/* $NetBSD: nfs_socket.c,v 1.167 2008/01/02 19:26:46 yamt Exp $ */ /* * Copyright (c) 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 */ /* * Socket operations for use by nfs */ #include __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.167 2008/01/02 19:26:46 yamt Exp $"); #include "fs_nfs.h" #include "opt_nfs.h" #include "opt_nfsserver.h" #include "opt_mbuftrace.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MBUFTRACE struct mowner nfs_mowner = MOWNER_INIT("nfs",""); #endif /* * Estimate rto for an nfs rpc sent via. an unreliable datagram. * Use the mean and mean deviation of rtt for the appropriate type of rpc * for the frequent rpcs and a default for the others. * The justification for doing "other" this way is that these rpcs * happen so infrequently that timer est. would probably be stale. * Also, since many of these rpcs are * non-idempotent, a conservative timeout is desired. * getattr, lookup - A+2D * read, write - A+4D * other - nm_timeo */ #define NFS_RTO(n, t) \ ((t) == 0 ? (n)->nm_timeo : \ ((t) < 3 ? \ (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] /* * External data, mostly RPC constants in XDR form */ extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, rpc_auth_kerb; extern u_int32_t nfs_prog; extern const int nfsv3_procid[NFS_NPROCS]; extern int nfs_ticks; /* * Defines which timer to use for the procnum. * 0 - default * 1 - getattr * 2 - lookup * 3 - read * 4 - write */ static const int proct[NFS_NPROCS] = { [NFSPROC_NULL] = 0, [NFSPROC_GETATTR] = 1, [NFSPROC_SETATTR] = 0, [NFSPROC_LOOKUP] = 2, [NFSPROC_ACCESS] = 1, [NFSPROC_READLINK] = 3, [NFSPROC_READ] = 3, [NFSPROC_WRITE] = 4, [NFSPROC_CREATE] = 0, [NFSPROC_MKDIR] = 0, [NFSPROC_SYMLINK] = 0, [NFSPROC_MKNOD] = 0, [NFSPROC_REMOVE] = 0, [NFSPROC_RMDIR] = 0, [NFSPROC_RENAME] = 0, [NFSPROC_LINK] = 0, [NFSPROC_READDIR] = 3, [NFSPROC_READDIRPLUS] = 3, [NFSPROC_FSSTAT] = 0, [NFSPROC_FSINFO] = 0, [NFSPROC_PATHCONF] = 0, [NFSPROC_COMMIT] = 0, [NFSPROC_NOOP] = 0, }; /* * There is a congestion window for outstanding rpcs maintained per mount * point. The cwnd size is adjusted in roughly the way that: * Van Jacobson, Congestion avoidance and Control, In "Proceedings of * SIGCOMM '88". ACM, August 1988. * describes for TCP. The cwnd size is chopped in half on a retransmit timeout * and incremented by 1/cwnd when each rpc reply is received and a full cwnd * of rpcs is in progress. * (The sent count and cwnd are scaled for integer arith.) * Variants of "slow start" were tried and were found to be too much of a * performance hit (ave. rtt 3 times larger), * I suspect due to the large rtt that nfs rpcs have. */ #define NFS_CWNDSCALE 256 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; int nfsrtton = 0; struct nfsrtt nfsrtt; struct nfsreqhead nfs_reqq; static callout_t nfs_timer_ch; static struct evcnt nfs_timer_ev; static struct evcnt nfs_timer_start_ev; static struct evcnt nfs_timer_stop_ev; static int nfs_sndlock(struct nfsmount *, struct nfsreq *); static void nfs_sndunlock(struct nfsmount *); static int nfs_rcvlock(struct nfsmount *, struct nfsreq *); static void nfs_rcvunlock(struct nfsmount *); #if defined(NFSSERVER) static void nfsrv_wakenfsd_locked(struct nfssvc_sock *); #endif /* defined(NFSSERVER) */ /* * Initialize sockets and congestion for a new NFS connection. * We do not free the sockaddr if error. */ int nfs_connect(nmp, rep, l) struct nfsmount *nmp; struct nfsreq *rep; struct lwp *l; { struct socket *so; int s, error, rcvreserve, sndreserve; struct sockaddr *saddr; struct sockaddr_in *sin; #ifdef INET6 struct sockaddr_in6 *sin6; #endif struct mbuf *m; nmp->nm_so = (struct socket *)0; saddr = mtod(nmp->nm_nam, struct sockaddr *); error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto, l); if (error) goto bad; so = nmp->nm_so; #ifdef MBUFTRACE so->so_mowner = &nfs_mowner; so->so_rcv.sb_mowner = &nfs_mowner; so->so_snd.sb_mowner = &nfs_mowner; #endif nmp->nm_soflags = so->so_proto->pr_flags; /* * Some servers require that the client port be a reserved port number. */ if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { m = m_get(M_WAIT, MT_SOOPTS); MCLAIM(m, so->so_mowner); *mtod(m, int32_t *) = IP_PORTRANGE_LOW; m->m_len = sizeof(int32_t); if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m))) goto bad; m = m_get(M_WAIT, MT_SONAME); MCLAIM(m, so->so_mowner); sin = mtod(m, struct sockaddr_in *); sin->sin_len = m->m_len = sizeof (struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_addr.s_addr = INADDR_ANY; sin->sin_port = 0; error = sobind(so, m, &lwp0); m_freem(m); if (error) goto bad; } #ifdef INET6 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { m = m_get(M_WAIT, MT_SOOPTS); MCLAIM(m, so->so_mowner); *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW; m->m_len = sizeof(int32_t); if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m))) goto bad; m = m_get(M_WAIT, MT_SONAME); MCLAIM(m, so->so_mowner); sin6 = mtod(m, struct sockaddr_in6 *); sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); sin6->sin6_family = AF_INET6; sin6->sin6_addr = in6addr_any; sin6->sin6_port = 0; error = sobind(so, m, &lwp0); m_freem(m); if (error) goto bad; } #endif /* * Protocols that do not require connections may be optionally left * unconnected for servers that reply from a port other than NFS_PORT. */ if (nmp->nm_flag & NFSMNT_NOCONN) { if (nmp->nm_soflags & PR_CONNREQUIRED) { error = ENOTCONN; goto bad; } } else { error = soconnect(so, nmp->nm_nam, l); if (error) goto bad; /* * Wait for the connection to complete. Cribbed from the * connect system call but with the wait timing out so * that interruptible mounts don't hang here for a long time. */ s = splsoftnet(); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { (void) tsleep((void *)&so->so_timeo, PSOCK, "nfscn1", 2 * hz); if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0 && rep && (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){ so->so_state &= ~SS_ISCONNECTING; splx(s); goto bad; } } if (so->so_error) { error = so->so_error; so->so_error = 0; splx(s); goto bad; } splx(s); } if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { so->so_rcv.sb_timeo = (5 * hz); so->so_snd.sb_timeo = (5 * hz); } else { /* * enable receive timeout to detect server crash and reconnect. * otherwise, we can be stuck in soreceive forever. */ so->so_rcv.sb_timeo = (5 * hz); so->so_snd.sb_timeo = 0; } if (nmp->nm_sotype == SOCK_DGRAM) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * 2; } else if (nmp->nm_sotype == SOCK_SEQPACKET) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * 2; } else { if (nmp->nm_sotype != SOCK_STREAM) panic("nfscon sotype"); if (so->so_proto->pr_flags & PR_CONNREQUIRED) { m = m_get(M_WAIT, MT_SOOPTS); MCLAIM(m, so->so_mowner); *mtod(m, int32_t *) = 1; m->m_len = sizeof(int32_t); sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); } if (so->so_proto->pr_protocol == IPPROTO_TCP) { m = m_get(M_WAIT, MT_SOOPTS); MCLAIM(m, so->so_mowner); *mtod(m, int32_t *) = 1; m->m_len = sizeof(int32_t); sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); } sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * 2; rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * 2; } error = soreserve(so, sndreserve, rcvreserve); if (error) goto bad; so->so_rcv.sb_flags |= SB_NOINTR; so->so_snd.sb_flags |= SB_NOINTR; /* Initialize other non-zero congestion variables */ nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = NFS_TIMEO << 3; nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = nmp->nm_sdrtt[3] = 0; nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ nmp->nm_sent = 0; nmp->nm_timeouts = 0; return (0); bad: nfs_disconnect(nmp); return (error); } /* * Reconnect routine: * Called when a connection is broken on a reliable protocol. * - clean up the old socket * - nfs_connect() again * - set R_MUSTRESEND for all outstanding requests on mount point * If this fails the mount point is DEAD! * nb: Must be called with the nfs_sndlock() set on the mount point. */ int nfs_reconnect(struct nfsreq *rep) { struct nfsreq *rp; struct nfsmount *nmp = rep->r_nmp; int error; nfs_disconnect(nmp); while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) { if (error == EINTR || error == ERESTART) return (EINTR); kpause("nfscn2", false, hz, NULL); } /* * Loop through outstanding request list and fix up all requests * on old socket. */ TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { if (rp->r_nmp == nmp) { if ((rp->r_flags & R_MUSTRESEND) == 0) rp->r_flags |= R_MUSTRESEND | R_REXMITTED; rp->r_rexmit = 0; } } return (0); } /* * NFS disconnect. Clean up and unlink. */ void nfs_disconnect(nmp) struct nfsmount *nmp; { struct socket *so; int drain = 0; if (nmp->nm_so) { so = nmp->nm_so; nmp->nm_so = (struct socket *)0; soshutdown(so, SHUT_RDWR); drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; if (drain) { /* * soshutdown() above should wake up the current * listener. * Now wake up those waiting for the receive lock, and * wait for them to go away unhappy, to prevent *nmp * from evaporating while they're sleeping. */ mutex_enter(&nmp->nm_lock); while (nmp->nm_waiters > 0) { cv_broadcast(&nmp->nm_rcvcv); cv_broadcast(&nmp->nm_sndcv); cv_wait(&nmp->nm_disconcv, &nmp->nm_lock); } mutex_exit(&nmp->nm_lock); } soclose(so); } #ifdef DIAGNOSTIC if (drain && (nmp->nm_waiters > 0)) panic("nfs_disconnect: waiters left after drain?"); #endif } void nfs_safedisconnect(nmp) struct nfsmount *nmp; { struct nfsreq dummyreq; memset(&dummyreq, 0, sizeof(dummyreq)); dummyreq.r_nmp = nmp; nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */ nfs_disconnect(nmp); nfs_rcvunlock(nmp); } /* * This is the nfs send routine. For connection based socket types, it * must be called with an nfs_sndlock() on the socket. * "rep == NULL" indicates that it has been called from a server. * For the client side: * - return EINTR if the RPC is terminated, 0 otherwise * - set R_MUSTRESEND if the send fails for any reason * - do any cleanup required by recoverable socket errors (? ? ?) * For the server side: * - return EINTR or ERESTART if interrupted by a signal * - return EPIPE if a connection is lost for connection based sockets (TCP...) * - do any cleanup required by recoverable socket errors (? ? ?) */ int nfs_send(so, nam, top, rep, l) struct socket *so; struct mbuf *nam; struct mbuf *top; struct nfsreq *rep; struct lwp *l; { struct mbuf *sendnam; int error, soflags, flags; /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */ if (l == NULL && rep->r_lwp == NULL) l = curlwp; if (rep) { if (rep->r_flags & R_SOFTTERM) { m_freem(top); return (EINTR); } if ((so = rep->r_nmp->nm_so) == NULL) { rep->r_flags |= R_MUSTRESEND; m_freem(top); return (0); } rep->r_flags &= ~R_MUSTRESEND; soflags = rep->r_nmp->nm_soflags; } else soflags = so->so_proto->pr_flags; if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) sendnam = (struct mbuf *)0; else sendnam = nam; if (so->so_type == SOCK_SEQPACKET) flags = MSG_EOR; else flags = 0; KERNEL_LOCK(1, curlwp); error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l); KERNEL_UNLOCK_ONE(curlwp); if (error) { if (rep) { if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { /* * We're too fast for the network/driver, * and UDP isn't flowcontrolled. * We need to resend. This is not fatal, * just try again. * * Could be smarter here by doing some sort * of a backoff, but this is rare. */ rep->r_flags |= R_MUSTRESEND; } else { if (error != EPIPE) log(LOG_INFO, "nfs send error %d for %s\n", error, rep->r_nmp->nm_mountp-> mnt_stat.f_mntfromname); /* * Deal with errors for the client side. */ if (rep->r_flags & R_SOFTTERM) error = EINTR; else rep->r_flags |= R_MUSTRESEND; } } else { /* * See above. This error can happen under normal * circumstances and the log is too noisy. * The error will still show up in nfsstat. */ if (error != ENOBUFS || so->so_type != SOCK_DGRAM) log(LOG_INFO, "nfsd send error %d\n", error); } /* * Handle any recoverable (soft) socket errors here. (? ? ?) */ if (error != EINTR && error != ERESTART && error != EWOULDBLOCK && error != EPIPE) error = 0; } return (error); } #ifdef NFS /* * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all * done by soreceive(), but for SOCK_STREAM we must deal with the Record * Mark and consolidate the data into a new mbuf list. * nb: Sometimes TCP passes the data up to soreceive() in long lists of * small mbufs. * For SOCK_STREAM we must be very careful to read an entire record once * we have read any of it, even if the system call has been interrupted. */ int nfs_receive(rep, aname, mp, l) struct nfsreq *rep; struct mbuf **aname; struct mbuf **mp; struct lwp *l; { struct socket *so; struct uio auio; struct iovec aio; struct mbuf *m; struct mbuf *control; u_int32_t len; struct mbuf **getnam; int error, sotype, rcvflg; /* * Set up arguments for soreceive() */ *mp = (struct mbuf *)0; *aname = (struct mbuf *)0; sotype = rep->r_nmp->nm_sotype; /* * For reliable protocols, lock against other senders/receivers * in case a reconnect is necessary. * For SOCK_STREAM, first get the Record Mark to find out how much * more there is to get. * We must lock the socket against other receivers * until we have an entire rpc request/reply. */ if (sotype != SOCK_DGRAM) { error = nfs_sndlock(rep->r_nmp, rep); if (error) return (error); tryagain: /* * Check for fatal errors and resending request. */ /* * Ugh: If a reconnect attempt just happened, nm_so * would have changed. NULL indicates a failed * attempt that has essentially shut down this * mount point. */ if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { nfs_sndunlock(rep->r_nmp); return (EINTR); } so = rep->r_nmp->nm_so; if (!so) { error = nfs_reconnect(rep); if (error) { nfs_sndunlock(rep->r_nmp); return (error); } goto tryagain; } while (rep->r_flags & R_MUSTRESEND) { m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); nfsstats.rpcretries++; rep->r_rtt = 0; rep->r_flags &= ~R_TIMING; error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l); if (error) { if (error == EINTR || error == ERESTART || (error = nfs_reconnect(rep)) != 0) { nfs_sndunlock(rep->r_nmp); return (error); } goto tryagain; } } nfs_sndunlock(rep->r_nmp); if (sotype == SOCK_STREAM) { aio.iov_base = (void *) &len; aio.iov_len = sizeof(u_int32_t); auio.uio_iov = &aio; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_offset = 0; auio.uio_resid = sizeof(u_int32_t); UIO_SETUP_SYSSPACE(&auio); do { rcvflg = MSG_WAITALL; error = (*so->so_receive)(so, (struct mbuf **)0, &auio, (struct mbuf **)0, (struct mbuf **)0, &rcvflg); if (error == EWOULDBLOCK && rep) { if (rep->r_flags & R_SOFTTERM) return (EINTR); /* * if it seems that the server died after it * received our request, set EPIPE so that * we'll reconnect and retransmit requests. */ if (rep->r_rexmit >= rep->r_nmp->nm_retry) { nfsstats.rpctimeouts++; error = EPIPE; } } } while (error == EWOULDBLOCK); if (!error && auio.uio_resid > 0) { /* * Don't log a 0 byte receive; it means * that the socket has been closed, and * can happen during normal operation * (forcible unmount or Solaris server). */ if (auio.uio_resid != sizeof (u_int32_t)) log(LOG_INFO, "short receive (%lu/%lu) from nfs server %s\n", (u_long)sizeof(u_int32_t) - auio.uio_resid, (u_long)sizeof(u_int32_t), rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = EPIPE; } if (error) goto errout; len = ntohl(len) & ~0x80000000; /* * This is SERIOUS! We are out of sync with the sender * and forcing a disconnect/reconnect is all I can do. */ if (len > NFS_MAXPACKET) { log(LOG_ERR, "%s (%d) from nfs server %s\n", "impossible packet length", len, rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = EFBIG; goto errout; } auio.uio_resid = len; do { rcvflg = MSG_WAITALL; error = (*so->so_receive)(so, (struct mbuf **)0, &auio, mp, (struct mbuf **)0, &rcvflg); } while (error == EWOULDBLOCK || error == EINTR || error == ERESTART); if (!error && auio.uio_resid > 0) { if (len != auio.uio_resid) log(LOG_INFO, "short receive (%lu/%d) from nfs server %s\n", (u_long)len - auio.uio_resid, len, rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = EPIPE; } } else { /* * NB: Since uio_resid is big, MSG_WAITALL is ignored * and soreceive() will return when it has either a * control msg or a data msg. * We have no use for control msg., but must grab them * and then throw them away so we know what is going * on. */ auio.uio_resid = len = 100000000; /* Anything Big */ /* not need to setup uio_vmspace */ do { rcvflg = 0; error = (*so->so_receive)(so, (struct mbuf **)0, &auio, mp, &control, &rcvflg); if (control) m_freem(control); if (error == EWOULDBLOCK && rep) { if (rep->r_flags & R_SOFTTERM) return (EINTR); } } while (error == EWOULDBLOCK || (!error && *mp == NULL && control)); if ((rcvflg & MSG_EOR) == 0) printf("Egad!!\n"); if (!error && *mp == NULL) error = EPIPE; len -= auio.uio_resid; } errout: if (error && error != EINTR && error != ERESTART) { m_freem(*mp); *mp = (struct mbuf *)0; if (error != EPIPE) log(LOG_INFO, "receive error %d from nfs server %s\n", error, rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = nfs_sndlock(rep->r_nmp, rep); if (!error) error = nfs_reconnect(rep); if (!error) goto tryagain; else nfs_sndunlock(rep->r_nmp); } } else { if ((so = rep->r_nmp->nm_so) == NULL) return (EACCES); if (so->so_state & SS_ISCONNECTED) getnam = (struct mbuf **)0; else getnam = aname; auio.uio_resid = len = 1000000; /* not need to setup uio_vmspace */ do { rcvflg = 0; error = (*so->so_receive)(so, getnam, &auio, mp, (struct mbuf **)0, &rcvflg); if (error == EWOULDBLOCK && (rep->r_flags & R_SOFTTERM)) return (EINTR); } while (error == EWOULDBLOCK); len -= auio.uio_resid; if (!error && *mp == NULL) error = EPIPE; } if (error) { m_freem(*mp); *mp = (struct mbuf *)0; } return (error); } /* * Implement receipt of reply on a socket. * We must search through the list of received datagrams matching them * with outstanding requests using the xid, until ours is found. */ /* ARGSUSED */ int nfs_reply(myrep, lwp) struct nfsreq *myrep; struct lwp *lwp; { struct nfsreq *rep; struct nfsmount *nmp = myrep->r_nmp; int32_t t1; struct mbuf *mrep, *nam, *md; u_int32_t rxid, *tl; char *dpos, *cp2; int error; /* * Loop around until we get our own reply */ for (;;) { /* * Lock against other receivers so that I don't get stuck in * sbwait() after someone else has received my reply for me. * Also necessary for connection based protocols to avoid * race conditions during a reconnect. */ error = nfs_rcvlock(nmp, myrep); if (error == EALREADY) return (0); if (error) return (error); /* * Get the next Rpc reply off the socket */ mutex_enter(&nmp->nm_lock); nmp->nm_waiters++; mutex_exit(&nmp->nm_lock); error = nfs_receive(myrep, &nam, &mrep, lwp); mutex_enter(&nmp->nm_lock); nmp->nm_waiters--; cv_signal(&nmp->nm_disconcv); mutex_exit(&nmp->nm_lock); if (error) { nfs_rcvunlock(nmp); if (nmp->nm_iflag & NFSMNT_DISMNT) { /* * Oops, we're going away now.. */ return error; } /* * Ignore routing errors on connectionless protocols? ? */ if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { nmp->nm_so->so_error = 0; #ifdef DEBUG printf("nfs_reply: ignoring error %d\n", error); #endif continue; } return (error); } if (nam) m_freem(nam); /* * Get the xid and check that it is an rpc reply */ md = mrep; dpos = mtod(md, void *); nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); rxid = *tl++; if (*tl != rpc_reply) { nfsstats.rpcinvalid++; m_freem(mrep); nfsmout: nfs_rcvunlock(nmp); continue; } /* * Loop through the request list to match up the reply * Iff no match, just drop the datagram */ TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { if (rep->r_mrep == NULL && rxid == rep->r_xid) { /* Found it.. */ rep->r_mrep = mrep; rep->r_md = md; rep->r_dpos = dpos; if (nfsrtton) { struct rttl *rt; rt = &nfsrtt.rttl[nfsrtt.pos]; rt->proc = rep->r_procnum; rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); rt->sent = nmp->nm_sent; rt->cwnd = nmp->nm_cwnd; rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx; getmicrotime(&rt->tstamp); if (rep->r_flags & R_TIMING) rt->rtt = rep->r_rtt; else rt->rtt = 1000000; nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; } /* * Update congestion window. * Do the additive increase of * one rpc/rtt. */ if (nmp->nm_cwnd <= nmp->nm_sent) { nmp->nm_cwnd += (NFS_CWNDSCALE * NFS_CWNDSCALE + (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; if (nmp->nm_cwnd > NFS_MAXCWND) nmp->nm_cwnd = NFS_MAXCWND; } rep->r_flags &= ~R_SENT; nmp->nm_sent -= NFS_CWNDSCALE; /* * Update rtt using a gain of 0.125 on the mean * and a gain of 0.25 on the deviation. */ if (rep->r_flags & R_TIMING) { /* * Since the timer resolution of * NFS_HZ is so course, it can often * result in r_rtt == 0. Since * r_rtt == N means that the actual * rtt is between N+dt and N+2-dt ticks, * add 1. */ t1 = rep->r_rtt + 1; t1 -= (NFS_SRTT(rep) >> 3); NFS_SRTT(rep) += t1; if (t1 < 0) t1 = -t1; t1 -= (NFS_SDRTT(rep) >> 2); NFS_SDRTT(rep) += t1; } nmp->nm_timeouts = 0; break; } } nfs_rcvunlock(nmp); /* * If not matched to a request, drop it. * If it's mine, get out. */ if (rep == 0) { nfsstats.rpcunexpected++; m_freem(mrep); } else if (rep == myrep) { if (rep->r_mrep == NULL) panic("nfsreply nil"); return (0); } } } /* * nfs_request - goes something like this * - fill in request struct * - links it into list * - calls nfs_send() for first transmit * - calls nfs_receive() to get reply * - break down rpc header and return with nfs reply pointed to * by mrep or error * nb: always frees up mreq mbuf list */ int nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp) struct nfsnode *np; struct mbuf *mrest; int procnum; struct lwp *lwp; kauth_cred_t cred; struct mbuf **mrp; struct mbuf **mdp; char **dposp; int *rexmitp; { struct mbuf *m, *mrep; struct nfsreq *rep; u_int32_t *tl; int i; struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount); struct mbuf *md, *mheadend; char nickv[RPCX_NICKVERF]; time_t waituntil; char *dpos, *cp2; int t1, s, error = 0, mrest_len, auth_len, auth_type; int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0; int verf_len, verf_type; u_int32_t xid; char *auth_str, *verf_str; NFSKERBKEY_T key; /* save session key */ kauth_cred_t acred; struct mbuf *mrest_backup = NULL; kauth_cred_t origcred = NULL; /* XXX: gcc */ bool retry_cred = true; bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0; if (rexmitp != NULL) *rexmitp = 0; acred = kauth_cred_alloc(); tryagain_cred: KASSERT(cred != NULL); rep = kmem_alloc(sizeof(*rep), KM_SLEEP); rep->r_nmp = nmp; KASSERT(lwp == NULL || lwp == curlwp); rep->r_lwp = lwp; rep->r_procnum = procnum; i = 0; m = mrest; while (m) { i += m->m_len; m = m->m_next; } mrest_len = i; /* * Get the RPC header with authorization. */ kerbauth: verf_str = auth_str = (char *)0; if (nmp->nm_flag & NFSMNT_KERB) { verf_str = nickv; verf_len = sizeof (nickv); auth_type = RPCAUTH_KERB4; memset((void *)key, 0, sizeof (key)); if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, &auth_len, verf_str, verf_len)) { error = nfs_getauth(nmp, rep, cred, &auth_str, &auth_len, verf_str, &verf_len, key); if (error) { kmem_free(rep, sizeof(*rep)); m_freem(mrest); KASSERT(kauth_cred_getrefcnt(acred) == 1); kauth_cred_free(acred); return (error); } } retry_cred = false; } else { /* AUTH_UNIX */ uid_t uid; gid_t gid; /* * on the most unix filesystems, permission checks are * done when the file is open(2)'ed. * ie. once a file is successfully open'ed, * following i/o operations never fail with EACCES. * we try to follow the semantics as far as possible. * * note that we expect that the nfs server always grant * accesses by the file's owner. */ origcred = cred; switch (procnum) { case NFSPROC_READ: case NFSPROC_WRITE: case NFSPROC_COMMIT: uid = np->n_vattr->va_uid; gid = np->n_vattr->va_gid; if (kauth_cred_geteuid(cred) == uid && kauth_cred_getegid(cred) == gid) { retry_cred = false; break; } if (use_opencred) break; kauth_cred_setuid(acred, uid); kauth_cred_seteuid(acred, uid); kauth_cred_setsvuid(acred, uid); kauth_cred_setgid(acred, gid); kauth_cred_setegid(acred, gid); kauth_cred_setsvgid(acred, gid); cred = acred; break; default: retry_cred = false; break; } /* * backup mbuf chain if we can need it later to retry. * * XXX maybe we can keep a direct reference to * mrest without doing m_copym, but it's ...ugly. */ if (retry_cred) mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT); auth_type = RPCAUTH_UNIX; /* XXX elad - ngroups */ auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ? nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) + 5 * NFSX_UNSIGNED; } m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); if (auth_str) free(auth_str, M_TEMP); /* * For stream protocols, insert a Sun RPC Record Mark. */ if (nmp->nm_sotype == SOCK_STREAM) { M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); *mtod(m, u_int32_t *) = htonl(0x80000000 | (m->m_pkthdr.len - NFSX_UNSIGNED)); } rep->r_mreq = m; rep->r_xid = xid; tryagain: if (nmp->nm_flag & NFSMNT_SOFT) rep->r_retry = nmp->nm_retry; else rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ rep->r_rtt = rep->r_rexmit = 0; if (proct[procnum] > 0) rep->r_flags = R_TIMING; else rep->r_flags = 0; rep->r_mrep = NULL; /* * Do the client side RPC. */ nfsstats.rpcrequests++; /* * Chain request into list of outstanding requests. Be sure * to put it LAST so timer finds oldest requests first. */ s = splsoftnet(); TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); nfs_timer_start(); /* * If backing off another request or avoiding congestion, don't * send this one now but let timer do it. If not timing a request, * do it now. */ if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) { splx(s); if (nmp->nm_soflags & PR_CONNREQUIRED) error = nfs_sndlock(nmp, rep); if (!error) { m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp); if (nmp->nm_soflags & PR_CONNREQUIRED) nfs_sndunlock(nmp); } if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { nmp->nm_sent += NFS_CWNDSCALE; rep->r_flags |= R_SENT; } } else { splx(s); rep->r_rtt = -1; } /* * Wait for the reply from our send or the timer's. */ if (!error || error == EPIPE) error = nfs_reply(rep, lwp); /* * RPC done, unlink the request. */ s = splsoftnet(); TAILQ_REMOVE(&nfs_reqq, rep, r_chain); splx(s); /* * Decrement the outstanding request count. */ if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_SENT; /* paranoia */ nmp->nm_sent -= NFS_CWNDSCALE; } if (rexmitp != NULL) { int rexmit; if (nmp->nm_sotype != SOCK_DGRAM) rexmit = (rep->r_flags & R_REXMITTED) != 0; else rexmit = rep->r_rexmit; *rexmitp = rexmit; } /* * If there was a successful reply and a tprintf msg. * tprintf a response. */ if (!error && (rep->r_flags & R_TPRINTFMSG)) nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname, "is alive again"); mrep = rep->r_mrep; md = rep->r_md; dpos = rep->r_dpos; if (error) goto nfsmout; /* * break down the rpc header and check if ok */ nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); if (*tl++ == rpc_msgdenied) { if (*tl == rpc_mismatch) error = EOPNOTSUPP; else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { if (!failed_auth) { failed_auth++; mheadend->m_next = (struct mbuf *)0; m_freem(mrep); m_freem(rep->r_mreq); goto kerbauth; } else error = EAUTH; } else error = EACCES; m_freem(mrep); goto nfsmout; } /* * Grab any Kerberos verifier, otherwise just throw it away. */ verf_type = fxdr_unsigned(int, *tl++); i = fxdr_unsigned(int32_t, *tl); if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); if (error) goto nfsmout; } else if (i > 0) nfsm_adv(nfsm_rndup(i)); nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); /* 0 == ok */ if (*tl == 0) { nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); if (*tl != 0) { error = fxdr_unsigned(int, *tl); switch (error) { case NFSERR_PERM: error = EPERM; break; case NFSERR_NOENT: error = ENOENT; break; case NFSERR_IO: error = EIO; break; case NFSERR_NXIO: error = ENXIO; break; case NFSERR_ACCES: error = EACCES; if (!retry_cred) break; m_freem(mrep); m_freem(rep->r_mreq); kmem_free(rep, sizeof(*rep)); use_opencred = !use_opencred; if (mrest_backup == NULL) { /* m_copym failure */ KASSERT( kauth_cred_getrefcnt(acred) == 1); kauth_cred_free(acred); return ENOMEM; } mrest = mrest_backup; mrest_backup = NULL; cred = origcred; error = 0; retry_cred = false; goto tryagain_cred; case NFSERR_EXIST: error = EEXIST; break; case NFSERR_XDEV: error = EXDEV; break; case NFSERR_NODEV: error = ENODEV; break; case NFSERR_NOTDIR: error = ENOTDIR; break; case NFSERR_ISDIR: error = EISDIR; break; case NFSERR_INVAL: error = EINVAL; break; case NFSERR_FBIG: error = EFBIG; break; case NFSERR_NOSPC: error = ENOSPC; break; case NFSERR_ROFS: error = EROFS; break; case NFSERR_MLINK: error = EMLINK; break; case NFSERR_TIMEDOUT: error = ETIMEDOUT; break; case NFSERR_NAMETOL: error = ENAMETOOLONG; break; case NFSERR_NOTEMPTY: error = ENOTEMPTY; break; case NFSERR_DQUOT: error = EDQUOT; break; case NFSERR_STALE: /* * If the File Handle was stale, invalidate the * lookup cache, just in case. */ error = ESTALE; cache_purge(NFSTOV(np)); break; case NFSERR_REMOTE: error = EREMOTE; break; case NFSERR_WFLUSH: case NFSERR_BADHANDLE: case NFSERR_NOT_SYNC: case NFSERR_BAD_COOKIE: error = EINVAL; break; case NFSERR_NOTSUPP: error = ENOTSUP; break; case NFSERR_TOOSMALL: case NFSERR_SERVERFAULT: case NFSERR_BADTYPE: error = EINVAL; break; case NFSERR_TRYLATER: if ((nmp->nm_flag & NFSMNT_NFSV3) == 0) break; m_freem(mrep); error = 0; waituntil = time_second + trylater_delay; while (time_second < waituntil) { kpause("nfstrylater", false, hz, NULL); } trylater_delay *= NFS_TRYLATERDELMUL; if (trylater_delay > NFS_TRYLATERDELMAX) trylater_delay = NFS_TRYLATERDELMAX; /* * RFC1813: * The client should wait and then try * the request with a new RPC transaction ID. */ nfs_renewxid(rep); goto tryagain; default: #ifdef DIAGNOSTIC printf("Invalid rpc error code %d\n", error); #endif error = EINVAL; break; } if (nmp->nm_flag & NFSMNT_NFSV3) { *mrp = mrep; *mdp = md; *dposp = dpos; error |= NFSERR_RETERR; } else m_freem(mrep); goto nfsmout; } /* * note which credential worked to minimize number of retries. */ if (use_opencred) np->n_flag |= NUSEOPENCRED; else np->n_flag &= ~NUSEOPENCRED; *mrp = mrep; *mdp = md; *dposp = dpos; KASSERT(error == 0); goto nfsmout; } m_freem(mrep); error = EPROTONOSUPPORT; nfsmout: KASSERT(kauth_cred_getrefcnt(acred) == 1); kauth_cred_free(acred); m_freem(rep->r_mreq); kmem_free(rep, sizeof(*rep)); m_freem(mrest_backup); return (error); } #endif /* NFS */ /* * Generate the rpc reply header * siz arg. is used to decide if adding a cluster is worthwhile */ int nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) int siz; struct nfsrv_descript *nd; struct nfssvc_sock *slp; int err; int cache; u_quad_t *frev; struct mbuf **mrq; struct mbuf **mbp; char **bposp; { u_int32_t *tl; struct mbuf *mreq; char *bpos; struct mbuf *mb; mreq = m_gethdr(M_WAIT, MT_DATA); MCLAIM(mreq, &nfs_mowner); mb = mreq; /* * If this is a big reply, use a cluster else * try and leave leading space for the lower level headers. */ siz += RPC_REPLYSIZ; if (siz >= max_datalen) { m_clget(mreq, M_WAIT); } else mreq->m_data += max_hdr; tl = mtod(mreq, u_int32_t *); mreq->m_len = 6 * NFSX_UNSIGNED; bpos = ((char *)tl) + mreq->m_len; *tl++ = txdr_unsigned(nd->nd_retxid); *tl++ = rpc_reply; if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { *tl++ = rpc_msgdenied; if (err & NFSERR_AUTHERR) { *tl++ = rpc_autherr; *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); mreq->m_len -= NFSX_UNSIGNED; bpos -= NFSX_UNSIGNED; } else { *tl++ = rpc_mismatch; *tl++ = txdr_unsigned(RPC_VER2); *tl = txdr_unsigned(RPC_VER2); } } else { *tl++ = rpc_msgaccepted; /* * For Kerberos authentication, we must send the nickname * verifier back, otherwise just RPCAUTH_NULL. */ if (nd->nd_flag & ND_KERBFULL) { struct nfsuid *nuidp; struct timeval ktvin, ktvout; memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */ LIST_FOREACH(nuidp, NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)), nu_hash) { if (kauth_cred_geteuid(nuidp->nu_cr) == kauth_cred_geteuid(nd->nd_cr) && (!nd->nd_nam2 || netaddr_match( NU_NETFAM(nuidp), &nuidp->nu_haddr, nd->nd_nam2))) break; } if (nuidp) { ktvin.tv_sec = txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); ktvin.tv_usec = txdr_unsigned(nuidp->nu_timestamp.tv_usec); /* * Encrypt the timestamp in ecb mode using the * session key. */ #ifdef NFSKERB XXX #endif *tl++ = rpc_auth_kerb; *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); *tl = ktvout.tv_sec; nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); *tl++ = ktvout.tv_usec; *tl++ = txdr_unsigned( kauth_cred_geteuid(nuidp->nu_cr)); } else { *tl++ = 0; *tl++ = 0; } } else { *tl++ = 0; *tl++ = 0; } switch (err) { case EPROGUNAVAIL: *tl = txdr_unsigned(RPC_PROGUNAVAIL); break; case EPROGMISMATCH: *tl = txdr_unsigned(RPC_PROGMISMATCH); nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); *tl++ = txdr_unsigned(2); *tl = txdr_unsigned(3); break; case EPROCUNAVAIL: *tl = txdr_unsigned(RPC_PROCUNAVAIL); break; case EBADRPC: *tl = txdr_unsigned(RPC_GARBAGE); break; default: *tl = 0; if (err != NFSERR_RETVOID) { nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); if (err) *tl = txdr_unsigned(nfsrv_errmap(nd, err)); else *tl = 0; } break; }; } if (mrq != NULL) *mrq = mreq; *mbp = mb; *bposp = bpos; if (err != 0 && err != NFSERR_RETVOID) nfsstats.srvrpc_errs++; return (0); } static void nfs_timer_schedule(void) { callout_schedule(&nfs_timer_ch, nfs_ticks); } void nfs_timer_start(void) { if (callout_pending(&nfs_timer_ch)) return; nfs_timer_start_ev.ev_count++; nfs_timer_schedule(); } void nfs_timer_init(void) { callout_init(&nfs_timer_ch, 0); callout_setfunc(&nfs_timer_ch, nfs_timer, NULL); evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL, "nfs", "timer"); evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL, "nfs", "timer start"); evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL, "nfs", "timer stop"); } /* * Nfs timer routine * Scan the nfsreq list and retranmit any requests that have timed out * To avoid retransmission attempts on STREAM sockets (in the future) make * sure to set the r_retry field to 0 (implies nm_retry == 0). * A non-NULL argument means 'initialize'. */ void nfs_timer(void *arg) { struct nfsreq *rep; struct mbuf *m; struct socket *so; struct nfsmount *nmp; int timeo; int s, error; bool more = false; #ifdef NFSSERVER struct timeval tv; struct nfssvc_sock *slp; u_quad_t cur_usec; #endif nfs_timer_ev.ev_count++; s = splsoftnet(); TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { more = true; nmp = rep->r_nmp; if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) continue; if (nfs_sigintr(nmp, rep, rep->r_lwp)) { rep->r_flags |= R_SOFTTERM; continue; } if (rep->r_rtt >= 0) { rep->r_rtt++; if (nmp->nm_flag & NFSMNT_DUMBTIMR) timeo = nmp->nm_timeo; else timeo = NFS_RTO(nmp, proct[rep->r_procnum]); if (nmp->nm_timeouts > 0) timeo *= nfs_backoff[nmp->nm_timeouts - 1]; if (rep->r_rtt <= timeo) continue; if (nmp->nm_timeouts < (sizeof(nfs_backoff) / sizeof(nfs_backoff[0]))) nmp->nm_timeouts++; } /* * Check for server not responding */ if ((rep->r_flags & R_TPRINTFMSG) == 0 && rep->r_rexmit > nmp->nm_deadthresh) { nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname, "not responding"); rep->r_flags |= R_TPRINTFMSG; } if (rep->r_rexmit >= rep->r_retry) { /* too many */ nfsstats.rpctimeouts++; rep->r_flags |= R_SOFTTERM; continue; } if (nmp->nm_sotype != SOCK_DGRAM) { if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; continue; } if ((so = nmp->nm_so) == NULL) continue; /* * If there is enough space and the window allows.. * Resend it * Set r_rtt to -1 in case we fail to send it now. */ rep->r_rtt = -1; if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && ((nmp->nm_flag & NFSMNT_DUMBTIMR) || (rep->r_flags & R_SENT) || nmp->nm_sent < nmp->nm_cwnd) && (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ if (so->so_state & SS_ISCONNECTED) error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0); else error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0); if (error) { if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { #ifdef DEBUG printf("nfs_timer: ignoring error %d\n", error); #endif so->so_error = 0; } } else { /* * Iff first send, start timing * else turn timing off, backoff timer * and divide congestion window by 2. */ if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_TIMING; if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; nmp->nm_cwnd >>= 1; if (nmp->nm_cwnd < NFS_CWNDSCALE) nmp->nm_cwnd = NFS_CWNDSCALE; nfsstats.rpcretries++; } else { rep->r_flags |= R_SENT; nmp->nm_sent += NFS_CWNDSCALE; } rep->r_rtt = 0; } } } splx(s); #ifdef NFSSERVER /* * Scan the write gathering queues for writes that need to be * completed now. */ getmicrotime(&tv); cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec; mutex_enter(&nfsd_lock); TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { struct nfsrv_descript *nd; nd = LIST_FIRST(&slp->ns_tq); if (nd != NULL) { if (nd->nd_time <= cur_usec) { nfsrv_wakenfsd_locked(slp); } more = true; } } mutex_exit(&nfsd_lock); #endif /* NFSSERVER */ if (more) { nfs_timer_schedule(); } else { nfs_timer_stop_ev.ev_count++; } } /* * Test for a termination condition pending on the process. * This is used for NFSMNT_INT mounts. */ int nfs_sigintr(nmp, rep, l) struct nfsmount *nmp; struct nfsreq *rep; struct lwp *l; { sigset_t ss; if (rep && (rep->r_flags & R_SOFTTERM)) return (EINTR); if (!(nmp->nm_flag & NFSMNT_INT)) return (0); if (l) { sigpending1(l, &ss); #if 0 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss); #endif if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || sigismember(&ss, SIGQUIT)) return (EINTR); } return (0); } /* * Lock a socket against others. * Necessary for STREAM sockets to ensure you get an entire rpc request/reply * and also to avoid race conditions between the processes with nfs requests * in progress when a reconnect is necessary. */ static int nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep) { struct lwp *l; int timeo = 0; bool catch = false; int error = 0; if (rep) { l = rep->r_lwp; if (rep->r_nmp->nm_flag & NFSMNT_INT) catch = true; } else l = NULL; mutex_enter(&nmp->nm_lock); while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) { if (rep && nfs_sigintr(rep->r_nmp, rep, l)) { error = EINTR; goto quit; } if (catch) { cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo); } else { cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo); } if (catch) { catch = false; timeo = 2 * hz; } } nmp->nm_iflag |= NFSMNT_SNDLOCK; quit: mutex_exit(&nmp->nm_lock); return error; } /* * Unlock the stream socket for others. */ static void nfs_sndunlock(struct nfsmount *nmp) { mutex_enter(&nmp->nm_lock); if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0) panic("nfs sndunlock"); nmp->nm_iflag &= ~NFSMNT_SNDLOCK; cv_signal(&nmp->nm_sndcv); mutex_exit(&nmp->nm_lock); } static int nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep) { int *flagp = &nmp->nm_iflag; int slptimeo = 0; bool catch; int error = 0; KASSERT(nmp == rep->r_nmp); catch = (nmp->nm_flag & NFSMNT_INT) != 0; mutex_enter(&nmp->nm_lock); while (/* CONSTCOND */ true) { if (*flagp & NFSMNT_DISMNT) { cv_signal(&nmp->nm_disconcv); error = EIO; break; } /* If our reply was received while we were sleeping, * then just return without taking the lock to avoid a * situation where a single iod could 'capture' the * receive lock. */ if (rep->r_mrep != NULL) { error = EALREADY; break; } if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) { error = EINTR; break; } if ((*flagp & NFSMNT_RCVLOCK) == 0) { *flagp |= NFSMNT_RCVLOCK; break; } if (catch) { cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock, slptimeo); } else { cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock, slptimeo); } if (catch) { catch = false; slptimeo = 2 * hz; } } mutex_exit(&nmp->nm_lock); return error; } /* * Unlock the stream socket for others. */ static void nfs_rcvunlock(struct nfsmount *nmp) { mutex_enter(&nmp->nm_lock); if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0) panic("nfs rcvunlock"); nmp->nm_iflag &= ~NFSMNT_RCVLOCK; cv_broadcast(&nmp->nm_rcvcv); mutex_exit(&nmp->nm_lock); } /* * Parse an RPC request * - verify it * - allocate and fill in the cred. */ int nfs_getreq(nd, nfsd, has_header) struct nfsrv_descript *nd; struct nfsd *nfsd; int has_header; { int len, i; u_int32_t *tl; int32_t t1; struct uio uio; struct iovec iov; char *dpos, *cp2, *cp; u_int32_t nfsvers, auth_type; uid_t nickuid; int error = 0, ticklen; struct mbuf *mrep, *md; struct nfsuid *nuidp; struct timeval tvin, tvout; memset(&tvout, 0, sizeof tvout); /* XXX gcc */ KASSERT(nd->nd_cr == NULL); mrep = nd->nd_mrep; md = nd->nd_md; dpos = nd->nd_dpos; if (has_header) { nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); if (*tl++ != rpc_call) { m_freem(mrep); return (EBADRPC); } } else nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); nd->nd_repstat = 0; nd->nd_flag = 0; if (*tl++ != rpc_vers) { nd->nd_repstat = ERPCMISMATCH; nd->nd_procnum = NFSPROC_NOOP; return (0); } if (*tl != nfs_prog) { nd->nd_repstat = EPROGUNAVAIL; nd->nd_procnum = NFSPROC_NOOP; return (0); } tl++; nfsvers = fxdr_unsigned(u_int32_t, *tl++); if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) { nd->nd_repstat = EPROGMISMATCH; nd->nd_procnum = NFSPROC_NOOP; return (0); } if (nfsvers == NFS_VER3) nd->nd_flag = ND_NFSV3; nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); if (nd->nd_procnum == NFSPROC_NULL) return (0); if (nd->nd_procnum > NFSPROC_COMMIT || (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { nd->nd_repstat = EPROCUNAVAIL; nd->nd_procnum = NFSPROC_NOOP; return (0); } if ((nd->nd_flag & ND_NFSV3) == 0) nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; auth_type = *tl++; len = fxdr_unsigned(int, *tl++); if (len < 0 || len > RPCAUTH_MAXSIZ) { m_freem(mrep); return (EBADRPC); } nd->nd_flag &= ~ND_KERBAUTH; /* * Handle auth_unix or auth_kerb. */ if (auth_type == rpc_auth_unix) { uid_t uid; gid_t gid; nd->nd_cr = kauth_cred_alloc(); len = fxdr_unsigned(int, *++tl); if (len < 0 || len > NFS_MAXNAMLEN) { m_freem(mrep); error = EBADRPC; goto errout; } nfsm_adv(nfsm_rndup(len)); nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); uid = fxdr_unsigned(uid_t, *tl++); gid = fxdr_unsigned(gid_t, *tl++); kauth_cred_setuid(nd->nd_cr, uid); kauth_cred_seteuid(nd->nd_cr, uid); kauth_cred_setsvuid(nd->nd_cr, uid); kauth_cred_setgid(nd->nd_cr, gid); kauth_cred_setegid(nd->nd_cr, gid); kauth_cred_setsvgid(nd->nd_cr, gid); len = fxdr_unsigned(int, *tl); if (len < 0 || len > RPCAUTH_UNIXGIDS) { m_freem(mrep); error = EBADRPC; goto errout; } nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); if (len > 0) { size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t); gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP); for (i = 0; i < len; i++) { if (i < NGROUPS) /* XXX elad */ grbuf[i] = fxdr_unsigned(gid_t, *tl++); else tl++; } kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1, UIO_SYSSPACE); kmem_free(grbuf, grbuf_size); } len = fxdr_unsigned(int, *++tl); if (len < 0 || len > RPCAUTH_MAXSIZ) { m_freem(mrep); error = EBADRPC; goto errout; } if (len > 0) nfsm_adv(nfsm_rndup(len)); } else if (auth_type == rpc_auth_kerb) { switch (fxdr_unsigned(int, *tl++)) { case RPCAKN_FULLNAME: ticklen = fxdr_unsigned(int, *tl); *((u_int32_t *)nfsd->nfsd_authstr) = *tl; uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { m_freem(mrep); error = EBADRPC; goto errout; } uio.uio_offset = 0; uio.uio_iov = &iov; uio.uio_iovcnt = 1; UIO_SETUP_SYSSPACE(&uio); iov.iov_base = (void *)&nfsd->nfsd_authstr[4]; iov.iov_len = RPCAUTH_MAXSIZ - 4; nfsm_mtouio(&uio, uio.uio_resid); nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); if (*tl++ != rpc_auth_kerb || fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { printf("Bad kerb verifier\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED); tl = (u_int32_t *)cp; if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { printf("Not fullname kerb verifier\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } cp += NFSX_UNSIGNED; memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; nd->nd_flag |= ND_KERBFULL; nfsd->nfsd_flag |= NFSD_NEEDAUTH; break; case RPCAKN_NICKNAME: if (len != 2 * NFSX_UNSIGNED) { printf("Kerb nickname short\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } nickuid = fxdr_unsigned(uid_t, *tl); nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); if (*tl++ != rpc_auth_kerb || fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { printf("Kerb nick verifier bad\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); tvin.tv_sec = *tl++; tvin.tv_usec = *tl; LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid), nu_hash) { if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid && (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), &nuidp->nu_haddr, nd->nd_nam2))) break; } if (!nuidp) { nd->nd_repstat = (NFSERR_AUTHERR|AUTH_REJECTCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } /* * Now, decrypt the timestamp using the session key * and validate it. */ #ifdef NFSKERB XXX #endif tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); if (nuidp->nu_expire < time_second || nuidp->nu_timestamp.tv_sec > tvout.tv_sec || (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { nuidp->nu_expire = 0; nd->nd_repstat = (NFSERR_AUTHERR|AUTH_REJECTVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } kauth_cred_hold(nuidp->nu_cr); nd->nd_cr = nuidp->nu_cr; nd->nd_flag |= ND_KERBNICK; } } else { nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } nd->nd_md = md; nd->nd_dpos = dpos; KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0) || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0)); return (0); nfsmout: errout: KASSERT(error != 0); if (nd->nd_cr != NULL) { kauth_cred_free(nd->nd_cr); nd->nd_cr = NULL; } return (error); } int nfs_msg(l, server, msg) struct lwp *l; const char *server, *msg; { tpr_t tpr; if (l) tpr = tprintf_open(l->l_proc); else tpr = NULL; tprintf(tpr, "nfs server %s: %s\n", server, msg); tprintf_close(tpr); return (0); } #ifdef NFSSERVER int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, struct nfssvc_sock *, struct lwp *, struct mbuf **)) = { nfsrv_null, nfsrv_getattr, nfsrv_setattr, nfsrv_lookup, nfsrv3_access, nfsrv_readlink, nfsrv_read, nfsrv_write, nfsrv_create, nfsrv_mkdir, nfsrv_symlink, nfsrv_mknod, nfsrv_remove, nfsrv_rmdir, nfsrv_rename, nfsrv_link, nfsrv_readdir, nfsrv_readdirplus, nfsrv_statfs, nfsrv_fsinfo, nfsrv_pathconf, nfsrv_commit, nfsrv_noop }; /* * Socket upcall routine for the nfsd sockets. * The void *arg is a pointer to the "struct nfssvc_sock". */ void nfsrv_soupcall(struct socket *so, void *arg, int waitflag) { struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; nfsdsock_setbits(slp, SLP_A_NEEDQ); nfsrv_wakenfsd(slp); } void nfsrv_rcv(struct nfssvc_sock *slp) { struct socket *so; struct mbuf *m; struct mbuf *mp, *nam; struct uio auio; int flags; int error; int setflags = 0; error = nfsdsock_lock(slp, true); if (error) { setflags |= SLP_A_NEEDQ; goto dorecs_unlocked; } nfsdsock_clearbits(slp, SLP_A_NEEDQ); so = slp->ns_so; if (so->so_type == SOCK_STREAM) { /* * Do soreceive(). */ auio.uio_resid = 1000000000; /* not need to setup uio_vmspace */ flags = MSG_DONTWAIT; KERNEL_LOCK(1, curlwp); error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags); KERNEL_UNLOCK_ONE(curlwp); if (error || mp == NULL) { if (error == EWOULDBLOCK) setflags |= SLP_A_NEEDQ; else setflags |= SLP_A_DISCONN; goto dorecs; } m = mp; m_claimm(m, &nfs_mowner); if (slp->ns_rawend) { slp->ns_rawend->m_next = m; slp->ns_cc += 1000000000 - auio.uio_resid; } else { slp->ns_raw = m; slp->ns_cc = 1000000000 - auio.uio_resid; } while (m->m_next) m = m->m_next; slp->ns_rawend = m; /* * Now try and parse record(s) out of the raw stream data. */ error = nfsrv_getstream(slp, M_WAIT); if (error) { if (error == EPERM) setflags |= SLP_A_DISCONN; else