/* $NetBSD: bus.h,v 1.2 2001/07/19 15:32:21 thorpej Exp $ */ /*- * Copyright (c) 1996, 1997, 1998, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * XXXfvdl plain copy of x86_64 stuff. The arrival of the real hardware * may cause enough changes to this file to be seperate. */ #ifndef _X86_64_BUS_H_ #define _X86_64_BUS_H_ #include #ifdef BUS_SPACE_DEBUG #include /* for printf() prototype */ /* * Macros for sanity-checking the aligned-ness of pointers passed to * bus space ops. These are not strictly necessary on the x86, but * could lead to performance improvements, and help catch problems * with drivers that would creep up on other architectures. */ #define __BUS_SPACE_ALIGNED_ADDRESS(p, t) \ ((((u_long)(p)) & (sizeof(t)-1)) == 0) #define __BUS_SPACE_ADDRESS_SANITY(p, t, d) \ ({ \ if (__BUS_SPACE_ALIGNED_ADDRESS((p), t) == 0) { \ printf("%s 0x%lx not aligned to %d bytes %s:%d\n", \ d, (u_long)(p), sizeof(t), __FILE__, __LINE__); \ } \ (void) 0; \ }) #define BUS_SPACE_ALIGNED_POINTER(p, t) __BUS_SPACE_ALIGNED_ADDRESS(p, t) #else #define __BUS_SPACE_ADDRESS_SANITY(p,t,d) (void) 0 #define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t) #endif /* BUS_SPACE_DEBUG */ /* * Values for the x86_64 bus space tag, not to be used directly by MI code. */ #define X86_64_BUS_SPACE_IO 0 /* space is i/o space */ #define X86_64_BUS_SPACE_MEM 1 /* space is mem space */ #define __BUS_SPACE_HAS_STREAM_METHODS 1 /* * Bus address and size types */ typedef u_long bus_addr_t; typedef u_long bus_size_t; /* * Access methods for bus resources and address space. */ typedef int bus_space_tag_t; typedef u_long bus_space_handle_t; /* * int bus_space_map __P((bus_space_tag_t t, bus_addr_t addr, * bus_size_t size, int flags, bus_space_handle_t *bshp)); * * Map a region of bus space. */ #define BUS_SPACE_MAP_CACHEABLE 0x01 #define BUS_SPACE_MAP_LINEAR 0x02 #define BUS_SPACE_MAP_PREFETCHABLE 0x04 int x86_64_memio_map __P((bus_space_tag_t t, bus_addr_t addr, bus_size_t size, int flags, bus_space_handle_t *bshp)); /* like map, but without extent map checking/allocation */ int _x86_64_memio_map __P((bus_space_tag_t t, bus_addr_t addr, bus_size_t size, int flags, bus_space_handle_t *bshp)); #define bus_space_map(t, a, s, f, hp) \ x86_64_memio_map((t), (a), (s), (f), (hp)) /* * int bus_space_unmap __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t size)); * * Unmap a region of bus space. */ void x86_64_memio_unmap __P((bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size)); #define bus_space_unmap(t, h, s) \ x86_64_memio_unmap((t), (h), (s)) /* * int bus_space_subregion __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, * bus_space_handle_t *nbshp)); * * Get a new handle for a subregion of an already-mapped area of bus space. */ int x86_64_memio_subregion __P((bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nbshp)); #define bus_space_subregion(t, h, o, s, nhp) \ x86_64_memio_subregion((t), (h), (o), (s), (nhp)) /* * int bus_space_alloc __P((bus_space_tag_t t, bus_addr_t rstart, * bus_addr_t rend, bus_size_t size, bus_size_t align, * bus_size_t boundary, int flags, bus_addr_t *addrp, * bus_space_handle_t *bshp)); * * Allocate a region of bus space. */ int x86_64_memio_alloc __P((bus_space_tag_t t, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t align, bus_size_t boundary, int flags, bus_addr_t *addrp, bus_space_handle_t *bshp)); #define bus_space_alloc(t, rs, re, s, a, b, f, ap, hp) \ x86_64_memio_alloc((t), (rs), (re), (s), (a), (b), (f), (ap), (hp)) /* * int bus_space_free __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t size)); * * Free a region of bus space. */ void x86_64_memio_free __P((bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size)); #define bus_space_free(t, h, s) \ x86_64_memio_free((t), (h), (s)) /* * void *bus_space_vaddr __P((bus_space_tag_t, bus_space_handle_t)); * * Get the kernel virtual address for the mapped bus space. * Only allowed for regions mapped with BUS_SPACE_MAP_LINEAR. * (XXX not enforced) */ #define bus_space_vaddr(t, h) \ ((t) == X86_64_BUS_SPACE_MEM ? (void *)(h) : (void *)0) /* * u_intN_t bus_space_read_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset)); * * Read a 1, 2, 4, or 8 byte quantity from bus space * described by tag/handle/offset. */ #define bus_space_read_1(t, h, o) \ ((t) == X86_64_BUS_SPACE_IO ? (inb((h) + (o))) : \ (*(volatile u_int8_t *)((h) + (o)))) #define bus_space_read_2(t, h, o) \ (__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"), \ ((t) == X86_64_BUS_SPACE_IO ? (inw((h) + (o))) : \ (*(volatile u_int16_t *)((h) + (o))))) #define bus_space_read_4(t, h, o) \ (__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"), \ ((t) == X86_64_BUS_SPACE_IO ? (inl((h) + (o))) : \ (*(volatile u_int32_t *)((h) + (o))))) #define bus_space_read_stream_1 bus_space_read_1 #define bus_space_read_stream_2 bus_space_read_2 #define bus_space_read_stream_4 bus_space_read_4 #if 0 /* Cause a link error for bus_space_read_8 */ #define bus_space_read_8(t, h, o) !!! bus_space_read_8 unimplemented !!! #define bus_space_read_stream_8(t, h, o) \ !!! bus_space_read_stream_8 unimplemented !!! #endif /* * void bus_space_read_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle/offset and copy into buffer provided. */ #define bus_space_read_multi_1(t, h, o, a, c) \ do { \ if ((t) == X86_64_BUS_SPACE_IO) { \ insb((h) + (o), (a), (c)); \ } else { \ void *dummy1; \ int dummy2; \ void *dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: movb (%2),%%al ; \ stosb ; \ loop 1b" : \ "=D" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \ "0" ((a)), "1" ((c)), "2" ((h) + (o)) : \ "memory"); \ } \ } while (0) #define bus_space_read_multi_2(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int16_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ insw((h) + (o), (a), (c)); \ } else { \ void *dummy1; \ int dummy2; \ void *dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: movw (%2),%%ax ; \ stosw ; \ loop 1b" : \ "=D" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \ "0" ((a)), "1" ((c)), "2" ((h) + (o)) : \ "memory"); \ } \ } while (0) #define bus_space_read_multi_4(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int32_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ insl((h) + (o), (a), (c)); \ } else { \ void *dummy1; \ int dummy2; \ void *dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: movl (%2),%%eax ; \ stosl ; \ loop 1b" : \ "=D" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \ "0" ((a)), "1" ((c)), "2" ((h) + (o)) : \ "memory"); \ } \ } while (0) #define bus_space_read_multi_stream_1 bus_space_read_multi_1 #define bus_space_read_multi_stream_2 bus_space_read_multi_2 #define bus_space_read_multi_stream_4 bus_space_read_multi_4 #if 0 /* Cause a link error for bus_space_read_multi_8 */ #define bus_space_read_multi_8 !!! bus_space_read_multi_8 unimplemented !!! #define bus_space_read_multi_stream_8 \ !!! bus_space_read_multi_stream_8 unimplemented !!! #endif /* * void bus_space_read_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle and starting at `offset' and copy into * buffer provided. */ #define bus_space_read_region_1(t, h, o, a, c) \ do { \ if ((t) == X86_64_BUS_SPACE_IO) { \ int dummy1; \ void *dummy2; \ int dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: inb %w1,%%al ; \ stosb ; \ incl %1 ; \ loop 1b" : \ "=&a" (__x), "=d" (dummy1), "=D" (dummy2), \ "=c" (dummy3) : \ "1" ((h) + (o)), "2" ((a)), "3" ((c)) : \ "memory"); \ } else { \ int dummy1; \ void *dummy2; \ int dummy3; \ __asm __volatile(" \ cld ; \ repne ; \ movsb" : \ "=S" (dummy1), "=D" (dummy2), "=c" (dummy3) : \ "0" ((h) + (o)), "1" ((a)), "2" ((c)) : \ "memory"); \ } \ } while (0) #define bus_space_read_region_2(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int16_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ int dummy1; \ void *dummy2; \ int dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: inw %w1,%%ax ; \ stosw ; \ addl $2,%1 ; \ loop 1b" : \ "=&a" (__x), "=d" (dummy1), "=D" (dummy2), \ "=c" (dummy3) : \ "1" ((h) + (o)), "2" ((a)), "3" ((c)) : \ "memory"); \ } else { \ int dummy1; \ void *dummy2; \ int dummy3; \ __asm __volatile(" \ cld ; \ repne ; \ movsw" : \ "=S" (dummy1), "=D" (dummy2), "=c" (dummy3) : \ "0" ((h) + (o)), "1" ((a)), "2" ((c)) : \ "memory"); \ } \ } while (0) #define bus_space_read_region_4(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int32_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ int dummy1; \ void *dummy2; \ int dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: inl %w1,%%eax ; \ stosl ; \ addl $4,%1 ; \ loop 1b" : \ "=&a" (__x), "=d" (dummy1), "=D" (dummy2), \ "=c" (dummy3) : \ "1" ((h) + (o)), "2" ((a)), "3" ((c)) : \ "memory"); \ } else { \ int dummy1; \ void *dummy2; \ int dummy3; \ __asm __volatile(" \ cld ; \ repne ; \ movsl" : \ "=S" (dummy1), "=D" (dummy2), "=c" (dummy3) : \ "0" ((h) + (o)), "1" ((a)), "2" ((c)) : \ "memory"); \ } \ } while (0) #define bus_space_read_region_stream_1 bus_space_read_region_1 #define bus_space_read_region_stream_2 bus_space_read_region_2 #define bus_space_read_region_stream_4 bus_space_read_region_4 #if 0 /* Cause a link error for bus_space_read_region_8 */ #define bus_space_read_region_8 !!! bus_space_read_region_8 unimplemented !!! #define bus_space_read_region_stream_8 \ !!! bus_space_read_region_stream_8 unimplemented !!! #endif /* * void bus_space_write_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t value)); * * Write the 1, 2, 4, or 8 byte value `value' to bus space * described by tag/handle/offset. */ #define bus_space_write_1(t, h, o, v) \ do { \ if ((t) == X86_64_BUS_SPACE_IO) \ outb((h) + (o), (v)); \ else \ ((void)(*(volatile u_int8_t *)((h) + (o)) = (v))); \ } while (0) #define bus_space_write_2(t, h, o, v) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) \ outw((h) + (o), (v)); \ else \ ((void)(*(volatile u_int16_t *)((h) + (o)) = (v))); \ } while (0) #define bus_space_write_4(t, h, o, v) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) \ outl((h) + (o), (v)); \ else \ ((void)(*(volatile u_int32_t *)((h) + (o)) = (v))); \ } while (0) #define bus_space_write_stream_1 bus_space_write_1 #define bus_space_write_stream_2 bus_space_write_2 #define bus_space_write_stream_4 bus_space_write_4 #if 0 /* Cause a link error for bus_space_write_8 */ #define bus_space_write_8 !!! bus_space_write_8 not implemented !!! #define bus_space_write_stream_8 \ !!! bus_space_write_stream_8 not implemented !!! #endif /* * void bus_space_write_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer * provided to bus space described by tag/handle/offset. */ #define bus_space_write_multi_1(t, h, o, a, c) \ do { \ if ((t) == X86_64_BUS_SPACE_IO) { \ outsb((h) + (o), (a), (c)); \ } else { \ void *dummy1; \ int dummy2; \ void *dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: lodsb ; \ movb %%al,(%2) ; \ loop 1b" : \ "=S" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \ "0" ((a)), "1" ((c)), "2" ((h) + (o))); \ } \ } while (0) #define bus_space_write_multi_2(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int16_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ outsw((h) + (o), (a), (c)); \ } else { \ void *dummy1; \ int dummy2; \ void *dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: lodsw ; \ movw %%ax,(%2) ; \ loop 1b" : \ "=S" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \ "0" ((a)), "1" ((c)), "2" ((h) + (o))); \ } \ } while (0) #define bus_space_write_multi_4(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int32_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ outsl((h) + (o), (a), (c)); \ } else { \ void *dummy1; \ int dummy2; \ void *dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: lodsl ; \ movl %%eax,(%2) ; \ loop 1b" : \ "=S" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \ "0" ((a)), "1" ((c)), "2" ((h) + (o))); \ } \ } while (0) #define bus_space_write_multi_stream_1 bus_space_write_multi_1 #define bus_space_write_multi_stream_2 bus_space_write_multi_2 #define bus_space_write_multi_stream_4 bus_space_write_multi_4 #if 0 /* Cause a link error for bus_space_write_multi_8 */ #define bus_space_write_multi_8(t, h, o, a, c) \ !!! bus_space_write_multi_8 unimplemented !!! #define bus_space_write_multi_stream_8(t, h, o, a, c) \ !!! bus_space_write_multi_stream_8 unimplemented !!! #endif /* * void bus_space_write_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer provided * to bus space described by tag/handle starting at `offset'. */ #define bus_space_write_region_1(t, h, o, a, c) \ do { \ if ((t) == X86_64_BUS_SPACE_IO) { \ int dummy1; \ void *dummy2; \ int dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: lodsb ; \ outb %%al,%w1 ; \ incl %1 ; \ loop 1b" : \ "=&a" (__x), "=d" (dummy1), "=S" (dummy2), \ "=c" (dummy3) : \ "1" ((h) + (o)), "2" ((a)), "3" ((c)) : \ "memory"); \ } else { \ int dummy1; \ void *dummy2; \ int dummy3; \ __asm __volatile(" \ cld ; \ repne ; \ movsb" : \ "=D" (dummy1), "=S" (dummy2), "=c" (dummy3) : \ "0" ((h) + (o)), "1" ((a)), "2" ((c)) : \ "memory"); \ } \ } while (0) #define bus_space_write_region_2(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int16_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ int dummy1; \ void *dummy2; \ int dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: lodsw ; \ outw %%ax,%w1 ; \ addl $2,%1 ; \ loop 1b" : \ "=&a" (__x), "=d" (dummy1), "=S" (dummy2), \ "=c" (dummy3) : \ "1" ((h) + (o)), "2" ((a)), "3" ((c)) : \ "memory"); \ } else { \ int dummy1; \ void *dummy2; \ int dummy3; \ __asm __volatile(" \ cld ; \ repne ; \ movsw" : \ "=D" (dummy1), "=S" (dummy2), "=c" (dummy3) : \ "0" ((h) + (o)), "1" ((a)), "2" ((c)) : \ "memory"); \ } \ } while (0) #define bus_space_write_region_4(t, h, o, a, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((a), u_int32_t, "buffer"); \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ if ((t) == X86_64_BUS_SPACE_IO) { \ int dummy1; \ void *dummy2; \ int dummy3; \ int __x; \ __asm __volatile(" \ cld ; \ 1: lodsl ; \ outl %%eax,%w1 ; \ addl $4,%1 ; \ loop 1b" : \ "=&a" (__x), "=d" (dummy1), "=S" (dummy2), \ "=c" (dummy3) : \ "1" ((h) + (o)), "2" ((a)), "3" ((c)) : \ "memory"); \ } else { \ int dummy1; \ void *dummy2; \ int dummy3; \ __asm __volatile(" \ cld ; \ repne ; \ movsl" : \ "=D" (dummy1), "=S" (dummy2), "=c" (dummy3) : \ "0" ((h) + (o)), "1" ((a)), "2" ((c)) : \ "memory"); \ } \ } while (0) #define bus_space_write_region_stream_1 bus_space_write_region_1 #define bus_space_write_region_stream_2 bus_space_write_region_2 #define bus_space_write_region_stream_4 bus_space_write_region_4 #if 0 /* Cause a link error