/* $NetBSD: if_ether.h,v 1.41 2006/01/29 09:57:59 jdolecek Exp $ */ /* * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 */ #ifndef _NET_IF_ETHER_H_ #define _NET_IF_ETHER_H_ #ifdef _KERNEL #ifdef _KERNEL_OPT #include "opt_mbuftrace.h" #endif #include #endif /* * Some basic Ethernet constants. */ #define ETHER_ADDR_LEN 6 /* length of an Ethernet address */ #define ETHER_TYPE_LEN 2 /* length of the Ethernet type field */ #define ETHER_CRC_LEN 4 /* length of the Ethernet CRC */ #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN) #define ETHER_MIN_LEN 64 /* minimum frame length, including CRC */ #define ETHER_MAX_LEN 1518 /* maximum frame length, including CRC */ #define ETHER_MAX_LEN_JUMBO 9018 /* maximum jumbo frame len, including CRC */ /* * Some Ethernet extensions. */ #define ETHER_VLAN_ENCAP_LEN 4 /* length of 802.1Q VLAN encapsulation */ /* * Ethernet address - 6 octets * this is only used by the ethers(3) functions. */ struct ether_addr { u_int8_t ether_addr_octet[ETHER_ADDR_LEN]; } __attribute__((__packed__)); /* * Structure of a 10Mb/s Ethernet header. */ struct ether_header { u_int8_t ether_dhost[ETHER_ADDR_LEN]; u_int8_t ether_shost[ETHER_ADDR_LEN]; u_int16_t ether_type; } __attribute__((__packed__)); #include #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ #define ETHERMTU_JUMBO (ETHER_MAX_LEN_JUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN) #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) /* * Compute the maximum frame size based on ethertype (i.e. possible * encapsulation) and whether or not an FCS is present. */ #define ETHER_MAX_FRAME(ifp, etype, hasfcs) \ ((ifp)->if_mtu + ETHER_HDR_LEN + \ ((hasfcs) ? ETHER_CRC_LEN : 0) + \ (((etype) == ETHERTYPE_VLAN) ? ETHER_VLAN_ENCAP_LEN : 0)) /* * Ethernet CRC32 polynomials (big- and little-endian verions). */ #define ETHER_CRC_POLY_LE 0xedb88320 #define ETHER_CRC_POLY_BE 0x04c11db6 #ifndef _STANDALONE /* * Ethernet-specific mbuf flags. */ #define M_HASFCS M_LINK0 /* FCS included at end of frame */ #define M_PROMISC M_LINK1 /* this packet is not for us */ #ifdef _KERNEL /* * Macro to map an IP multicast address to an Ethernet multicast address. * The high-order 25 bits of the Ethernet address are statically assigned, * and the low-order 23 bits are taken from the low end of the IP address. */ #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ /* struct in_addr *ipaddr; */ \ /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ { \ (enaddr)[0] = 0x01; \ (enaddr)[1] = 0x00; \ (enaddr)[2] = 0x5e; \ (enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f; \ (enaddr)[4] = ((u_int8_t *)ipaddr)[2]; \ (enaddr)[5] = ((u_int8_t *)ipaddr)[3]; \ } /* * Macro to map an IP6 multicast address to an Ethernet multicast address. * The high-order 16 bits of the Ethernet address are statically assigned, * and the low-order 32 bits are taken from the low end of the IP6 address. */ #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ /* struct in6_addr *ip6addr; */ \ /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ { \ (enaddr)[0] = 0x33; \ (enaddr)[1] = 0x33; \ (enaddr)[2] = ((u_int8_t *)ip6addr)[12]; \ (enaddr)[3] = ((u_int8_t *)ip6addr)[13]; \ (enaddr)[4] = ((u_int8_t *)ip6addr)[14]; \ (enaddr)[5] = ((u_int8_t *)ip6addr)[15]; \ } #endif /* * Structure shared between the ethernet driver modules and * the multicast list code. For example, each ec_softc or il_softc * begins with this structure. */ struct ethercom { struct ifnet ec_if; /* network-visible interface */ LIST_HEAD(, ether_multi) ec_multiaddrs; /* list of ether multicast addrs */ int ec_multicnt; /* length of ec_multiaddrs list */ int ec_capabilities; /* capabilities, provided by driver */ int ec_capenable; /* tells hardware which capabilities to enable */ int ec_nvlans; /* # VLANs on this interface */ #ifdef MBUFTRACE struct mowner ec_rx_mowner; /* mbufs received */ struct mowner ec_tx_mowner; /* mbufs transmitted */ #endif }; #define ETHERCAP_VLAN_MTU 0x00000001 /* VLAN-compatible MTU */ #define ETHERCAP_VLAN_HWTAGGING 0x00000002 /* hardware VLAN tag support */ #define