/* $NetBSD: if_nfe.c,v 1.58 2013/03/30 03:21:06 christos Exp $ */ /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */ /*- * Copyright (c) 2006, 2007 Damien Bergamini * Copyright (c) 2005, 2006 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ #include __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.58 2013/03/30 03:21:06 christos Exp $"); #include "opt_inet.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #endif #include #include #include #include #include #include #include #include static int nfe_ifflags_cb(struct ethercom *); int nfe_match(device_t, cfdata_t, void *); void nfe_attach(device_t, device_t, void *); int nfe_detach(device_t, int); void nfe_power(int, void *); void nfe_miibus_statchg(struct ifnet *); int nfe_miibus_readreg(device_t, int, int); void nfe_miibus_writereg(device_t, int, int, int); int nfe_intr(void *); int nfe_ioctl(struct ifnet *, u_long, void *); void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); void nfe_rxeof(struct nfe_softc *); void nfe_txeof(struct nfe_softc *); int nfe_encap(struct nfe_softc *, struct mbuf *); void nfe_start(struct ifnet *); void nfe_watchdog(struct ifnet *); int nfe_init(struct ifnet *); void nfe_stop(struct ifnet *, int); struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int); void nfe_jfree(struct mbuf *, void *, size_t, void *); int nfe_jpool_alloc(struct nfe_softc *); void nfe_jpool_free(struct nfe_softc *); int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_setmulti(struct nfe_softc *); void nfe_get_macaddr(struct nfe_softc *, uint8_t *); void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); void nfe_tick(void *); void nfe_poweron(device_t); bool nfe_resume(device_t, const pmf_qual_t *); CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, nfe_detach, NULL); /* #define NFE_NO_JUMBO */ #ifdef NFE_DEBUG int nfedebug = 0; #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* deal with naming differences */ #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \ PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \ PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \ PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \ PCI_PRODUCT_NVIDIA_NFORCE4_LAN1 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \ PCI_PRODUCT_NVIDIA_NFORCE4_LAN2 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \ PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \ PCI_PRODUCT_NVIDIA_NFORCE430_LAN2 #ifdef _LP64 #define __LP64__ 1 #endif const struct nfe_product { pci_vendor_id_t vendor; pci_product_id_t product; } nfe_devices[] = { { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 } }; int nfe_match(device_t dev, cfdata_t match, void *aux) { struct pci_attach_args *pa = aux; const struct nfe_product *np; int i; for (i = 0; i < __arraycount(nfe_devices); i++) { np = &nfe_devices[i]; if (PCI_VENDOR(pa->pa_id) == np->vendor && PCI_PRODUCT(pa->pa_id) == np->product) return 1; } return 0; } void nfe_attach(device_t parent, device_t self, void *aux) { struct nfe_softc *sc = device_private(self); struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; pcireg_t memtype, csr; int mii_flags = 0; sc->sc_dev = self; sc->sc_pc = pa->pa_pc; pci_aprint_devinfo(pa, NULL); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_mems) == 0) break; /* FALLTHROUGH */ default: aprint_error_dev(self, "could not map mem space\n"); return; } if (pci_intr_map(pa, &ih) != 0) { aprint_error_dev(self, "could not map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "could not establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); goto fail; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); csr |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr); sc->sc_flags = 0; switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP51_LAN1: case PCI_PRODUCT_NVIDIA_MCP51_LAN2: sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_MCP61_LAN1: case PCI_PRODUCT_NVIDIA_MCP61_LAN2: case PCI_PRODUCT_NVIDIA_MCP61_LAN3: case PCI_PRODUCT_NVIDIA_MCP61_LAN4: case PCI_PRODUCT_NVIDIA_MCP67_LAN1: case PCI_PRODUCT_NVIDIA_MCP67_LAN2: case PCI_PRODUCT_NVIDIA_MCP67_LAN3: case PCI_PRODUCT_NVIDIA_MCP67_LAN4: case PCI_PRODUCT_NVIDIA_MCP73_LAN1: case PCI_PRODUCT_NVIDIA_MCP73_LAN2: case PCI_PRODUCT_NVIDIA_MCP73_LAN3: case PCI_PRODUCT_NVIDIA_MCP73_LAN4: sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_MCP77_LAN1: