr_cookie); if (pci_resource_start(pcidev, 0)) pci_release_regions(pcidev); pci_disable_device(pcidev); kfree(sc); } static u_int32_t READ_PCI_CFG(softc_t *sc, u_int32_t addr) { u_int32_t data; pci_read_config_dword(sc->pcidev, addr, &data); return data; } /* This pci driver knows how to drive these devices: */ static __initdata struct pci_device_id pci_device_id_tbl[] = { /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ { 0x1011, 0x0009, 0x1376, PCI_ANY_ID, 0, 0, 0 }, { 0, } }; MODULE_DEVICE_TABLE(pci, pci_device_id_tbl); static struct pci_driver pci_driver = { .name = DEVICE_NAME, .id_table = pci_device_id_tbl, .probe = linux_probe, .remove = __devexit_p(linux_remove), /* This driver does not suspend and resume. */ }; /* This ultimately calls our pci_driver.probe() method. */ static int __init linux_modload(void) { return pci_module_init(&pci_driver); } module_init(linux_modload); /* This ultimately calls our pci_driver.remove() method. */ static void __exit linux_modunload(void) { pci_unregister_driver(&pci_driver); } module_exit(linux_modunload); module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Extra messages during operation"); module_param(verbose, int, 0); MODULE_PARM_DESC(verbose, "Extra messages during startup"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Device driver for LMC Wide-Area Network cards"); MODULE_AUTHOR("David Boggs "); #endif /* __linux__ */