/* $NetBSD: acpi_pci_link.c,v 1.16 2010/03/05 14:00:17 jruoho Exp $ */ /*- * Copyright (c) 2002 Mitsuru IWASAKI * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: acpi_pci_link.c,v 1.16 2010/03/05 14:00:17 jruoho Exp $"); #include #include #include #include #include #include #include #include #include "opt_acpi.h" #define _COMPONENT ACPI_BUS_COMPONENT ACPI_MODULE_NAME ("acpi_pci_link") #define NUM_ISA_INTERRUPTS 16 #define NUM_ACPI_INTERRUPTS 256 #define PCI_INVALID_IRQ 255 #define PCI_INTERRUPT_VALID(x) ((x) != PCI_INVALID_IRQ && (x) != 0) #define ACPI_SERIAL_BEGIN(x) #define ACPI_SERIAL_END(x) /* * An ACPI PCI link device may contain multiple links. Each link has its * own ACPI resource. _PRT entries specify which link is being used via * the Source Index. * * XXX: A note about Source Indices and DPFs: Currently we assume that * the DPF start and end tags are not counted towards the index that * Source Index corresponds to. Also, we assume that when DPFs are in use * they various sets overlap in terms of Indices. Here's an example * resource list indicating these assumptions: * * Resource Index * -------- ----- * I/O Port 0 * Start DPF - * IRQ 1 * MemIO 2 * Start DPF - * IRQ 1 * MemIO 2 * End DPF - * DMA Channel 3 * * The XXX is because I'm not sure if this is a valid assumption to make. */ /* States during DPF processing. */ #define DPF_OUTSIDE 0 #define DPF_FIRST 1 #define DPF_IGNORE 2 struct link; struct acpi_pci_link_softc { int pl_num_links; int pl_crs_bad; struct link *pl_links; char pl_name[32]; ACPI_HANDLE pl_handle; TAILQ_ENTRY(acpi_pci_link_softc) pl_list; }; static TAILQ_HEAD(, acpi_pci_link_softc) acpi_pci_linkdevs = TAILQ_HEAD_INITIALIZER(acpi_pci_linkdevs); struct link { struct acpi_pci_link_softc *l_sc; uint8_t l_bios_irq; uint8_t l_irq; uint8_t l_trig; uint8_t l_pol; uint8_t l_initial_irq; int l_res_index; int l_num_irqs; int *l_irqs; int l_references; int l_dev_count; pcitag_t *l_devices; int l_routed:1; int l_isa_irq:1; ACPI_RESOURCE l_prs_template; }; struct link_count_request { int in_dpf; int count; }; struct link_res_request { struct acpi_pci_link_softc *sc; int in_dpf; int res_index; int link_index; }; MALLOC_DEFINE(M_PCI_LINK, "pci_link", "ACPI PCI Link structures"); static int pci_link_interrupt_weights[NUM_ACPI_INTERRUPTS]; static int pci_link_bios_isa_irqs; static ACPI_STATUS acpi_count_irq_resources(ACPI_RESOURCE *, void *); static ACPI_STATUS link_add_crs(ACPI_RESOURCE *, void *); static ACPI_STATUS link_add_prs(ACPI_RESOURCE *, void *); static int link_valid_irq(struct link *, int); static void acpi_pci_link_dump(struct acpi_pci_link_softc *); static int acpi_pci_link_attach(struct acpi_pci_link_softc *); static uint8_t acpi_pci_link_search_irq(struct acpi_pci_link_softc *, int, int, int); static struct link *acpi_pci_link_lookup(struct acpi_pci_link_softc *, int); static ACPI_STATUS acpi_pci_link_srs(struct acpi_pci_link_softc *, ACPI_BUFFER *); static ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *, ACPI_RESOURCE *); static ACPI_STATUS acpi_count_irq_resources(ACPI_RESOURCE *res, void *context) { struct link_count_request *req; req = (struct link_count_request *)context; switch (res->Type) { case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (req->in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ req->in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ req->in_dpf = DPF_IGNORE; break; } break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: /* We are finished with DPF parsing. */ KASSERT(req->in_dpf != DPF_OUTSIDE); req->in_dpf = DPF_OUTSIDE; break; case ACPI_RESOURCE_TYPE_IRQ: case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: /* * Don't count resources if we are in a DPF set that we are * ignoring. */ if (req->in_dpf != DPF_IGNORE) req->count++; } return (AE_OK); } static ACPI_STATUS link_add_crs(ACPI_RESOURCE *res, void *context) { struct link_res_request *req; struct link *link; req = (struct link_res_request *)context; switch (res->Type) { case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (req->in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ req->in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ panic( "%s: Multiple dependent functions within a current resource", __func__); break; } break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: /* We are finished with DPF parsing. */ KASSERT(req->in_dpf != DPF_OUTSIDE); req->in_dpf = DPF_OUTSIDE; break; case ACPI_RESOURCE_TYPE_IRQ: case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: KASSERT(req->link_index < req->sc->pl_num_links); link = &req->sc->pl_links[req->link_index]; link->l_res_index = req->res_index; req->link_index++; req->res_index++; /* * Only use the current value if there's one IRQ. Some * systems return multiple IRQs (which is nonsense for _CRS) * when the link hasn't been programmed. */ if (res->Type == ACPI_RESOURCE_TYPE_IRQ) { if (res->Data.Irq.InterruptCount == 1) { link->l_irq = res->Data.Irq.Interrupts[0]; link->l_trig = res->Data.Irq.Triggering; link->l_pol = res->Data.Irq.Polarity; } } else if (res->Data.ExtendedIrq.InterruptCount == 1) { link->l_irq = res->Data.ExtendedIrq.Interrupts[0]; link->l_trig = res->Data.ExtendedIrq.Triggering; link->l_pol = res->Data.ExtendedIrq.Polarity; } /* * An IRQ of zero means that the link isn't routed. */ if (link->l_irq == 0) link->l_irq = PCI_INVALID_IRQ; break; default: req->res_index++; } return (AE_OK); } /* * Populate the set of possible IRQs for each device. */ static ACPI_STATUS link_add_prs(ACPI_RESOURCE *res, void *context) { struct link_res_request *req; struct link *link; UINT8 *irqs = NULL; UINT32 *ext_irqs = NULL; int i, is_ext_irq = 1; req = (struct link_res_request *)context; switch (res->Type) { case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (req->in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ req->in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ req->in_dpf = DPF_IGNORE; break; } break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: /* We are finished with DPF parsing. */ KASSERT(req->in_dpf != DPF_OUTSIDE); req->in_dpf = DPF_OUTSIDE; break; case ACPI_RESOURCE_TYPE_IRQ: is_ext_irq = 0; /* fall through */ case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: /* * Don't parse resources if we are in a DPF set that we are * ignoring. */ if (req->in_dpf == DPF_IGNORE) break; KASSERT(req->link_index < req->sc->pl_num_links); link = &req->sc->pl_links[req->link_index]; if (link->l_res_index == -1) { KASSERT(req->sc->pl_crs_bad); link->l_res_index = req->res_index; } req->link_index++; req->res_index++; /* * Stash a copy of the resource for later use when * doing _SRS. * * Note that in theory res->Length may exceed the size * of ACPI_RESOURCE, due to variable length lists in * subtypes. However, all uses of l_prs_template only * rely on lists lengths of zero or one, for which * sizeof(ACPI_RESOURCE) is sufficient space anyway. * We cannot read longer than Length bytes, in case we * read off the end of mapped memory. So we read * whichever length is shortest, Length or * sizeof(ACPI_RESOURCE). */ KASSERT(res->Length >= ACPI_RS_SIZE_MIN); memset(&link->l_prs_template, 0, sizeof(link->l_prs_template)); memcpy(&link->l_prs_template, res, MIN(res->Length, sizeof(link->l_prs_template))); if (is_ext_irq) { link->l_num_irqs = res->Data.ExtendedIrq.InterruptCount; link->l_trig = res->Data.ExtendedIrq.Triggering; link->l_pol = res->Data.ExtendedIrq.Polarity; ext_irqs = res->Data.ExtendedIrq.Interrupts; } else { link->l_num_irqs = res->Data.Irq.InterruptCount; link->l_trig = res->Data.Irq.Triggering; link->l_pol = res->Data.Irq.Polarity; irqs = res->Data.Irq.Interrupts; } if (link->l_num_irqs == 0) break; /* * Save a list of the valid IRQs. Also, if all of the * valid IRQs are ISA IRQs, then mark this link as * routed via an