case PCI_PRODUCT_NVIDIA_MCP77_LAN2: case PCI_PRODUCT_NVIDIA_MCP77_LAN3: case PCI_PRODUCT_NVIDIA_MCP77_LAN4: sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_MCP79_LAN1: case PCI_PRODUCT_NVIDIA_MCP79_LAN2: case PCI_PRODUCT_NVIDIA_MCP79_LAN3: case PCI_PRODUCT_NVIDIA_MCP79_LAN4: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_CK804_LAN1: case PCI_PRODUCT_NVIDIA_CK804_LAN2: case PCI_PRODUCT_NVIDIA_MCP04_LAN1: case PCI_PRODUCT_NVIDIA_MCP04_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP65_LAN1: case PCI_PRODUCT_NVIDIA_MCP65_LAN2: case PCI_PRODUCT_NVIDIA_MCP65_LAN3: case PCI_PRODUCT_NVIDIA_MCP65_LAN4: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; mii_flags = MIIF_DOPAUSE; break; case PCI_PRODUCT_NVIDIA_MCP55_LAN1: case PCI_PRODUCT_NVIDIA_MCP55_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_HW_VLAN | NFE_PWR_MGMT; break; } if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0) sc->sc_dmat = pa->pa_dmat64; else sc->sc_dmat = pa->pa_dmat; nfe_poweron(self); #ifndef NFE_NO_JUMBO /* enable jumbo frames for adapters that support it */ if (sc->sc_flags & NFE_JUMBO_SUP) sc->sc_flags |= NFE_USE_JUMBO; #endif /* Check for reversed ethernet address */ if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) sc->sc_flags |= NFE_CORRECT_MACADDR; nfe_get_macaddr(sc, sc->sc_enaddr); aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(sc->sc_enaddr)); /* * Allocate Tx and Rx rings. */ if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { aprint_error_dev(self, "could not allocate Tx ring\n"); goto fail; } mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET); if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { aprint_error_dev(self, "could not allocate Rx ring\n"); nfe_free_tx_ring(sc, &sc->txq); goto fail; } ifp = &sc->sc_ethercom.ec_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nfe_ioctl; ifp->if_start = nfe_start; ifp->if_stop = nfe_stop; ifp->if_watchdog = nfe_watchdog; ifp->if_init = nfe_init; ifp->if_baudrate = IF_Gbps(1); IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); if (sc->sc_flags & NFE_USE_JUMBO) sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; #if NVLAN > 0 if (sc->sc_flags & NFE_HW_VLAN) sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; #endif if (sc->sc_flags & NFE_HW_CSUM) { ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; } sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = nfe_miibus_readreg; sc->sc_mii.mii_writereg = nfe_miibus_writereg; sc->sc_mii.mii_statchg = nfe_miibus_statchg; sc->sc_ethercom.ec_mii = &sc->sc_mii; ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange, ether_mediastatus); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { aprint_error_dev(self, "no PHY found!\n"); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp, sc->sc_enaddr); ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb); callout_init(&sc->sc_tick_ch, 0); callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc); if (pmf_device_register(self, NULL, nfe_resume)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); return; fail: if (sc->sc_ih != NULL) { pci_intr_disestablish(pc, sc->sc_ih); sc->sc_ih = NULL; } if (sc->sc_mems != 0) { bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems); sc->sc_mems = 0; } } int nfe_detach(device_t self, int flags) { struct nfe_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ethercom.ec_if; int s; s = splnet(); nfe_stop(ifp, 1); pmf_device_deregister(self); callout_destroy(&sc->sc_tick_ch); ether_ifdetach(ifp); if_detach(ifp); mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); nfe_free_rx_ring(sc, &sc->rxq); mutex_destroy(&sc->rxq.mtx); nfe_free_tx_ring(sc, &sc->txq); if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pc, sc->sc_ih); sc->sc_ih = NULL; } if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) { nfe_set_macaddr(sc, sc->sc_enaddr); } else { NFE_WRITE(sc, NFE_MACADDR_LO, sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]); NFE_WRITE(sc, NFE_MACADDR_HI, sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 | sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]); } if (sc->sc_mems != 0) { bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems); sc->sc_mems = 0; } splx(s); return 0; } void nfe_miibus_statchg(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; phy = NFE_READ(sc, NFE_PHY_IFACE); phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); seed = NFE_READ(sc, NFE_RNDSEED); seed &= ~NFE_SEED_MASK; if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { phy |= NFE_PHY_HDX; /* half-duplex */ misc |= NFE_MISC1_HDX; } switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: /* full-duplex only */ link |= NFE_MEDIA_1000T; seed |= NFE_SEED_1000T; phy |= NFE_PHY_1000T; break; case IFM_100_TX: link |= NFE_MEDIA_100TX; seed |= NFE_SEED_100TX; phy |= NFE_PHY_100TX; break; case IFM_10_T: link |= NFE_MEDIA_10T; seed |= NFE_SEED_10T; break; } NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ NFE_WRITE(sc, NFE_PHY_IFACE, phy); NFE_WRITE(sc, NFE_MISC1, misc); NFE_WRITE(sc, NFE_LINKSPEED, link); } int nfe_miibus_readreg(device_t dev, int phy, int reg) { struct nfe_softc *sc = device_private(dev); uint32_t val; int ntries; NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); DELAY(100); } NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); for (ntries = 0; ntries < 1000; ntries++) { DELAY(100); if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) break; } if (ntries == 1000) { DPRINTFN(2, ("%s: timeout waiting for PHY\n", device_xname(sc->sc_dev))); return 0; } if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { DPRINTFN(2, ("%s: could not read PHY\n", device_xname(sc->sc_dev))); return 0; } val = NFE_READ(sc, NFE_PHY_DATA); if (val != 0xffffffff && val != 0) sc->mii_phyaddr = phy; DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n", device_xname(sc->sc_dev), phy, reg, val)); return val; } void nfe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct nfe_softc *sc = device_private(dev); uint32_t ctl; int ntries; NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); DELAY(100); } NFE_WRITE(sc, NFE_PHY_DATA, val); ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; NFE_WRITE(sc, NFE_PHY_CTL, ctl); for (ntries = 0; ntries < 1000; ntries++) { DELAY(100); if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) break; } #ifdef NFE_DEBUG if (nfedebug >= 2 && ntries == 1000) printf("could not write to PHY\n"); #endif } int nfe_intr(void *arg) { struct nfe_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint32_t r; int handled; if ((ifp->if_flags & IFF_UP) == 0) return 0; handled = 0; for (;;) { r = NFE_READ(sc, NFE_IRQ_STATUS); if ((r & NFE_IRQ_WANTED) == 0) break; NFE_WRITE(sc, NFE_IRQ_STATUS, r); handled = 1; DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) { /* check Rx ring */ nfe_rxeof(sc); } if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) { /* check Tx ring */ nfe_txeof(sc); } if ((r & NFE_IRQ_LINK) != 0) { NFE_READ(sc, NFE_PHY_STATUS); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); DPRINTF(("%s: link state changed\n", device_xname(sc->sc_dev))); } } if (handled && !IF_IS_EMPTY(&ifp->if_snd)) nfe_start(ifp); return handled; } static int nfe_ifflags_cb(struct ethercom *ec) { struct ifnet *ifp = &ec->ec_if; struct nfe_softc *sc = ifp->if_softc; int change = ifp->if_flags ^ sc->sc_if_flags; /* * If only the PROMISC flag changes, then * don't do a full re-init of the chip, just update * the Rx filter. */ if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) return ENETRESET; else if ((change & IFF_PROMISC) != 0) nfe_setmulti(sc); return 0; } int nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct nfe_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCINITIFADDR: ifp->if_flags |= IFF_UP; nfe_init(ifp); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(ifp, ifa); break; #endif default: break; } break; default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) nfe_setmulti(sc); break; } sc->sc_if_flags = ifp->if_flags; splx(s); return error; } void nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (char *)desc32 - (char *)sc->txq.desc32, sizeof (struct nfe_desc32), ops); } void nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (char *)desc64 - (char *)sc->txq.desc64, sizeof (struct nfe_desc64), ops); } void nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) { if (end > start) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, (char *)&sc->txq.desc32[end] - (char *)&sc->txq.desc32[start], ops); return; } /* sync from 'start' to end of ring */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] - (char *)&sc->txq.desc32[start], ops); /* sync from start of ring to 