setflags |= SLP_A_NEEDQ; } } else { do { auio.uio_resid = 1000000000; /* not need to setup uio_vmspace */ flags = MSG_DONTWAIT; KERNEL_LOCK(1, curlwp); error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags); KERNEL_UNLOCK_ONE(curlwp); if (mp) { if (nam) { m = nam; m->m_next = mp; } else m = mp; m_claimm(m, &nfs_mowner); if (slp->ns_recend) slp->ns_recend->m_nextpkt = m; else slp->ns_rec = m; slp->ns_recend = m; m->m_nextpkt = (struct mbuf *)0; } if (error) { if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && error != EWOULDBLOCK) { setflags |= SLP_A_DISCONN; goto dorecs; } } } while (mp); } dorecs: nfsdsock_unlock(slp); dorecs_unlocked: if (setflags) { nfsdsock_setbits(slp, setflags); } } int nfsdsock_lock(struct nfssvc_sock *slp, bool waitok) { mutex_enter(&slp->ns_lock); while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) { if (!waitok) { mutex_exit(&slp->ns_lock); return EWOULDBLOCK; } cv_wait(&slp->ns_cv, &slp->ns_lock); } if ((slp->ns_flags & SLP_VALID) == 0) { mutex_exit(&slp->ns_lock); return EINVAL; } KASSERT((slp->ns_flags & SLP_BUSY) == 0); slp->ns_flags |= SLP_BUSY; mutex_exit(&slp->ns_lock); return 0; } void nfsdsock_unlock(struct nfssvc_sock *slp) { mutex_enter(&slp->ns_lock); KASSERT((slp->ns_flags & SLP_BUSY) != 0); cv_broadcast(&slp->ns_cv); slp->ns_flags &= ~SLP_BUSY; mutex_exit(&slp->ns_lock); } int nfsdsock_drain(struct nfssvc_sock *slp) { int error = 0; mutex_enter(&slp->ns_lock); if ((slp->ns_flags & SLP_VALID) == 0) { error = EINVAL; goto done; } slp->ns_flags &= ~SLP_VALID; while ((slp->ns_flags & SLP_BUSY) != 0) { cv_wait(&slp->ns_cv, &slp->ns_lock); } done: mutex_exit(&slp->ns_lock); return error; } /* * Try and extract an RPC request from the mbuf data list received on a * stream socket. The "waitflag" argument indicates whether or not it * can sleep. */ int nfsrv_getstream(slp, waitflag) struct nfssvc_sock *slp; int waitflag; { struct mbuf *m, **mpp; struct mbuf *recm; u_int32_t recmark; int error = 0; KASSERT((slp->ns_flags & SLP_BUSY) != 0); for (;;) { if (slp->ns_reclen == 0) { if (slp->ns_cc < NFSX_UNSIGNED) { break; } m = slp->ns_raw; m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark); m_adj(m, NFSX_UNSIGNED); slp->ns_cc -= NFSX_UNSIGNED; recmark = ntohl(recmark); slp->ns_reclen = recmark & ~0x80000000; if (recmark & 0x80000000) slp->ns_sflags |= SLP_S_LASTFRAG; else slp->ns_sflags &= ~SLP_S_LASTFRAG; if (slp->ns_reclen > NFS_MAXPACKET) { error = EPERM; break; } } /* * Now get the record part. * * Note that slp->ns_reclen may be 0. Linux sometimes * generates 0-length records. */ if (slp->ns_cc == slp->ns_reclen) { recm = slp->ns_raw; slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; slp->ns_cc = slp->ns_reclen = 0; } else if (slp->ns_cc > slp->ns_reclen) { recm = slp->ns_raw; m = m_split(recm, slp->ns_reclen, waitflag); if (m == NULL) { error = EWOULDBLOCK; break; } m_claimm(recm, &nfs_mowner); slp->ns_raw = m; if (m->m_next == NULL) slp->ns_rawend = m; slp->ns_cc -= slp->ns_reclen; slp->ns_reclen = 0; } else { break; } /* * Accumulate the fragments into a record. */ mpp = &slp->ns_frag; while (*mpp) mpp = &((*mpp)->m_next); *mpp = recm; if (slp->ns_sflags & SLP_S_LASTFRAG) { if (slp->ns_recend) slp->ns_recend->m_nextpkt = slp->ns_frag; else slp->ns_rec = slp->ns_frag; slp->ns_recend = slp->ns_frag; slp->ns_frag = NULL; } } return error; } /* * Parse an RPC header. */ int nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, struct nfsrv_descript **ndp, bool *more) { struct mbuf *m, *nam; struct nfsrv_descript *nd; int error; *ndp = NULL; *more = false; if (nfsdsock_lock(slp, true)) { return ENOBUFS; } m = slp->ns_rec; if (m == NULL) { nfsdsock_unlock(slp); return ENOBUFS; } slp->ns_rec = m->m_nextpkt; if (slp->ns_rec) { m->m_nextpkt = NULL; *more = true; } else { slp->ns_recend = NULL; } nfsdsock_unlock(slp); if (m->m_type == MT_SONAME) { nam = m; m = m->m_next; nam->m_next = NULL; } else nam = NULL; nd = nfsdreq_alloc(); nd->nd_md = nd->nd_mrep = m; nd->nd_nam2 = nam; nd->nd_dpos = mtod(m, void *); error = nfs_getreq(nd, nfsd, true); if (error) { m_freem(nam); nfsdreq_free(nd); return (error); } *ndp = nd; nfsd->nfsd_nd = nd; return (0); } /* * Search for a sleeping nfsd and wake it up. * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the * running nfsds will go look for the work in the nfssvc_sock list. */ static void nfsrv_wakenfsd_locked(struct nfssvc_sock *slp) { struct nfsd *nd; KASSERT(mutex_owned(&nfsd_lock)); if ((slp->ns_flags & SLP_VALID) == 0) return; if (slp->ns_gflags & SLP_G_DOREC) return; nd = SLIST_FIRST(&nfsd_idle_head); if (nd) { SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle); if (nd->nfsd_slp) panic("nfsd wakeup"); slp->ns_sref++; KASSERT(slp->ns_sref > 0); nd->nfsd_slp = slp; cv_signal(&nd->nfsd_cv); } else { slp->ns_gflags |= SLP_G_DOREC; nfsd_head_flag |= NFSD_CHECKSLP; TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending); } } void nfsrv_wakenfsd(struct nfssvc_sock *slp) { mutex_enter(&nfsd_lock); nfsrv_wakenfsd_locked(slp); mutex_exit(&nfsd_lock); } int nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd) { int error; if (nd->nd_mrep != NULL) { m_freem(nd->nd_mrep); nd->nd_mrep = NULL; } mutex_enter(&slp->ns_lock); if ((slp->ns_flags & SLP_SENDING) != 0) { SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq); mutex_exit(&slp->ns_lock); return 0; } KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq)); slp->ns_flags |= SLP_SENDING; mutex_exit(&slp->ns_lock); again: error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp); if (nd->nd_nam2) { m_free(nd->nd_nam2); } nfsdreq_free(nd); mutex_enter(&slp->ns_lock); KASSERT((slp->ns_flags & SLP_SENDING) != 0); nd = SIMPLEQ_FIRST(&slp->ns_sendq); if (nd != NULL) { SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq); mutex_exit(&slp->ns_lock); goto again; } slp->ns_flags &= ~SLP_SENDING; mutex_exit(&slp->ns_lock); return error; } void nfsdsock_setbits(struct nfssvc_sock *slp, int bits) { mutex_enter(&slp->ns_alock); slp->ns_aflags |= bits; mutex_exit(&slp->ns_alock); } void nfsdsock_clearbits(struct nfssvc_sock *slp, int bits) { mutex_enter(&slp->ns_alock); slp->ns_aflags &= ~bits; mutex_exit(&slp->ns_alock); } bool nfsdsock_testbits(struct nfssvc_sock *slp, int bits) { return (slp->ns_aflags & bits); } #endif /* NFSSERVER */ #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) static struct pool nfs_srvdesc_pool; void nfsdreq_init(void) { pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE); } struct nfsrv_descript * nfsdreq_alloc(void) { struct nfsrv_descript *nd; nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK); nd->nd_cr = NULL; return nd; } void nfsdreq_free(struct nfsrv_descript *nd) { kauth_cred_t cr; cr = nd->nd_cr; if (cr != NULL) { kauth_cred_free(cr); } pool_put(&nfs_srvdesc_pool, nd); } #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */