/* $NetBSD: subr_cprng.c,v 1.28 2017/10/25 08:12:39 maya Exp $ */ /*- * Copyright (c) 2011-2013 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Thor Lancelot Simon and Taylor R. Campbell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_cprng.c,v 1.28 2017/10/25 08:12:39 maya Exp $"); #include #include #include #include #include #include /* XXX struct knote */ #include /* XXX FNONBLOCK */ #include #include #include #include #include #include /* XXX POLLIN/POLLOUT/&c. */ #include #include #include #include #if DIAGNOSTIC #include #endif #include #if defined(__HAVE_CPU_COUNTER) #include #endif static int sysctl_kern_urnd(SYSCTLFN_PROTO); static int sysctl_kern_arnd(SYSCTLFN_PROTO); static void cprng_strong_generate(struct cprng_strong *, void *, size_t); static void cprng_strong_reseed(struct cprng_strong *); static void cprng_strong_reseed_from(struct cprng_strong *, const void *, size_t, bool); #if DIAGNOSTIC static void cprng_strong_rngtest(struct cprng_strong *); #endif static rndsink_callback_t cprng_strong_rndsink_callback; void cprng_init(void) { static struct sysctllog *random_sysctllog; nist_ctr_initialize(); sysctl_createv(&random_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "urandom", SYSCTL_DESCR("Random integer value"), sysctl_kern_urnd, 0, NULL, 0, CTL_KERN, KERN_URND, CTL_EOL); sysctl_createv(&random_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "arandom", SYSCTL_DESCR("n bytes of random data"), sysctl_kern_arnd, 0, NULL, 0, CTL_KERN, KERN_ARND, CTL_EOL); } static inline uint32_t cprng_counter(void) { struct timeval tv; #if defined(__HAVE_CPU_COUNTER) if (cpu_hascounter()) return cpu_counter32(); #endif if (__predict_false(cold)) { static int ctr; /* microtime unsafe if clock not running yet */ return ctr++; } getmicrotime(&tv); return (tv.tv_sec * 1000000 + tv.tv_usec); } struct cprng_strong { char cs_name[16]; int cs_flags; kmutex_t cs_lock; percpu_t *cs_percpu; kcondvar_t cs_cv; struct selinfo cs_selq; struct rndsink *cs_rndsink; bool cs_ready; NIST_CTR_DRBG cs_drbg; /* XXX Kludge for /dev/random `information-theoretic' properties. */ unsigned int cs_remaining; }; struct cprng_strong * cprng_strong_create(const char *name, int ipl, int flags) { const uint32_t cc = cprng_counter(); struct cprng_strong *const cprng = kmem_alloc(sizeof(*cprng), KM_SLEEP); /* * rndsink_request takes a spin lock at IPL_VM, so we can be no * higher than that. */ KASSERT(ipl != IPL_SCHED && ipl != IPL_HIGH); /* Initialize the easy fields. */ (void)strlcpy(cprng->cs_name, name, sizeof(cprng->cs_name)); cprng->cs_flags = flags; mutex_init(&cprng->cs_lock, MUTEX_DEFAULT, ipl); cv_init(&cprng->cs_cv, cprng->cs_name); selinit(&cprng->cs_selq); cprng->cs_rndsink = rndsink_create(NIST_BLOCK_KEYLEN_BYTES, &cprng_strong_rndsink_callback, cprng); /* Get some initial entropy. Record whether it is full entropy. */ uint8_t seed[NIST_BLOCK_KEYLEN_BYTES]; mutex_enter(&cprng->cs_lock); cprng->cs_ready = rndsink_request(cprng->cs_rndsink, seed, sizeof(seed)); if (nist_ctr_drbg_instantiate(&cprng->cs_drbg, seed, sizeof(seed), &cc, sizeof(cc), cprng->cs_name, sizeof(cprng->cs_name))) /* XXX Fix nist_ctr_drbg API so this can't happen. */ panic("cprng %s: NIST CTR_DRBG