/* $NetBSD: ifpga_clock.c,v 1.3 2002/01/30 03:59:41 thorpej Exp $ */ /* * Copyright (c) 2001 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The IFPGA has three timers. Timer 0 is clocked by the system bus clock, * while timers 1 and 2 are clocked at 24MHz. To keep things simple here, * we use timers 1 and 2 only. All three timers are 16-bit counters that * are programmable in either periodic mode or in one-shot mode. */ /* Include header files */ #include #include #include #include #include #include #include #include #include /* XXX XXX XXX */ #include #include #include /* * Statistics clock interval and variance, in usec. Variance must be a * power of two. Since this gives us an even number, not an odd number, * we discard one case and compensate. That is, a variance of 1024 would * give us offsets in [0..1023]. Instead, we take offsets in [1..1023]. * This is symmetric about the point 512, or statvar/2, and thus averages * to that value (assuming uniform random numbers). */ static int statvar = 1024 / 4; /* {stat,prof}clock variance */ static int statmin; /* statclock interval - variance/2 */ static int profmin; /* profclock interval - variance/2 */ static int timer2min; /* current, from above choices */ static int statprev; /* previous value in stat timer */ #define TIMER_1_CLEAR (IFPGA_TIMER1_BASE + TIMERx_CLR) #define TIMER_1_LOAD (IFPGA_TIMER1_BASE + TIMERx_LOAD) #define TIMER_1_VALUE (IFPGA_TIMER1_BASE + TIMERx_VALUE) #define TIMER_1_CTRL (IFPGA_TIMER1_BASE + TIMERx_CTRL) #define TIMER_2_CLEAR (IFPGA_TIMER2_BASE + TIMERx_CLR) #define TIMER_2_LOAD (IFPGA_TIMER2_BASE + TIMERx_LOAD) #define TIMER_2_VALUE (IFPGA_TIMER2_BASE + TIMERx_VALUE) #define TIMER_2_CTRL (IFPGA_TIMER2_BASE + TIMERx_CTRL) #define COUNTS_PER_SEC (IFPGA_TIMER1_FREQ / 16) extern struct ifpga_softc *clock_sc; static int clock_started = 0; static int load_timer(int, int); static __inline u_int getclock(void) { return bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh, TIMER_1_VALUE); } static __inline u_int getstatclock(void) { return bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh, TIMER_2_VALUE); } /* * int clockhandler(struct clockframe *frame) * * Function called by timer 1 interrupts. * This just clears the interrupt condition and calls hardclock(). */ static int clockhandler(void *fr) { struct clockframe *frame = (struct clockframe *)fr; bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh, TIMER_1_CLEAR, 0); hardclock(frame); return 0; /* Pass the interrupt on down the chain */ } /* * int statclockhandler(struct clockframe *frame) * * Function called by timer 2 interrupts. * Add some random jitter to the clock, and then call statclock(). */ static int statclockhandler(void *fr) { struct clockframe *frame = (struct clockframe *) fr; int newint, r, var; var = statvar; do { r = random() & (var - 1); } while (r == 0); newint = timer2min + r; if (newint & ~0x0000ffff) panic("statclockhandler: statclock variance too large"); /* * The timer was automatically reloaded with the previous latch * value at the time of the interrupts. Compensate now for the * amount of time that has run off since then, plus one tick * roundoff. This should keep us closer to the mean. */ r = (statprev - getstatclock() + 1); if (r < newint) { newint -= r; r = 0; } else printf("statclockhandler: Statclock overrun\n"); statprev = load_timer(IFPGA_TIMER2_BASE, newint); statclock(frame); if (r) /* * We've completely overrun the previous interval, * make sure we report the correct number of ticks. */ statclock(frame); return 0; /* Pass the interrupt on down the chain */ } static int load_timer(int base, int intvl) { int control; if (intvl & ~0x0000ffff) panic("clock: Invalid interval\n"); control = (TIMERx_CTRL_ENABLE | TIMERx_CTRL_MODE_PERIODIC | TIMERx_CTRL_PRESCALE_DIV16); bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh, base + TIMERx_LOAD, intvl); bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh, base + TIMERx_CTRL, control); bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh, base + TIMERx_CLR, 0); return intvl; } /* * void setstatclockrate(int hz) * * We assume that hz is either stathz or profhz, and that neither will * change after being set by cpu_initclocks(). We could recalculate the * intervals here, but that would be a pain. */ void setstatclockrate(int hz) { if (hz == stathz) timer2min = statmin; else timer2min = profmin; } /* * void cpu_initclocks(void) * * Initialise the clocks. */ void cpu_initclocks() { int intvl; int statint; int profint; int minint; if (hz < 50 || COUNTS_PER_SEC % hz) { printf("cannot get %d Hz clock; using 100 Hz\n", hz); hz = 100; tick = 1000000 / hz; } if (stathz == 0) stathz = hz; else if (stathz < 50 || COUNTS_PER_SEC % stathz) { printf("cannot get %d Hz statclock; using 100 Hz\n", stathz); stathz = 100; } if (profhz == 0) profhz = stathz * 5; else if (profhz < stathz || COUNTS_PER_SEC % profhz) { printf("cannot get %d Hz profclock; using %d Hz\n", profhz, stathz); profhz = stathz; } intvl = COUNTS_PER_SEC / hz; statint = COUNTS_PER_SEC / stathz; profint = COUNTS_PER_SEC / profhz; minint = statint / 2 + 100; while (statvar > minint) statvar >>= 1; /* Adjust interval counts, per note above. */ intvl--; statint--; profint--; /* Calculate the base reload values. */ statmin = statint - (statvar >> 1); profmin = profint - (statvar >> 1); timer2min = statmin; statprev = statint; /* Report the clock frequencies */ printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz); /* Setup timer 1 and claim interrupt */ clock_sc->sc_clockintr = intr_claim(IFPGA_TIMER1_IRQ, IPL_CLOCK, "tmr1 hard clk", clockhandler, 0); if (clock_sc->sc_clockintr == NULL) panic("%s: Cannot install timer 1 interrupt handler\n", clock_sc->sc_dev.dv_xname); clock_sc->sc_clock_count = load_timer(IFPGA_TIMER1_BASE, intvl); /* * Use ticks per 256us for accuracy since ticks per us is often * fractional e.g. @ 66MHz */ clock_sc->sc_clock_ticks_per_256us = ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000); clock_started = 1; /* Set up timer 2 as statclk/profclk. */ clock_sc->sc_statclockintr = intr_claim(IFPGA_TIMER2_IRQ, IPL_STATCLOCK, "tmr2 stat clk", statclockhandler, 0); if (clock_sc->sc_statclockintr == NULL) panic("%s: Cannot install timer 2 interrupt handler\n", clock_sc->sc_dev.dv_xname); load_timer(IFPGA_TIMER2_BASE, statint); } /* * void microtime(struct timeval *tvp) * * Fill in the specified timeval struct with the current time * accurate to the microsecond. */ void microtime(struct timeval *tvp) { int s; int tm; int deltatm; static struct timeval oldtv; if (clock_sc == NULL || clock_sc->sc_clock_count == 0) return; s = splhigh(); tm = getclock(); deltatm = clock_sc->sc_clock_count - tm; #ifdef DIAGNOSTIC if (deltatm < 0) panic("opps deltatm < 0 tm=%d deltatm=%d\n", tm, deltatm); #endif /* Fill in the timeval struct */ *tvp = time; tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us); /* Make sure the micro seconds don't overflow. */ while (tvp->tv_usec >= 1000000) { tvp->tv_usec -= 1000000; ++tvp->tv_sec; } /* Make sure the time has advanced. */ if (tvp->tv_sec == oldtv.tv_sec && tvp->tv_usec <= oldtv.tv_usec) { tvp->tv_usec = oldtv.tv_usec + 1; if (tvp->tv_usec >= 1000000) { tvp->tv_usec -= 1000000; ++tvp->tv_sec; } } oldtv = *tvp; (void)splx(s); } /* * Estimated loop for n microseconds */ /* Need to re-write this to use the timers */ /* One day soon I will actually do this */ int delaycount = 50; void delay(u_int n) { if (clock_started) { u_int starttime; u_int curtime; starttime = getclock(); n *= IFPGA_TIMER1_FREQ / 1000000; do { curtime = getclock(); } while (n > (curtime - starttime)); } else { volatile u_int i; if (n == 0) return; while (n-- > 0) { /* XXX - Seriously gross hack */ if (cputype == CPU_ID_SA110) for (i = delaycount; --i;) ; else for (i = 8; --i;) ; } } }