for bus_space_write_region_8 */ #define bus_space_write_region_8 \ !!! bus_space_write_region_8 unimplemented !!! #define bus_space_write_region_stream_8 \ !!! bus_space_write_region_stream_8 unimplemented !!! #endif /* * void bus_space_set_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write the 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle/offset `count' times. */ static __inline void x86_64_memio_set_multi_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t, size_t)); static __inline void x86_64_memio_set_multi_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t, size_t)); static __inline void x86_64_memio_set_multi_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t, size_t)); #define bus_space_set_multi_1(t, h, o, v, c) \ x86_64_memio_set_multi_1((t), (h), (o), (v), (c)) #define bus_space_set_multi_2(t, h, o, v, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ x86_64_memio_set_multi_2((t), (h), (o), (v), (c)); \ } while (0) #define bus_space_set_multi_4(t, h, o, v, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ x86_64_memio_set_multi_4((t), (h), (o), (v), (c)); \ } while (0) static __inline void x86_64_memio_set_multi_1(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; u_int8_t v; size_t c; { bus_addr_t addr = h + o; if (t == X86_64_BUS_SPACE_IO) while (c--) outb(addr, v); else while (c--) *(volatile u_int8_t *)(addr) = v; } static __inline void x86_64_memio_set_multi_2(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; u_int16_t v; size_t c; { bus_addr_t addr = h + o; if (t == X86_64_BUS_SPACE_IO) while (c--) outw(addr, v); else while (c--) *(volatile u_int16_t *)(addr) = v; } static __inline void x86_64_memio_set_multi_4(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; u_int32_t v; size_t c; { bus_addr_t addr = h + o; if (t == X86_64_BUS_SPACE_IO) while (c--) outl(addr, v); else while (c--) *(volatile u_int32_t *)(addr) = v; } #if 0 /* Cause a link error for bus_space_set_multi_8 */ #define bus_space_set_multi_8 !!! bus_space_set_multi_8 unimplemented !!! #endif /* * void bus_space_set_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write `count' 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle starting at `offset'. */ static __inline void x86_64_memio_set_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t, size_t)); static __inline void x86_64_memio_set_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t, size_t)); static __inline void x86_64_memio_set_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t, size_t)); #define bus_space_set_region_1(t, h, o, v, c) \ x86_64_memio_set_region_1((t), (h), (o), (v), (c)) #define bus_space_set_region_2(t, h, o, v, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \ x86_64_memio_set_region_2((t), (h), (o), (v), (c)); \ } while (0) #define bus_space_set_region_4(t, h, o, v, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \ x86_64_memio_set_region_4((t), (h), (o), (v), (c)); \ } while (0) static __inline void x86_64_memio_set_region_1(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; u_int8_t v; size_t c; { bus_addr_t addr = h + o; if (t == X86_64_BUS_SPACE_IO) for (; c != 0; c--, addr++) outb(addr, v); else for (; c != 0; c--, addr++) *(volatile u_int8_t *)(addr) = v; } static __inline void x86_64_memio_set_region_2(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; u_int16_t v; size_t c; { bus_addr_t addr = h + o; if (t == X86_64_BUS_SPACE_IO) for (; c != 0; c--, addr += 2) outw(addr, v); else for (; c != 0; c--, addr += 2) *(volatile u_int16_t *)(addr) = v; } static __inline void x86_64_memio_set_region_4(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; u_int32_t