instantiation failed", cprng->cs_name); explicit_memset(seed, 0, sizeof(seed)); if (ISSET(flags, CPRNG_HARD)) cprng->cs_remaining = NIST_BLOCK_KEYLEN_BYTES; else cprng->cs_remaining = 0; if (!cprng->cs_ready && !ISSET(flags, CPRNG_INIT_ANY)) printf("cprng %s: creating with partial entropy\n", cprng->cs_name); mutex_exit(&cprng->cs_lock); return cprng; } void cprng_strong_destroy(struct cprng_strong *cprng) { /* * Destroy the rndsink first to prevent calls to the callback. */ rndsink_destroy(cprng->cs_rndsink); KASSERT(!cv_has_waiters(&cprng->cs_cv)); #if 0 KASSERT(!select_has_waiters(&cprng->cs_selq)) /* XXX ? */ #endif nist_ctr_drbg_destroy(&cprng->cs_drbg); seldestroy(&cprng->cs_selq); cv_destroy(&cprng->cs_cv); mutex_destroy(&cprng->cs_lock); explicit_memset(cprng, 0, sizeof(*cprng)); /* paranoia */ kmem_free(cprng, sizeof(*cprng)); } /* * Generate some data from cprng. Block or return zero bytes, * depending on flags & FNONBLOCK, if cprng was created without * CPRNG_REKEY_ANY. */ size_t cprng_strong(struct cprng_strong *cprng, void *buffer, size_t bytes, int flags) { size_t result; /* Caller must loop for more than CPRNG_MAX_LEN bytes. */ bytes = MIN(bytes, CPRNG_MAX_LEN); mutex_enter(&cprng->cs_lock); if (ISSET(cprng->cs_flags, CPRNG_REKEY_ANY)) { if (!cprng->cs_ready) cprng_strong_reseed(cprng); } else { while (!cprng->cs_ready) { if (ISSET(flags, FNONBLOCK) || !ISSET(cprng->cs_flags, CPRNG_USE_CV) || cv_wait_sig(&cprng->cs_cv, &cprng->cs_lock)) { result = 0; goto out; } } } /* * Debit the entropy if requested. * * XXX Kludge for /dev/random `information-theoretic' properties. */ if (__predict_false(ISSET(cprng->cs_flags, CPRNG_HARD))) { KASSERT(0 < cprng->cs_remaining); KASSERT(cprng->cs_remaining <= NIST_BLOCK_KEYLEN_BYTES); if (bytes < cprng->cs_remaining) { cprng->cs_remaining -= bytes; } else { bytes = cprng->cs_remaining; cprng->cs_remaining = NIST_BLOCK_KEYLEN_BYTES; cprng->cs_ready = false; rndsink_schedule(cprng->cs_rndsink); } KASSERT(bytes <= NIST_BLOCK_KEYLEN_BYTES); KASSERT(0 < cprng->cs_remaining); KASSERT(cprng->cs_remaining <= NIST_BLOCK_KEYLEN_BYTES); } cprng_strong_generate(cprng, buffer, bytes); result = bytes; out: mutex_exit(&cprng->cs_lock); return result; } static void filt_cprng_detach(struct knote *); static int filt_cprng_event(struct knote *, long); static const struct filterops cprng_filtops = { .f_isfd = 1, .f_attach = NULL, .f_detach = filt_cprng_detach, .f_event = filt_cprng_event, }; int cprng_strong_kqfilter(struct cprng_strong *cprng, struct knote *kn) { switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &cprng_filtops; kn->kn_hook = cprng; mutex_enter(&cprng->cs_lock); SLIST_INSERT_HEAD(&cprng->cs_selq.sel_klist, kn, kn_selnext); mutex_exit(&cprng->cs_lock); return 0; case EVFILT_WRITE: default: return EINVAL; } } static void filt_cprng_detach(struct knote *kn) { struct cprng_strong *const cprng = kn->kn_hook; mutex_enter(&cprng->cs_lock); SLIST_REMOVE(&cprng->cs_selq.sel_klist, kn, knote, kn_selnext); mutex_exit(&cprng->cs_lock); } static int filt_cprng_event(struct knote *kn, long hint) { struct cprng_strong *const cprng = kn->kn_hook; int ret; if (hint == NOTE_SUBMIT) KASSERT(mutex_owned(&cprng->cs_lock)); else