ISA interrupt. */ link->l_isa_irq = TRUE; link->l_irqs = malloc(sizeof(int) * link->l_num_irqs, M_PCI_LINK, M_WAITOK | M_ZERO); for (i = 0; i < link->l_num_irqs; i++) { if (is_ext_irq) { link->l_irqs[i] = ext_irqs[i]; if (ext_irqs[i] >= NUM_ISA_INTERRUPTS) link->l_isa_irq = FALSE; } else { link->l_irqs[i] = irqs[i]; if (irqs[i] >= NUM_ISA_INTERRUPTS) link->l_isa_irq = FALSE; } } break; default: if (req->in_dpf == DPF_IGNORE) break; if (req->sc->pl_crs_bad) aprint_normal("%s: Warning: possible resource %d " "will be lost during _SRS\n", req->sc->pl_name, req->res_index); req->res_index++; } return (AE_OK); } static int link_valid_irq(struct link *link, int irq) { int i; /* Invalid interrupts are never valid. */ if (!PCI_INTERRUPT_VALID(irq)) return (FALSE); /* Any interrupt in the list of possible interrupts is valid. */ for (i = 0; i < link->l_num_irqs; i++) if (link->l_irqs[i] == irq) return (TRUE); /* * For links routed via an ISA interrupt, if the SCI is routed via * an ISA interrupt, the SCI is always treated as a valid IRQ. */ if (link->l_isa_irq && AcpiGbl_FADT.SciInterrupt == irq && irq < NUM_ISA_INTERRUPTS) return (TRUE); /* If the interrupt wasn't found in the list it is not valid. */ return (FALSE); } void acpi_pci_link_state(void) { struct acpi_pci_link_softc *sc; TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) { acpi_pci_link_dump(sc); } } static void acpi_pci_link_dump(struct acpi_pci_link_softc *sc) { struct link *link; int i, j; printf("Link Device %s:\n", sc->pl_name); printf("Index IRQ Rtd Ref IRQs\n"); for (i = 0; i < sc->pl_num_links; i++) { link = &sc->pl_links[i]; printf("%5d %3d %c %3d ", i, link->l_irq, link->l_routed ? 'Y' : 'N', link->l_references); if (link->l_num_irqs == 0) printf(" none"); else for (j = 0; j < link->l_num_irqs; j++) printf(" %d", link->l_irqs[j]); printf(" polarity %u trigger %u\n", link->l_pol, link->l_trig); } printf("\n"); } static int acpi_pci_link_attach(struct acpi_pci_link_softc *sc) { struct link_count_request creq; struct link_res_request rreq; ACPI_STATUS status; int i; ACPI_SERIAL_BEGIN(pci_link); /* * Count the number of current resources so we know how big of * a link array to allocate. On some systems, _CRS is broken, * so for those systems try to derive the count from _PRS instead. */ creq.in_dpf = DPF_OUTSIDE; creq.count = 0; status = AcpiWalkResources(sc->pl_handle, "_CRS", acpi_count_irq_resources, &creq); sc->pl_crs_bad = ACPI_FAILURE(status); if (sc->pl_crs_bad) { creq.in_dpf = DPF_OUTSIDE; creq.count = 0; status = AcpiWalkResources(sc->pl_handle, "_PRS", acpi_count_irq_resources, &creq); if (ACPI_FAILURE(status)) { aprint_error("%s: Unable to parse _CRS or _PRS: %s\n", sc->pl_name, AcpiFormatException(status)); ACPI_SERIAL_END(pci_link); return (ENXIO); } } sc->pl_num_links = creq.count; if (creq.count == 0) { ACPI_SERIAL_END(pci_link); return (0); } sc->pl_links = malloc(sizeof(struct link) * sc->pl_num_links, M_PCI_LINK, M_WAITOK | M_ZERO); /* Initialize the child links. */ for (i = 0; i < sc->pl_num_links; i++) { sc->pl_links[i].l_irq = PCI_INVALID_IRQ; sc->pl_links[i].l_bios_irq = PCI_INVALID_IRQ; sc->pl_links[i].l_sc = sc; sc->pl_links[i].l_isa_irq = FALSE; sc->pl_links[i].l_res_index = -1; sc->pl_links[i].l_dev_count = 0; sc->pl_links[i].l_devices = NULL; } /* Try to read the current settings from _CRS if it is valid. */ if (!sc->pl_crs_bad) { rreq.in_dpf = DPF_OUTSIDE; rreq.link_index = 0; rreq.res_index = 0; rreq.sc = sc; status = AcpiWalkResources(sc->pl_handle, "_CRS", link_add_crs, &rreq); if (ACPI_FAILURE(status)) { aprint_error("%s: Unable to parse _CRS: %s\n", sc->pl_name, AcpiFormatException(status)); goto fail; } } /* * Try to read the possible settings from _PRS. Note that if the * _CRS is toast, we depend on having a working _PRS. However, if * _CRS works, then it is ok for _PRS to be missing. */ rreq.in_dpf = DPF_OUTSIDE; rreq.link_index = 