v; size_t c; { bus_addr_t addr = h + o; if (t == X86_64_BUS_SPACE_IO) for (; c != 0; c--, addr += 4) outl(addr, v); else for (; c != 0; c--, addr += 4) *(volatile u_int32_t *)(addr) = v; } #if 0 /* Cause a link error for bus_space_set_region_8 */ #define bus_space_set_region_8 !!! bus_space_set_region_8 unimplemented !!! #endif /* * void bus_space_copy_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh1, bus_size_t off1, * bus_space_handle_t bsh2, bus_size_t off2, * size_t count)); * * Copy `count' 1, 2, 4, or 8 byte values from bus space starting * at tag/bsh1/off1 to bus space starting at tag/bsh2/off2. */ static __inline void x86_64_memio_copy_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, size_t)); static __inline void x86_64_memio_copy_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, size_t)); static __inline void x86_64_memio_copy_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, size_t)); #define bus_space_copy_region_1(t, h1, o1, h2, o2, c) \ x86_64_memio_copy_region_1((t), (h1), (o1), (h2), (o2), (c)) #define bus_space_copy_region_2(t, h1, o1, h2, o2, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h1) + (o1), u_int16_t, "bus addr 1"); \ __BUS_SPACE_ADDRESS_SANITY((h2) + (o2), u_int16_t, "bus addr 2"); \ x86_64_memio_copy_region_2((t), (h1), (o1), (h2), (o2), (c)); \ } while (0) #define bus_space_copy_region_4(t, h1, o1, h2, o2, c) \ do { \ __BUS_SPACE_ADDRESS_SANITY((h1) + (o1), u_int32_t, "bus addr 1"); \ __BUS_SPACE_ADDRESS_SANITY((h2) + (o2), u_int32_t, "bus addr 2"); \ x86_64_memio_copy_region_4((t), (h1), (o1), (h2), (o2), (c)); \ } while (0) static __inline void x86_64_memio_copy_region_1(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1; bus_size_t o1; bus_space_handle_t h2; bus_size_t o2; size_t c; { bus_addr_t addr1 = h1 + o1; bus_addr_t addr2 = h2 + o2; if (t == X86_64_BUS_SPACE_IO) { if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1++, addr2++) outb(addr2, inb(addr1)); } else { /* dest after src: copy backwards */ for (addr1 += (c - 1), addr2 += (c - 1); c != 0; c--, addr1--, addr2--) outb(addr2, inb(addr1)); } } else { if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1++, addr2++) *(volatile u_int8_t *)(addr2) = *(volatile u_int8_t *)(addr1); } else { /* dest after src: copy backwards */ for (addr1 += (c - 1), addr2 += (c - 1); c != 0; c--, addr1--, addr2--) *(volatile u_int8_t *)(addr2) = *(volatile u_int8_t *)(addr1); } } } static __inline void x86_64_memio_copy_region_2(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1; bus_size_t o1; bus_space_handle_t h2; bus_size_t o2; size_t c; { bus_addr_t addr1 = h1 + o1; bus_addr_t addr2 = h2 + o2; if (t == X86_64_BUS_SPACE_IO) { if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1 += 2, addr2 += 2) outw(addr2, inw(addr1)); } else { /* dest after src: copy backwards */ for (addr1 += 2 * (c - 1), addr2 += 2 * (c - 1); c != 0; c--, addr1 -= 2, addr2 -= 2) outw(addr2, inw(addr1)); } } else { if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1 += 2, addr2 += 2) *(volatile u_int16_t *)(addr2) = *(volatile u_int16_t *)(addr1); } else { /* dest after src: copy backwards */ for (addr1 += 2 * (c - 1), addr2 += 2 * (c - 1); c != 0; c--, addr1 -= 2, addr2 -= 2) *(volatile u_int16_t *)(addr2) = *(volatile u_int16_t *)(addr1); } } } static __inline void x86_64_memio_copy_region_4(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1; bus_size_t o1; bus_space_handle_t h2; bus_size_t o2; size_t c; { bus_addr_t addr1 = h1 + o1; bus_addr_t addr2 = h2 + o2; if (t == X86_64_BUS_SPACE_IO) { if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1 += 4, addr2 += 4) outl(addr2, inl(addr1)); } else { /* dest after src: copy backwards */ for (addr1 += 4 * (c - 1), addr2 += 4 * (c - 1); c != 0; c--, addr1 -= 4, addr2 -= 4) outl(addr2, inl(addr1)); } } else { if (addr1 >= addr2) { /* src after dest: copy forward */ for (; c != 0; c--, addr1 += 4, addr2 += 4) *(volatile u_int32_t *)(addr2) = *(volatile u_int32_t *)(addr1); } else { /* dest after src: copy backwards */ for (addr1 += 4 * (c - 1), addr2 += 4 * (c - 1); c != 0; c--, addr1 -= 4, addr2 -= 4) *(volatile u_int32_t *)(addr2) = *(volatile u_int32_t *)(addr1); } } } #if 0 /* Cause a link error for bus_space_copy_8 */ #define bus_space_copy_region_8 !!! bus_space_copy_region_8 unimplemented !!! #endif /* * Bus read/write barrier methods. * * void bus_space_barrier __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * bus_size_t len, int flags)); * * Note: the x86_64 does not currently require barriers, but we must * provide the flags to MI code. */ #define bus_space_barrier(t, h, o, l, f) \ ((void)((void)(t), (void)(h), (void)(o), (void)(l), (void)(f))) #define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */ #define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */ /* * Flags used in various bus DMA methods. */ #define BUS_DMA_WAITOK 0x000 /* safe to sleep (pseudo-flag) */ #define BUS_DMA_NOWAIT 0x001 /* not safe to sleep */ #define BUS_DMA_ALLOCNOW 0x002 /* perform resource allocation now */ #define BUS_DMA_COHERENT 0x004 /* hint: map memory DMA coherent */ #define BUS_DMA_STREAMING 0x008 /* hint: sequential, unidirectional */ #define BUS_DMA_BUS1 0x010 /* placeholders for bus functions... */ #define BUS_DMA_BUS2 0x020 #define BUS_DMA_BUS3 0x040 #define BUS_DMA_BUS4 0x080 #define BUS_DMA_READ 0x100 /* mapping is device -> memory only */ #define BUS_DMA_WRITE 0x200 /* mapping is memory -> device only */ /* Forwards needed by prototypes below. */ struct mbuf; struct uio; /* * Operations performed by bus_dmamap_sync(). */ #define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */ #define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */ #define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */ #define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */ typedef struct x86_64_bus_dma_tag *bus_dma_tag_t; typedef struct x86_64_bus_dmamap *bus_dmamap_t; /* * bus_dma_segment_t * * Describes a single contiguous DMA transaction. Values * are suitable for programming into DMA registers. */ struct x86_64_bus_dma_segment { bus_addr_t ds_addr; /* DMA address */ bus_size_t ds_len; /* length of transfer */ }; typedef struct x86_64_bus_dma_segment bus_dma_segment_t; /* * bus_dma_tag_t * * A machine-dependent opaque type describing the implementation of * DMA for a given bus. */ struct x86_64_bus_dma_tag { /* * The `bounce threshold' is checked while we are loading * the DMA map. If the physical address of the segment * exceeds the threshold, an error will be returned. The * caller can then take whatever action is necessary to * bounce the transfer. If this value is 0, it will be * ignored. */ bus_addr_t _bounce_thresh; /* * DMA mapping methods. */ int (*_dmamap_create) __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void (*_dmamap_destroy) __P((bus_dma_tag_t, bus_dmamap_t)); int (*_dmamap_load) __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int (*_dmamap_load_mbuf) __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int (*_dmamap_load_uio) __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int (*_dmamap_load_raw) __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void (*_dmamap_unload) __P((bus_dma_tag_t, bus_dmamap_t)); void (*_dmamap_sync) __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); /* * DMA