mutex_enter(&cprng->cs_lock); if (cprng->cs_ready) { kn->kn_data = CPRNG_MAX_LEN; /* XXX Too large? */ ret = 1; } else { ret = 0; } if (hint == NOTE_SUBMIT) KASSERT(mutex_owned(&cprng->cs_lock)); else mutex_exit(&cprng->cs_lock); return ret; } int cprng_strong_poll(struct cprng_strong *cprng, int events) { int revents; if (!ISSET(events, (POLLIN | POLLRDNORM))) return 0; mutex_enter(&cprng->cs_lock); if (cprng->cs_ready) { revents = (events & (POLLIN | POLLRDNORM)); } else { selrecord(curlwp, &cprng->cs_selq); revents = 0; } mutex_exit(&cprng->cs_lock); return revents; } /* * XXX Move nist_ctr_drbg_reseed_advised_p and * nist_ctr_drbg_reseed_needed_p into the nist_ctr_drbg API and make * the NIST_CTR_DRBG structure opaque. */ static bool nist_ctr_drbg_reseed_advised_p(NIST_CTR_DRBG *drbg) { return (drbg->reseed_counter > (NIST_CTR_DRBG_RESEED_INTERVAL / 2)); } static bool nist_ctr_drbg_reseed_needed_p(NIST_CTR_DRBG *drbg) { return (drbg->reseed_counter >= NIST_CTR_DRBG_RESEED_INTERVAL); } /* * Generate some data from the underlying generator. */ static void cprng_strong_generate(struct cprng_strong *cprng, void *buffer, size_t bytes) { const uint32_t cc = cprng_counter(); KASSERT(bytes <= CPRNG_MAX_LEN); KASSERT(mutex_owned(&cprng->cs_lock)); /* * Generate some data from the NIST CTR_DRBG. Caller * guarantees reseed if we're not ready, and if we exhaust the * generator, we mark ourselves not ready. Consequently, this * call to the CTR_DRBG should not fail. */ if (__predict_false(nist_ctr_drbg_generate(&cprng->cs_drbg, buffer, bytes, &cc, sizeof(cc)))) panic("cprng %s: NIST CTR_DRBG failed", cprng->cs_name); /* * If we've been seeing a lot of use, ask for some fresh * entropy soon. */ if (__predict_false(nist_ctr_drbg_reseed_advised_p(&cprng->cs_drbg))) rndsink_schedule(cprng->cs_rndsink); /* * If we just exhausted the generator, inform the next user * that we need a reseed. */ if (__predict_false(nist_ctr_drbg_reseed_needed_p(&cprng->cs_drbg))) { cprng->cs_ready = false; rndsink_schedule(cprng->cs_rndsink); /* paranoia */ } } /* * Reseed with whatever we can get from the system entropy pool right now. */ static void cprng_strong_reseed(struct cprng_strong *cprng) { uint8_t seed[NIST_BLOCK_KEYLEN_BYTES]; KASSERT(mutex_owned(&cprng->cs_lock)); const bool full_entropy = rndsink_request(cprng->cs_rndsink, seed, sizeof(seed)); cprng_strong_reseed_from(cprng, seed, sizeof(seed), full_entropy); explicit_memset(seed, 0, sizeof(seed)); } /* * Reseed with the given seed. If we now have full entropy, notify waiters. */ static void cprng_strong_reseed_from(struct cprng_strong *cprng, const void *seed, size_t bytes, bool full_entropy) { const uint32_t cc = cprng_counter(); KASSERT(bytes == NIST_BLOCK_KEYLEN_BYTES); KASSERT(mutex_owned(&cprng->cs_lock)); /* * Notify anyone interested in the partiality of entropy in our * seed -- anyone waiting for full entropy, or any system * operators interested in knowing when the entropy pool is * running on fumes. */ if (full_entropy) { if (!cprng->cs_ready) { cprng->cs_ready = true; cv_broadcast(&cprng->cs_cv); selnotify(&cprng->cs_selq, (POLLIN | POLLRDNORM), NOTE_SUBMIT); } } else { /* * XXX Is there is any harm in reseeding with partial * entropy when we