ETHERCAP_JUMBO_MTU 0x00000004 /* 9000 byte MTU supported */ #ifdef _KERNEL extern const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN]; extern const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN]; extern const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; extern const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; int ether_ioctl(struct ifnet *, u_long, caddr_t); int ether_addmulti (struct ifreq *, struct ethercom *); int ether_delmulti (struct ifreq *, struct ethercom *); int ether_changeaddr (struct ifreq *, struct ethercom *); int ether_multiaddr(struct sockaddr *, u_int8_t[], u_int8_t[]); #endif /* _KERNEL */ /* * Ethernet multicast address structure. There is one of these for each * multicast address or range of multicast addresses that we are supposed * to listen to on a particular interface. They are kept in a linked list, * rooted in the interface's ethercom structure. */ struct ether_multi { u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ u_int enm_refcount; /* no. claims to this addr/range */ LIST_ENTRY(ether_multi) enm_list; }; /* * Structure used by macros below to remember position when stepping through * all of the ether_multi records. */ struct ether_multistep { struct ether_multi *e_enm; }; /* * Macro for looking up the ether_multi record for a given range of Ethernet * multicast addresses connected to a given ethercom structure. If no matching * record is found, "enm" returns NULL. */ #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm) \ /* u_int8_t addrlo[ETHER_ADDR_LEN]; */ \ /* u_int8_t addrhi[ETHER_ADDR_LEN]; */ \ /* struct ethercom *ec; */ \ /* struct ether_multi *enm; */ \ { \ for ((enm) = LIST_FIRST(&(ec)->ec_multiaddrs); \ (enm) != NULL && \ (bcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 || \ bcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ (enm) = LIST_NEXT((enm), enm_list)); \ } /* * Macro to step through all of the ether_multi records, one at a time. * The current position is remembered in "step", which the caller must * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" * and get the first record. Both macros return a NULL "enm" when there * are no remaining records. */ #define ETHER_NEXT_MULTI(step, enm) \ /* struct ether_multistep step; */ \ /* struct ether_multi *enm; */ \ { \ if (((enm) = (step).e_enm) != NULL) \ (step).e_enm = LIST_NEXT((enm), enm_list); \ } #define ETHER_FIRST_MULTI(step, ec, enm) \ /* struct ether_multistep step; */ \ /* struct ethercom *ec; */ \ /* struct ether_multi *enm; */ \ { \ (step).e_enm = LIST_FIRST(&(ec)->ec_multiaddrs); \ ETHER_NEXT_MULTI((step), (enm)); \ } #ifdef _KERNEL /* * Ethernet 802.1Q VLAN structures. */ /* add VLAN tag to input/received packet */ #define VLAN_INPUT_TAG(ifp, m, vlanid, _errcase) \ do { \ struct m_tag *mtag = \ m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);\ if (mtag == NULL) { \ ifp->if_ierrors++; \ printf("%s: unable to allocate VLAN tag\n", \ ifp->if_xname); \ m_freem(m); \ _errcase; \ } \ *(u_int *)(mtag + 1) = vlanid; \ m_tag_prepend(m, mtag); \ } while(0) /* extract VLAN tag from output/trasmit packet */ #define VLAN_OUTPUT_TAG(ec, m0) \ VLAN_ATTACHED(ec) ? m_tag_find((m0), PACKET_TAG_VLAN, NULL) : NULL /* extract VLAN ID value from a VLAN tag */ #define VLAN_TAG_VALUE(mtag) \ ((*(u_int *)(mtag + 1)) & 4095) /* test if any VLAN is configured for this interface */ #define VLAN_ATTACHED(ec) ((ec)->ec_nvlans > 0) void ether_ifattach(struct ifnet *, const u_int8_t *); void ether_ifdetach(struct ifnet *); char *ether_sprintf(const u_int8_t *); u_int32_t ether_crc32_le(const u_int8_t *, size_t); u_int32_t ether_crc32_be(const u_int8_t *, size_t); #else /* * Prototype ethers(3) functions. */ #include __BEGIN_DECLS char * ether_ntoa __P((const struct ether_addr *)); struct ether_addr * ether_aton __P((const char *)); int ether_ntohost __P((char *, const struct ether_addr *)); int ether_hostton __P((const char *, struct ether_addr *)); int ether_line __P((const char *, struct ether_addr *, char *)); __END_DECLS #endif #endif /* _STANDALONE */ #endif /* !_NET_IF_ETHER_H_ */