0; rreq.res_index = 0; rreq.sc = sc; status = AcpiWalkResources(sc->pl_handle, "_PRS", link_add_prs, &rreq); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND || sc->pl_crs_bad)) { aprint_error("%s: Unable to parse _PRS: %s\n", sc->pl_name, AcpiFormatException(status)); goto fail; } if (boothowto & AB_VERBOSE) { aprint_normal("%s: Links after initial probe:\n", sc->pl_name); acpi_pci_link_dump(sc); } /* Verify initial IRQs if we have _PRS. */ if (status != AE_NOT_FOUND) for (i = 0; i < sc->pl_num_links; i++) if (!link_valid_irq(&sc->pl_links[i], sc->pl_links[i].l_irq)) sc->pl_links[i].l_irq = PCI_INVALID_IRQ; if (boothowto & AB_VERBOSE) { printf("%s: Links after initial validation:\n", sc->pl_name); acpi_pci_link_dump(sc); } /* Save initial IRQs. */ for (i = 0; i < sc->pl_num_links; i++) sc->pl_links[i].l_initial_irq = sc->pl_links[i].l_irq; /* * Try to disable this link. If successful, set the current IRQ to * zero and flags to indicate this link is not routed. If we can't * run _DIS (i.e., the method doesn't exist), assume the initial * IRQ was routed by the BIOS. */ #if 0 /* XXX causes spontaneaous resets on some systems. Disabled for now. */ if (ACPI_SUCCESS(AcpiEvaluateObject(sc->pl_handle, "_DIS", NULL, NULL))) for (i = 0; i < sc->pl_num_links; i++) sc->pl_links[i].l_irq = PCI_INVALID_IRQ; else #endif for (i = 0; i < sc->pl_num_links; i++) if (PCI_INTERRUPT_VALID(sc->pl_links[i].l_irq)) sc->pl_links[i].l_routed = TRUE; if (boothowto & AB_VERBOSE) { printf("%s: Links after disable:\n", sc->pl_name); acpi_pci_link_dump(sc); } ACPI_SERIAL_END(pci_link); return (0); fail: ACPI_SERIAL_END(pci_link); for (i = 0; i < sc->pl_num_links; i++) { if (sc->pl_links[i].l_irqs != NULL) free(sc->pl_links[i].l_irqs, M_PCI_LINK); if (sc->pl_links[i].l_devices != NULL) free(sc->pl_links[i].l_devices, M_PCI_LINK); } free(sc->pl_links, M_PCI_LINK); return (ENXIO); } static void acpi_pci_link_add_functions(struct acpi_pci_link_softc *sc, struct link *link, int bus, int device, int pin) { uint32_t value; uint8_t func, maxfunc, ipin; pcitag_t tag; tag = pci_make_tag(acpi_softc->sc_pc, bus, device, 0); /* See if we have a valid device at function 0. */ value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB) return; if (PCI_HDRTYPE_MULTIFN(value)) maxfunc = 7; else maxfunc = 0; /* Scan all possible functions at this device. */ for (func = 0; func <= maxfunc; func++) { tag = pci_make_tag(acpi_softc->sc_pc, bus, device, func); value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_ID_REG); if (PCI_VENDOR(value) == 0xffff) continue; value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_INTERRUPT_REG); ipin = PCI_INTERRUPT_PIN(value); /* * See if it uses the pin in question. Note that the passed * in pin uses 0 for A, .. 3 for D whereas the intpin * register uses 0 for no interrupt, 1 for A, .. 4 for D. */ if (ipin != pin + 1) continue; link->l_devices = realloc(link->l_devices, sizeof(pcitag_t) * (link->l_dev_count + 1), M_PCI_LINK, M_WAITOK); link->l_devices[link->l_dev_count] = tag; ++link->l_dev_count; } } static uint8_t acpi_pci_link_search_irq(struct acpi_pci_link_softc *sc, int bus, int device, int pin) { uint32_t value; uint8_t func, maxfunc, ipin, iline; pcitag_t tag; tag = pci_make_tag(acpi_softc->sc_pc, bus, device, 0); /* See if we have a valid device at function 0. */ value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB) return (PCI_INVALID_IRQ); if (PCI_HDRTYPE_MULTIFN(value)) maxfunc = 7; else maxfunc = 0; /* Scan all possible functions at this device. */ for (func = 0; func <= maxfunc; func++) { tag = pci_make_tag(acpi_softc->sc_pc, bus, device, func); value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_ID_REG); if (PCI_VENDOR(value) == 0xffff) continue; value = pci_conf_read(acpi_softc->sc_pc, tag, PCI_INTERRUPT_REG); ipin = PCI_INTERRUPT_PIN(value); iline = PCI_INTERRUPT_LINE(value); /* * See if it uses the pin in question. Note that the passed * in pin uses 0 for A, .. 