'end' */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops); } void nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) { if (end > start) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, (char *)&sc->txq.desc64[end] - (char *)&sc->txq.desc64[start], ops); return; } /* sync from 'start' to end of ring */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] - (char *)&sc->txq.desc64[start], ops); /* sync from start of ring to 'end' */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops); } void nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, (char *)desc32 - (char *)sc->rxq.desc32, sizeof (struct nfe_desc32), ops); } void nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, (char *)desc64 - (char *)sc->rxq.desc64, sizeof (struct nfe_desc64), ops); } void nfe_rxeof(struct nfe_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_rx_data *data; struct nfe_jbuf *jbuf; struct mbuf *m, *mnew; bus_addr_t physaddr; uint16_t flags; int error, len, i; desc32 = NULL; desc64 = NULL; for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) { data = &sc->rxq.data[i]; if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[i]; nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); flags = le16toh(desc64->flags); len = le16toh(desc64->length) & 0x3fff; } else { desc32 = &sc->rxq.desc32[i]; nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); flags = le16toh(desc32->flags); len = le16toh(desc32->length) & 0x3fff; } if ((flags & NFE_RX_READY) != 0) break; if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if ((flags & NFE_RX_VALID_V1) == 0) goto skip; if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } else { if ((flags & NFE_RX_VALID_V2) == 0) goto skip; if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } if (flags & NFE_RX_ERROR) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load * it before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the * old mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } if (sc->sc_flags & NFE_USE_JUMBO) { physaddr = sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr; if ((jbuf = nfe_jalloc(sc, i)) == NULL) { if (len > MCLBYTES) { m_freem(mnew); ifp->if_ierrors++; goto skip1; } MCLGET(mnew, M_DONTWAIT); if ((mnew->m_flags & M_EXT) == 0) { m_freem(mnew); ifp->if_ierrors++; goto skip1; } (void)memcpy(mtod(mnew, void *), mtod(data->m, const void *), len); m = mnew; goto mbufcopied; } else { MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap, mtod(data->m, char *) - (char *)sc->rxq.jpool, NFE_JBYTES, BUS_DMASYNC_POSTREAD); physaddr = jbuf->physaddr; } } else { MCLGET(mnew, M_DONTWAIT); if ((mnew->m_flags & M_EXT) == 0) { m_freem(mnew); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail.. */ panic("%s: could not load old rx mbuf", device_xname(sc->sc_dev)); } ifp->if_ierrors++; goto skip; } physaddr = data->map->dm_segs[0].ds_addr; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; mbufcopied: /* finalize mbuf */ m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = ifp; if ((sc->sc_flags & NFE_HW_CSUM) != 0) { /* * XXX * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets? */ if (flags & NFE_RX_IP_CSUMOK) { m->m_pkthdr.csum_flags |= M_CSUM_IPv4; DPRINTFN(3, ("%s: ip4csum-rx ok\n", device_xname(sc->sc_dev))); } /* * XXX * no way to check M_CSUM_TCP_UDP_BAD or * other protocols? */ if (flags & NFE_RX_UDP_CSUMOK) { m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; DPRINTFN(3, ("%s: udp4csum-rx ok\n", device_xname(sc->sc_dev))); } else if (flags & NFE_RX_TCP_CSUMOK) { m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; DPRINTFN(3, ("%s: tcp4csum-rx ok\n", device_xname(sc->sc_dev))); } } bpf_mtap(ifp, m); ifp->if_ipackets++; (*ifp->if_input)(ifp, m); skip1: /* update mapping address in h/w descriptor */ if (sc->sc_flags & NFE_40BIT_ADDR) { #if defined(__LP64__) desc64->physaddr[0] = htole32(physaddr >> 32); #endif desc64->physaddr[1] = htole32(physaddr & 0xffffffff); } else { desc32->physaddr = htole32(physaddr); } skip: if (sc->sc_flags & NFE_40BIT_ADDR) { desc64->length = htole16(sc->rxq.bufsz); desc64->flags = htole16(NFE_RX_READY); nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } else { desc32->length = htole16(sc->rxq.bufsz); desc32->flags = htole16(NFE_RX_READY); nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } } /* update current RX pointer */ sc->rxq.cur = i; } void nfe_txeof(struct