had full entropy before? If so, * remove the conditional on this message. */ if (!cprng->cs_ready && !ISSET(cprng->cs_flags, CPRNG_REKEY_ANY)) printf("cprng %s: reseeding with partial entropy\n", cprng->cs_name); } if (nist_ctr_drbg_reseed(&cprng->cs_drbg, seed, bytes, &cc, sizeof(cc))) /* XXX Fix nist_ctr_drbg API so this can't happen. */ panic("cprng %s: NIST CTR_DRBG reseed failed", cprng->cs_name); #if DIAGNOSTIC cprng_strong_rngtest(cprng); #endif } #if DIAGNOSTIC /* * Generate some output and apply a statistical RNG test to it. */ static void cprng_strong_rngtest(struct cprng_strong *cprng) { KASSERT(mutex_owned(&cprng->cs_lock)); /* XXX Switch to a pool cache instead? */ rngtest_t *const rt = kmem_intr_alloc(sizeof(*rt), KM_NOSLEEP); if (rt == NULL) /* XXX Warn? */ return; (void)strlcpy(rt->rt_name, cprng->cs_name, sizeof(rt->rt_name)); if (nist_ctr_drbg_generate(&cprng->cs_drbg, rt->rt_b, sizeof(rt->rt_b), NULL, 0)) panic("cprng %s: NIST CTR_DRBG failed after reseed", cprng->cs_name); if (rngtest(rt)) { printf("cprng %s: failed statistical RNG test\n", cprng->cs_name); /* XXX Not clear that this does any good... */ cprng->cs_ready = false; rndsink_schedule(cprng->cs_rndsink); } explicit_memset(rt, 0, sizeof(*rt)); /* paranoia */ kmem_intr_free(rt, sizeof(*rt)); } #endif /* * Feed entropy from an rndsink request into the CPRNG for which the * request was issued. */ static void cprng_strong_rndsink_callback(void *context, const void *seed, size_t bytes) { struct cprng_strong *const cprng = context; mutex_enter(&cprng->cs_lock); /* Assume that rndsinks provide only full-entropy output. */ cprng_strong_reseed_from(cprng, seed, bytes, true); mutex_exit(&cprng->cs_lock); } static cprng_strong_t *sysctl_prng; static int makeprng(void) { /* can't create in cprng_init(), too early */ sysctl_prng = cprng_strong_create("sysctl", IPL_NONE, CPRNG_INIT_ANY|CPRNG_REKEY_ANY); return 0; } /* * sysctl helper routine for kern.urandom node. Picks a random number * for you. */ static int sysctl_kern_urnd(SYSCTLFN_ARGS) { static ONCE_DECL(control); int v, rv; RUN_ONCE(&control, makeprng); rv = cprng_strong(sysctl_prng, &v, sizeof(v), 0); if (rv == sizeof(v)) { struct sysctlnode node = *rnode; node.sysctl_data = &v; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } else return (EIO); /*XXX*/ } /* * sysctl helper routine for kern.arandom node. Fills the supplied * structure with random data for you. * * This node was originally declared as type "int" but its implementation * in OpenBSD, whence it came, would happily return up to 8K of data if * requested. Evidently this was used to key RC4 in userspace. * * In NetBSD, the libc stack-smash-protection code reads 64 bytes * from here at every program startup. So though it would be nice * to make this node return only 32 or 64 bits, we can't. Too bad! */ static int sysctl_kern_arnd(SYSCTLFN_ARGS) { int error; void *v; struct sysctlnode node = *rnode; switch (*oldlenp) { case 0: return 0; default: if (*oldlenp > 256) { return E2BIG; } v = kmem_alloc(*oldlenp, KM_SLEEP); cprng_fast(v, *oldlenp); node.sysctl_data = v; node.sysctl_size = *oldlenp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); kmem_free(v, *oldlenp); return error; } }