3 for D whereas the intpin * register uses 0 for no interrupt, 1 for A, .. 4 for D. */ if (ipin != pin + 1) continue; aprint_verbose( "%s: ACPI: Found matching pin for %d.%d.INT%c" " at func %d: %d\n", sc->pl_name, bus, device, pin + 'A', func, iline); if (PCI_INTERRUPT_VALID(iline)) return (iline); } return (PCI_INVALID_IRQ); } /* * Find the link structure that corresponds to the resource index passed in * via 'source_index'. */ static struct link * acpi_pci_link_lookup(struct acpi_pci_link_softc *sc, int source_index) { int i; for (i = 0; i < sc->pl_num_links; i++) if (sc->pl_links[i].l_res_index == source_index) return (&sc->pl_links[i]); return (NULL); } void acpi_pci_link_add_reference(void *v, int index, int bus, int slot, int pin) { struct acpi_pci_link_softc *sc = v; struct link *link; uint8_t bios_irq; /* Bump the reference count. */ ACPI_SERIAL_BEGIN(pci_link); link = acpi_pci_link_lookup(sc, index); if (link == NULL) { printf("%s: apparently invalid index %d\n", sc->pl_name, index); ACPI_SERIAL_END(pci_link); return; } link->l_references++; acpi_pci_link_add_functions(sc, link, bus, slot, pin); if (link->l_routed) pci_link_interrupt_weights[link->l_irq]++; /* * The BIOS only routes interrupts via ISA IRQs using the ATPICs * (8259As). Thus, if this link is routed via an ISA IRQ, go * look to see if the BIOS routed an IRQ for this link at the * indicated (bus, slot, pin). If so, we prefer that IRQ for * this link and add that IRQ to our list of known-good IRQs. * This provides a good work-around for link devices whose _CRS * method is either broken or bogus. We only use the value * returned by _CRS if we can't find a valid IRQ via this method * in fact. * * If this link is not routed via an ISA IRQ (because we are using * APIC for example), then don't bother looking up the BIOS IRQ * as if we find one it won't be valid anyway. */ if (!link->l_isa_irq) { ACPI_SERIAL_END(pci_link); return; } /* Try to find a BIOS IRQ setting from any matching devices. */ bios_irq = acpi_pci_link_search_irq(sc, bus, slot, pin); if (!PCI_INTERRUPT_VALID(bios_irq)) { ACPI_SERIAL_END(pci_link); return; } /* Validate the BIOS IRQ. */ if (!link_valid_irq(link, bios_irq)) { printf("%s: BIOS IRQ %u for %d.%d.INT%c is invalid\n", sc->pl_name, bios_irq, (int)bus, slot, pin + 'A'); } else if (!PCI_INTERRUPT_VALID(link->l_bios_irq)) { link->l_bios_irq = bios_irq; if (bios_irq < NUM_ISA_INTERRUPTS) pci_link_bios_isa_irqs |= (1 << bios_irq); if (bios_irq != link->l_initial_irq && PCI_INTERRUPT_VALID(link->l_initial_irq)) printf( "%s: BIOS IRQ %u does not match initial IRQ %u\n", sc->pl_name, bios_irq, link->l_initial_irq); } else if (bios_irq != link->l_bios_irq) printf( "%s: BIOS IRQ %u for %d.%d.INT%c does not match " "previous BIOS IRQ %u\n", sc->pl_name, bios_irq, (int)bus, slot, pin + 'A', link->l_bios_irq); ACPI_SERIAL_END(pci_link); } static ACPI_STATUS acpi_pci_link_srs_from_crs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf) { ACPI_RESOURCE *resource, *end, newres, *resptr; ACPI_BUFFER crsbuf; ACPI_STATUS status; struct link *link; int i, in_dpf; /* Fetch the _CRS. */ crsbuf.Pointer = NULL; crsbuf.Length = ACPI_ALLOCATE_LOCAL_BUFFER; status = AcpiGetCurrentResources(sc->pl_handle, &crsbuf); if (ACPI_SUCCESS(status) && crsbuf.Pointer == NULL) status = AE_NO_MEMORY; if (ACPI_FAILURE(status)) { aprint_verbose("%s: Unable to fetch current resources: %s\n", sc->pl_name, AcpiFormatException(status)); return (status); } /* Fill in IRQ resources via link structures. */ srsbuf->Pointer = NULL; link = sc->pl_links; i = 0; in_dpf = DPF_OUTSIDE; resource = (ACPI_RESOURCE *)crsbuf.Pointer; end = (ACPI_RESOURCE *)((char *)crsbuf.Pointer + crsbuf.Length); for (;;) { switch (resource->Type) { case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ panic( "%s: Multiple dependent functions within a current