nfe_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data = NULL; int i; uint16_t flags; char buf[128]; for (i = sc->txq.next; sc->txq.queued > 0; i = NFE_TX_NEXTDESC(i), sc->txq.queued--) { if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->txq.desc64[i]; nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); flags = le16toh(desc64->flags); } else { desc32 = &sc->txq.desc32[i]; nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); flags = le16toh(desc32->flags); } if ((flags & NFE_TX_VALID) != 0) break; data = &sc->txq.data[i]; if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if ((flags & NFE_TX_LASTFRAG_V1) == 0 && data->m == NULL) continue; if ((flags & NFE_TX_ERROR_V1) != 0) { snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags); aprint_error_dev(sc->sc_dev, "tx v1 error %s\n", buf); ifp->if_oerrors++; } else ifp->if_opackets++; } else { if ((flags & NFE_TX_LASTFRAG_V2) == 0 && data->m == NULL) continue; if ((flags & NFE_TX_ERROR_V2) != 0) { snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags); aprint_error_dev(sc->sc_dev, "tx v2 error %s\n", buf); ifp->if_oerrors++; } else ifp->if_opackets++; } if (data->m == NULL) { /* should not get there */ aprint_error_dev(sc->sc_dev, "last fragment bit w/o associated mbuf!\n"); continue; } /* last fragment of the mbuf chain transmitted */ bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); data->m = NULL; } sc->txq.next = i; if (sc->txq.queued < NFE_TX_RING_COUNT) { /* at least one slot freed */ ifp->if_flags &= ~IFF_OACTIVE; } if (sc->txq.queued == 0) { /* all queued packets are sent */ ifp->if_timer = 0; } } int nfe_encap(struct nfe_softc *sc, struct mbuf *m0) { struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data; bus_dmamap_t map; uint16_t flags, csumflags; #if NVLAN > 0 struct m_tag *mtag; uint32_t vtag = 0; #endif int error, i, first; desc32 = NULL; desc64 = NULL; data = NULL; flags = 0; csumflags = 0; first = sc->txq.cur; map = sc->txq.data[first].map; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error); return error; } if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) { bus_dmamap_unload(sc->sc_dmat, map); return ENOBUFS; } #if NVLAN > 0 /* setup h/w VLAN tagging */ if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag); #endif if ((sc->sc_flags & NFE_HW_CSUM) != 0) { if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) csumflags |= NFE_TX_IP_CSUM; if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) csumflags |= NFE_TX_TCP_UDP_CSUM; } for (i = 0; i < map->dm_nsegs; i++) { data = &sc->txq.data[sc->txq.cur]; if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->txq.desc64[sc->txq.cur]; #if defined(__LP64__) desc64->physaddr[0] = htole32(map->dm_segs[i].ds_addr >> 32); #endif desc64->physaddr[1] = htole32(map->dm_segs[i].ds_addr & 0xffffffff); desc64->length = htole16(map->dm_segs[i].ds_len - 1); desc64->flags = htole16(flags); desc64->vtag = 0; } else { desc32 = &sc->txq.desc32[sc->txq.cur]; desc32->physaddr = htole32(map->dm_segs[i].ds_addr); desc32->length = htole16(map->dm_segs[i].ds_len - 1); desc32->flags = htole16(flags); } /* * Setting of the valid bit in the first descriptor is * deferred until the whole chain is fully setup. */ flags |= NFE_TX_VALID; sc->txq.queued++; sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur); } /* the whole mbuf chain has been setup */ if (sc->sc_flags & NFE_40BIT_ADDR) { /* fix last descriptor */ flags |= NFE_TX_LASTFRAG_V2; desc64->flags = htole16(flags); /* Checksum flags and vtag belong to the first fragment only. */ #if NVLAN > 0 sc->txq.desc64[first].vtag = htole32(vtag); #endif sc->txq.desc64[first].flags |= htole16(csumflags); /* finally, set the valid bit in the first descriptor */ sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID); } else { /* fix last descriptor */ if (sc->sc_flags & NFE_JUMBO_SUP) flags |= NFE_TX_LASTFRAG_V2; else flags |= NFE_TX_LASTFRAG_V1; desc32->flags = htole16(flags); /* Checksum flags belong to the first fragment only. */ sc->txq.desc32[first].flags |= htole16(csumflags); /* finally, set the valid bit in the first descriptor */ sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID); } data->m = m0; data->active = map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; } void nfe_start(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; int old = sc->txq.queued; struct mbuf *m0; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (nfe_encap(sc, m0) != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* packet put in h/w queue, remove from s/w queue */ IFQ_DEQUEUE(&ifp->if_snd, m0); bpf_mtap(ifp, m0); } if (sc->txq.queued != old) { /* packets are queued */ if (sc->sc_flags & NFE_40BIT_ADDR) nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); else nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* kick Tx */ NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } void nfe_watchdog(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); ifp->if_flags &= ~IFF_RUNNING; nfe_init(ifp); ifp->if_oerrors++; } int nfe_init(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; uint32_t tmp; int rc = 0, s; if (ifp->if_flags & IFF_RUNNING) return 0; nfe_stop(ifp, 0); NFE_WRITE(sc, NFE_TX_UNK, 0); NFE_WRITE(sc, NFE_STATUS, 0); sc->rxtxctl = NFE_RXTX_BIT2; if (sc->sc_flags & NFE_40BIT_ADDR) sc->rxtxctl |= NFE_RXTX_V3MAGIC; else if (sc->sc_flags & NFE_JUMBO_SUP) sc->rxtxctl |= NFE_RXTX_V2MAGIC; if (sc->sc_flags & NFE_HW_CSUM) sc->rxtxctl |= NFE_RXTX_RXCSUM; #if NVLAN > 0 /* * Although the adapter is capable of stripping VLAN tags from received * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on * purpose. This will be done in software by our network stack. */ if (sc->sc_flags & NFE_HW_VLAN) sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; #endif NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); DELAY(10); NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); #if NVLAN if (sc->sc_flags & NFE_HW_VLAN) NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); #endif NFE_WRITE(sc, NFE_SETUP_R6, 0); /* set MAC address */ nfe_set_macaddr(sc, sc->sc_enaddr); /* tell MAC where rings are in memory */ #ifdef __LP64__ NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); #endif NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); #ifdef __LP64__ NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); #endif NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); NFE_WRITE(sc, NFE_RING_SIZE, (NFE_RX_RING_COUNT - 1) << 16 | (NFE_TX_RING_COUNT - 1)); NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); /* force MAC to wakeup */ tmp = NFE_READ(sc, NFE_PWR_STATE); NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); DELAY(10); tmp = NFE_READ(sc, NFE_PWR_STATE); NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); s = splnet(); NFE_WRITE(sc, NFE_IRQ_MASK, 0); nfe_intr(sc); /* XXX clear IRQ status registers */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); splx(s); #if 1 /* configure interrupts coalescing/mitigation */ NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); #else /* no interrupt mitigation: one interrupt per packet */ NFE_WRITE(sc, NFE_IMTIMER, 970); #endif NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE); sc->rxtxctl &= ~NFE_RXTX_BIT2; NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); DELAY(10); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); /* set Rx filter */ nfe_setmulti(sc); if ((rc = ether_mediachange(ifp)) != 0) goto out; nfe_tick(sc); /* enable Rx */ NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); /* enable Tx */ NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); /* enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); callout_schedule(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; out: return rc; } void nfe_stop(struct ifnet *ifp, int disable) { struct nfe_softc *sc = ifp->if_softc; callout_stop(&sc->sc_tick_ch); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); mii_down(&sc->sc_mii); /* abort Tx */ NFE_WRITE(sc, NFE_TX_CTL, 0); /* disable Rx */ NFE_WRITE(sc, NFE_RX_CTL, 0); /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); /* reset Tx and Rx rings */ nfe_reset_tx_ring(sc, &sc->txq); nfe_reset_rx_ring(sc, &sc->rxq); } int nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_rx_data *data; struct nfe_jbuf *jbuf; void **desc; bus_addr_t physaddr; int i, nsegs, error, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->cur = ring->next = 0; ring->bufsz = MCLBYTES; error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n"); ring->map = NULL; goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } memset(*desc, 0, NFE_RX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs[0].ds_addr; if (sc->sc_flags & NFE_USE_JUMBO) { ring->bufsz = NFE_JBYTES; if ((error = nfe_jpool_alloc(sc)) != 0) { aprint_error_dev(sc->sc_dev, "could not allocate jumbo frames\n"); goto fail; } } /* * Pre-allocate Rx buffers and populate Rx ring. */ for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } if (sc->sc_flags & NFE_USE_JUMBO) { if ((jbuf = nfe_jalloc(sc, i)) == NULL) { aprint_error_dev(sc->sc_dev, "could not allocate jumbo buffer\n"); goto fail; } MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); physaddr = jbuf->physaddr; } else { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not create DMA map\n"); data->map = NULL; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { aprint_error_dev(sc->sc_dev, "could not allocate mbuf cluster\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } physaddr = data->map->dm_segs[0].ds_addr; } if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[i]; #if defined(__LP64__) desc64->physaddr[0] = htole32(physaddr >> 32); #endif desc64->physaddr[1] = htole32(physaddr & 0xffffffff); desc64->length = htole16(sc->rxq.bufsz); desc64->flags = htole16(NFE_RX_READY); } else { desc32 = &sc->rxq.desc32[i]; desc32->physaddr = htole32(physaddr); desc32->length = htole16(sc->rxq.bufsz); desc32->flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; fail: nfe_free_rx_ring(sc, ring); return error; } void nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { int i; for (i = 0; i < NFE_RX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) { ring->desc64[i].length = htole16(ring->bufsz); ring->desc64[i].flags = htole16(NFE_RX_READY); } else { ring->desc32[i].length = htole16(ring->bufsz); ring->desc32[i].flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } void nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (void *)desc, NFE_RX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &ring->data[i]; if (data->map != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); bus_dmamap_destroy(sc->sc_dmat, data->map); } if (data->m != NULL) m_freem(data->m); } nfe_jpool_free(sc); } struct nfe_jbuf * nfe_jalloc(struct nfe_softc *sc, int i) { struct nfe_jbuf *jbuf; mutex_enter(&sc->rxq.mtx); jbuf = SLIST_FIRST(&sc->rxq.jfreelist); if (jbuf != NULL) SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext); mutex_exit(&sc->rxq.mtx); if (jbuf == NULL) return NULL; sc->rxq.jbufmap[i] = ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES; return jbuf; } /* * This is called automatically by the network stack when the mbuf is freed. * Caution must be taken that the NIC might be reset by the time the mbuf is * freed. */ void nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg) { struct nfe_softc *sc = arg; struct nfe_jbuf *jbuf; int i; /* find the jbuf from the base pointer */ i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES; if (i < 0 || i >= NFE_JPOOL_COUNT) { aprint_error_dev(sc->sc_dev, "request to free a buffer (%p) not managed by us\n", buf); return; } jbuf = &sc->rxq.jbuf[i]; /* ..and put it back in the free list */ mutex_enter(&sc->rxq.mtx); SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext); mutex_exit(&sc->rxq.mtx); if (m != NULL) pool_cache_put(mb_cache, m); } int nfe_jpool_alloc(struct nfe_softc *sc) { struct nfe_rx_ring *ring = &sc->rxq; struct nfe_jbuf *jbuf; bus_addr_t physaddr; char *buf; int i, nsegs, error; /* * Allocate a big chunk of DMA'able memory. */ error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1, NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not create jumbo DMA map\n"); ring->jmap = NULL; goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0, &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not allocate jumbo DMA memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE, &ring->jpool, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not map jumbo DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool, NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not load jumbo DMA map\n"); goto fail; } /* ..and split it into 9KB chunks */ SLIST_INIT(&ring->jfreelist); buf = ring->jpool; physaddr = ring->jmap->dm_segs[0].ds_addr; for (i = 0; i < NFE_JPOOL_COUNT; i++) { jbuf = &ring->jbuf[i]; jbuf->buf = buf; jbuf->physaddr = physaddr; SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext); buf += NFE_JBYTES; physaddr += NFE_JBYTES; } return 0; fail: nfe_jpool_free(sc); return error; } void nfe_jpool_free(struct nfe_softc *sc) { struct nfe_rx_ring *ring = &sc->rxq; if (ring->jmap != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0, ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->jmap); bus_dmamap_destroy(sc->sc_dmat, ring->jmap); ring->jmap = NULL; } if (ring->jpool != NULL) { bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE); bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1); ring->jpool = NULL; } } int nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { int i, nsegs, error; void **desc; int descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->queued = 0; ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n"); ring->map = NULL; goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } memset(*desc, 0, NFE_TX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs[0].ds_addr; for (i = 0; i < NFE_TX_RING_COUNT; i++) { error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES, NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not create DMA map\n"); ring->data[i].map = NULL; goto fail; } } return 0; fail: nfe_free_tx_ring(sc, ring); return error; } void nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; int i; for (i = 0; i < NFE_TX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) ring->desc64[i].flags = 0; else ring->desc32[i].flags = 0; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); data->m = NULL; } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; } void nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (void *)desc, NFE_TX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); } } /* ..and now actually destroy the DMA mappings */ for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->map == NULL) continue; bus_dmamap_destroy(sc->sc_dmat, data->map); } } void nfe_setmulti(struct nfe_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; struct ether_multistep step; uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; uint32_t filter = NFE_RXFILTER_MAGIC; int i; if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { memset(addr, 0, ETHER_ADDR_LEN); memset(mask, 0, ETHER_ADDR_LEN); goto done; } memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN); memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; memset(addr, 0, ETHER_ADDR_LEN); memset(mask, 0, ETHER_ADDR_LEN); goto done; } for (i = 0; i < ETHER_ADDR_LEN; i++) { addr[i] &= enm->enm_addrlo[i]; mask[i] &= ~enm->enm_addrlo[i]; } ETHER_NEXT_MULTI(step, enm); } for (i = 0; i < ETHER_ADDR_LEN; i++) mask[i] |= addr[i]; done: addr[0] |= 0x01; /* make sure multicast bit is set */ NFE_WRITE(sc, NFE_MULTIADDR_HI, addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); NFE_WRITE(sc, NFE_MULTIADDR_LO, addr[5] << 8 | addr[4]); NFE_WRITE(sc, NFE_MULTIMASK_HI, mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); NFE_WRITE(sc, NFE_MULTIMASK_LO, mask[5] << 8 | mask[4]); filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M; NFE_WRITE(sc, NFE_RXFILTER, filter); } void nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) { uint32_t tmp; if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) { tmp = NFE_READ(sc, NFE_MACADDR_HI); addr[0] = (tmp & 0xff); addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24) & 0xff; tmp = NFE_READ(sc, NFE_MACADDR_LO); addr[4] = (tmp & 0xff); addr[5] = (tmp >> 8) & 0xff; } else { tmp = NFE_READ(sc, NFE_MACADDR_LO); addr[0] = (tmp >> 8) & 0xff; addr[1] = (tmp & 0xff); tmp = NFE_READ(sc, NFE_MACADDR_HI); addr[2] = (tmp >> 24) & 0xff; addr[3] = (tmp >> 16) & 0xff; addr[4] = (tmp >> 8) & 0xff; addr[5] = (tmp & 0xff); } } void nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr) { NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]); NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); } void nfe_tick(void *arg) { struct nfe_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_schedule(&sc->sc_tick_ch, hz); } void nfe_poweron(device_t self) { struct nfe_softc *sc = device_private(self); if ((sc->sc_flags & NFE_PWR_MGMT) != 0) { NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); DELAY(100); NFE_WRITE(sc, NFE_MAC_RESET, 0); DELAY(100); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); NFE_WRITE(sc, NFE_PWR2_CTL, NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK); } } bool nfe_resume(device_t dv, const pmf_qual_t *qual) { nfe_poweron(dv); return true; }