memory utility functions. */ int (*_dmamem_alloc) __P((bus_dma_tag_t, bus_size_t, bus_size_t, bus_size_t, bus_dma_segment_t *, int, int *, int)); void (*_dmamem_free) __P((bus_dma_tag_t, bus_dma_segment_t *, int)); int (*_dmamem_map) __P((bus_dma_tag_t, bus_dma_segment_t *, int, size_t, caddr_t *, int)); void (*_dmamem_unmap) __P((bus_dma_tag_t, caddr_t, size_t)); paddr_t (*_dmamem_mmap) __P((bus_dma_tag_t, bus_dma_segment_t *, int, off_t, int, int)); }; #define bus_dmamap_create(t, s, n, m, b, f, p) \ (*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p)) #define bus_dmamap_destroy(t, p) \ (*(t)->_dmamap_destroy)((t), (p)) #define bus_dmamap_load(t, m, b, s, p, f) \ (*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f)) #define bus_dmamap_load_mbuf(t, m, b, f) \ (*(t)->_dmamap_load_mbuf)((t), (m), (b), (f)) #define bus_dmamap_load_uio(t, m, u, f) \ (*(t)->_dmamap_load_uio)((t), (m), (u), (f)) #define bus_dmamap_load_raw(t, m, sg, n, s, f) \ (*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f)) #define bus_dmamap_unload(t, p) \ (*(t)->_dmamap_unload)((t), (p)) #define bus_dmamap_sync(t, p, o, l, ops) \ (void)((t)->_dmamap_sync ? \ (*(t)->_dmamap_sync)((t), (p), (o), (l), (ops)) : (void)0) #define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \ (*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f)) #define bus_dmamem_free(t, sg, n) \ (*(t)->_dmamem_free)((t), (sg), (n)) #define bus_dmamem_map(t, sg, n, s, k, f) \ (*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f)) #define bus_dmamem_unmap(t, k, s) \ (*(t)->_dmamem_unmap)((t), (k), (s)) #define bus_dmamem_mmap(t, sg, n, o, p, f) \ (*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f)) /* * bus_dmamap_t * * Describes a DMA mapping. */ struct x86_64_bus_dmamap { /* * PRIVATE MEMBERS: not for use my machine-independent code. */ bus_size_t _dm_size; /* largest DMA transfer mappable */ int _dm_segcnt; /* number of segs this map can map */ bus_size_t _dm_maxsegsz; /* largest possible segment */ bus_size_t _dm_boundary; /* don't cross this */ bus_addr_t _dm_bounce_thresh; /* bounce threshold; see tag */ int _dm_flags; /* misc. flags */ void *_dm_cookie; /* cookie for bus-specific functions */ /* * PUBLIC MEMBERS: these are used by machine-independent code. */ bus_size_t dm_mapsize; /* size of the mapping */ int dm_nsegs; /* # valid segments in mapping */ bus_dma_segment_t dm_segs[1]; /* segments; variable length */ }; #ifdef _X86_64_BUS_DMA_PRIVATE int _bus_dmamap_create __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void _bus_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t)); int _bus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int _bus_dmamap_load_mbuf __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int _bus_dmamap_load_uio __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int _bus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void _bus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t)); void _bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); int _bus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)); void _bus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs)); int _bus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, size_t size, caddr_t *kvap, int flags)); void _bus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva, size_t size)); paddr_t _bus_dmamem_mmap __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, off_t off, int prot, int flags)); int _bus_dmamem_alloc_range __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, paddr_t low, paddr_t high)); #endif /* _X86_64_BUS_DMA_PRIVATE */ #endif /* _X86_64_BUS_H_ */