resource", __func__); break; } resptr = NULL; break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: /* We are finished with DPF parsing. */ KASSERT(in_dpf != DPF_OUTSIDE); in_dpf = DPF_OUTSIDE; resptr = NULL; break; case ACPI_RESOURCE_TYPE_IRQ: newres = link->l_prs_template; resptr = &newres; resptr->Data.Irq.InterruptCount = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) { KASSERT(link->l_irq < NUM_ISA_INTERRUPTS); resptr->Data.Irq.Interrupts[0] = link->l_irq; resptr->Data.Irq.Triggering = link->l_trig; resptr->Data.Irq.Polarity = link->l_pol; } else resptr->Data.Irq.Interrupts[0] = 0; link++; i++; break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: newres = link->l_prs_template; resptr = &newres; resptr->Data.ExtendedIrq.InterruptCount = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) { resptr->Data.ExtendedIrq.Interrupts[0] = link->l_irq; resptr->Data.ExtendedIrq.Triggering = link->l_trig; resptr->Data.ExtendedIrq.Polarity = link->l_pol; } else resptr->Data.ExtendedIrq.Interrupts[0] = 0; link++; i++; break; default: resptr = resource; } if (resptr != NULL) { status = acpi_AppendBufferResource(srsbuf, resptr); if (ACPI_FAILURE(status)) { printf("%s: Unable to build resources: %s\n", sc->pl_name, AcpiFormatException(status)); if (srsbuf->Pointer != NULL) ACPI_FREE(srsbuf->Pointer); ACPI_FREE(crsbuf.Pointer); return (status); } } if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG) break; resource = ACPI_NEXT_RESOURCE(resource); if (resource >= end) break; } ACPI_FREE(crsbuf.Pointer); return (AE_OK); } static ACPI_STATUS acpi_pci_link_srs_from_links(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf) { ACPI_RESOURCE newres; ACPI_STATUS status; struct link *link; int i; /* Start off with an empty buffer. */ srsbuf->Pointer = NULL; link = sc->pl_links; for (i = 0; i < sc->pl_num_links; i++) { /* Add a new IRQ resource from each link. */ link = &sc->pl_links[i]; newres = link->l_prs_template; if (newres.Type == ACPI_RESOURCE_TYPE_IRQ) { /* Build an IRQ resource. */ newres.Data.Irq.InterruptCount = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) { KASSERT(link->l_irq < NUM_ISA_INTERRUPTS); newres.Data.Irq.Interrupts[0] = link->l_irq; newres.Data.Irq.Triggering = link->l_trig; newres.Data.Irq.Polarity = link->l_pol; } else newres.Data.Irq.Interrupts[0] = 0; } else { /* Build an ExtIRQ resuorce. */ newres.Data.ExtendedIrq.InterruptCount = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) { newres.Data.ExtendedIrq.Interrupts[0] = link->l_irq; newres.Data.ExtendedIrq.Triggering = link->l_trig; newres.Data.ExtendedIrq.Polarity = link->l_pol; } else { newres.Data.ExtendedIrq.Interrupts[0] = 0; } } /* Add the new resource to the end of the _SRS buffer. */ status = acpi_AppendBufferResource(srsbuf, &newres); if (ACPI_FAILURE(status)) { printf("%s: Unable to build resources: %s\n", sc->pl_name, AcpiFormatException(status)); if (srsbuf->Pointer != NULL) ACPI_FREE(srsbuf->Pointer); return (status); } } return (AE_OK); } static ACPI_STATUS acpi_pci_link_srs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf) { ACPI_STATUS status; if (sc->pl_crs_bad) status = acpi_pci_link_srs_from_links(sc, srsbuf); else status = acpi_pci_link_srs_from_crs(sc, srsbuf); /* Write out new resources via _SRS. */ return AcpiSetCurrentResources(sc->pl_handle, srsbuf); } static ACPI_STATUS acpi_pci_link_route_irqs(struct acpi_pci_link_softc *sc, int *irq, int *pol, int *trig) { ACPI_RESOURCE *resource, *end; ACPI_BUFFER srsbuf; ACPI_STATUS status; struct link *link; int i, is_ext = 0; status = acpi_pci_link_srs(sc, &srsbuf); if (ACPI_FAILURE(status)) { printf("%s: _SRS failed: %s\n", sc->pl_name, AcpiFormatException(status)); return (status); } /* * Perform acpi_config_intr() on each IRQ resource if it was just * routed for the first time. */ link = sc->pl_links; i = 0; resource = (ACPI_RESOURCE *)srsbuf.Pointer; end = (ACPI_RESOURCE *)((char *)srsbuf.Pointer + srsbuf.Length); for (;;) { if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG) break; switch (resource->Type) { case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: is_ext = 1; /* FALLTHROUGH */ case ACPI_RESOURCE_TYPE_IRQ: /* * Only configure the interrupt and update the * weights if this link has a valid IRQ and was * previously unrouted. */ if (!link->l_routed && PCI_INTERRUPT_VALID(link->l_irq)) { *trig = is_ext ? resource->Data.ExtendedIrq.Triggering : resource->Data.Irq.Triggering; *pol = is_ext ? resource->Data.ExtendedIrq.Polarity : resource->Data.Irq.Polarity; *irq = is_ext ? resource->Data.ExtendedIrq.Interrupts[0] : resource->Data.Irq.Interrupts[0]; link->l_routed = TRUE; pci_link_interrupt_weights[link->l_irq] += link->l_references; } link++; i++; break; } resource = ACPI_NEXT_RESOURCE(resource); if (resource >= end) break; } ACPI_FREE(srsbuf.Pointer); return (AE_OK); } /* * Pick an IRQ to use for this unrouted link. */ static uint8_t acpi_pci_link_choose_irq(struct acpi_pci_link_softc *sc, struct link *link) { u_int8_t best_irq, pos_irq; int best_weight, pos_weight, i; KASSERT(!link->l_routed); KASSERT(!PCI_INTERRUPT_VALID(link->l_irq)); /* * If we have a valid BIOS IRQ, use that. We trust what the BIOS * says it routed over what _CRS says the link thinks is routed. */ if (PCI_INTERRUPT_VALID(link->l_bios_irq)) return (link->l_bios_irq); /* * If we don't have a BIOS IRQ but do have a valid IRQ from _CRS, * then use that. */ if (PCI_INTERRUPT_VALID(link->l_initial_irq)) return (link->l_initial_irq); /* * Ok, we have no useful hints, so we have to pick from the * possible IRQs. For ISA IRQs we only use interrupts that * have already been used by the BIOS. */ best_irq = PCI_INVALID_IRQ; best_weight = INT_MAX; for (i = 0; i < link->l_num_irqs; i++) { pos_irq = link->l_irqs[i]; if (pos_irq < NUM_ISA_INTERRUPTS && (pci_link_bios_isa_irqs & 1 << pos_irq) == 0) continue; pos_weight = pci_link_interrupt_weights[pos_irq]; if (pos_weight < best_weight) { best_weight = pos_weight; best_irq = pos_irq; } } /* * If this is an ISA IRQ, try using the SCI if it is also an ISA * interrupt as a fallback. */ if (link->l_isa_irq && !PCI_INTERRUPT_VALID(best_irq)) { pos_irq = AcpiGbl_FADT.SciInterrupt; pos_weight = pci_link_interrupt_weights[pos_irq]; if (pos_weight < best_weight) { best_weight = pos_weight; best_irq = pos_irq; } } if (PCI_INTERRUPT_VALID(best_irq)) { aprint_verbose("%s: Picked IRQ %u with weight %d\n", sc->pl_name, best_irq, best_weight); } else printf("%s: Unable to choose an IRQ\n", sc->pl_name); return (best_irq); } int acpi_pci_link_route_interrupt(void *v, int index, int *irq, int *pol, int *trig) { struct acpi_pci_link_softc *sc = v; struct link *link; int i; pcireg_t reg; ACPI_SERIAL_BEGIN(pci_link); link = acpi_pci_link_lookup(sc, index); if (link == NULL) panic("%s: apparently invalid index %d", __func__, index); /* * If this link device is already routed to an interrupt, just return * the interrupt it is routed to. */ if (link->l_routed) { KASSERT(PCI_INTERRUPT_VALID(link->l_irq)); ACPI_SERIAL_END(pci_link); *irq = link->l_irq; *pol = link->l_pol; *trig = link->l_trig; return (link->l_irq); } /* Choose an IRQ if we need one. */ if (PCI_INTERRUPT_VALID(link->l_irq)) { *irq = link->l_irq; *pol = link->l_pol; *trig = link->l_trig; goto done; } link->l_irq = acpi_pci_link_choose_irq(sc, link); /* * Try to route the interrupt we picked. If it fails, then * assume the interrupt is not routed. */ if (!PCI_INTERRUPT_VALID(link->l_irq)) goto done; acpi_pci_link_route_irqs(sc, irq, pol, trig); if (!link->l_routed) { link->l_irq = PCI_INVALID_IRQ; goto done; } link->l_pol = *pol; link->l_trig = *trig; for (i = 0; i < link->l_dev_count; ++i) { reg = pci_conf_read(acpi_softc->sc_pc, link->l_devices[i], PCI_INTERRUPT_REG); reg &= ~(PCI_INTERRUPT_LINE_MASK << PCI_INTERRUPT_LINE_SHIFT); reg |= link->l_irq << PCI_INTERRUPT_LINE_SHIFT; pci_conf_write(acpi_softc->sc_pc, link->l_devices[i], PCI_INTERRUPT_REG, reg); } done: ACPI_SERIAL_END(pci_link); return (link->l_irq); } /* * This is gross, but we abuse the identify routine to perform one-time * SYSINIT() style initialization for the driver. */ static void acpi_pci_link_init(struct acpi_pci_link_softc *sc) { ACPI_BUFFER buf; /* * If the SCI is an ISA IRQ, add it to the bitmask of known good * ISA IRQs. * * XXX: If we are using the APIC, the SCI might have been * rerouted to an APIC pin in which case this is invalid. However, * if we are using the APIC, we also shouldn't be having any PCI * interrupts routed via ISA IRQs, so this is probably ok. */ if (AcpiGbl_FADT.SciInterrupt < NUM_ISA_INTERRUPTS) pci_link_bios_isa_irqs |= (1 << AcpiGbl_FADT.SciInterrupt); buf.Length = sizeof (sc->pl_name); buf.Pointer = sc->pl_name; if (ACPI_FAILURE(AcpiGetName(sc->pl_handle, ACPI_SINGLE_NAME, &buf))) snprintf(sc->pl_name, sizeof (sc->pl_name), "%s", "ACPI link device"); acpi_pci_link_attach(sc); } void * acpi_pci_link_devbyhandle(ACPI_HANDLE handle) { struct acpi_pci_link_softc *sc; TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) { if (sc->pl_handle == handle) return sc; } sc = malloc(sizeof (*sc), M_PCI_LINK, M_NOWAIT|M_ZERO); if (sc == NULL) return NULL; sc->pl_handle = handle; acpi_pci_link_init(sc); TAILQ_INSERT_TAIL(&acpi_pci_linkdevs, sc, pl_list); return (void *)sc; } void acpi_pci_link_resume(void) { struct acpi_pci_link_softc *sc; ACPI_BUFFER srsbuf; TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) { ACPI_SERIAL_BEGIN(pci_link); if (ACPI_SUCCESS(acpi_pci_link_srs(sc, &srsbuf))) ACPI_FREE(srsbuf.Pointer); ACPI_SERIAL_END(pci_link); } } ACPI_HANDLE acpi_pci_link_handle(void *v) { struct acpi_pci_link_softc *sc = v; return sc->pl_handle; } char * acpi_pci_link_name(void *v) { struct acpi_pci_link_softc *sc = v; return sc->pl_name; } /* * Append an ACPI_RESOURCE to an ACPI_BUFFER. * * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible * backing block. If the ACPI_RESOURCE is NULL, return an empty set of * resources. */ #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 static ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) { ACPI_RESOURCE *rp; void *newp; /* Initialise the buffer if necessary. */ if (buf->Pointer == NULL) { buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; if ((buf->Pointer = ACPI_ALLOCATE(buf->Length)) == NULL) return (AE_NO_MEMORY); rp = (ACPI_RESOURCE *)buf->Pointer; rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = 0; } if (res == NULL) return (AE_OK); /* * Scan the current buffer looking for the terminator. * This will either find the terminator or hit the end * of the buffer and return an error. */ rp = (ACPI_RESOURCE *)buf->Pointer; for (;;) { /* Range check, don't go outside the buffer */ if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) break; rp = ACPI_NEXT_RESOURCE(rp); } /* * Check the size of the buffer and expand if required. * * Required size is: * size of existing resources before terminator + * size of new resource and header + * size of terminator. * * Note that this loop should really only run once, unless * for some reason we are stuffing a *really* huge resource. */ while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + res->Length + ACPI_RS_SIZE_NO_DATA + ACPI_RS_SIZE_MIN) >= buf->Length) { if ((newp = ACPI_ALLOCATE(buf->Length * 2)) == NULL) return (AE_NO_MEMORY); memcpy(newp, buf->Pointer, buf->Length); rp = (ACPI_RESOURCE *)((u_int8_t *)newp + ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); ACPI_FREE(buf->Pointer); buf->Pointer = newp; buf->Length += buf->Length; } /* Insert the new resource. */ memcpy(rp, res, res->Length + ACPI_RS_SIZE_NO_DATA); /* And add the terminator. */ rp = ACPI_NEXT_RESOURCE(rp); rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = 0; return (AE_OK); }