/* $NetBSD: if_ed.c,v 1.74 1995/05/01 02:39:30 mycroft Exp $ */ /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. * * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided that * the above copyright and these terms are retained. Under no circumstances is * the author responsible for the proper functioning of this software, nor does * the author assume any responsibility for damages incurred with its use. * * Currently supports the Western Digital/SMC 8003 and 8013 series, the SMC * Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, and a variety of * similar clones. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include #include /* XXX USES ISA HOLE DIRECTLY */ #include #include /* * ed_softc: per line info and status */ struct ed_softc { struct device sc_dev; void *sc_ih; struct arpcom sc_arpcom; /* ethernet common */ char *type_str; /* pointer to type string */ u_char vendor; /* interface vendor */ u_char type; /* interface type code */ int asic_addr; /* ASIC I/O bus address */ int nic_addr; /* NIC (DS8390) I/O bus address */ /* * The following 'proto' variable is part of a work-around for 8013EBT asics * being write-only. It's sort of a prototype/shadow of the real thing. */ u_char wd_laar_proto; /* * This `proto' variable is so we can turn MENB on and off without reading * the value back from the card all the time. */ u_char wd_msr_proto; u_char cr_proto; /* values always set in CR */ u_char isa16bit; /* width of access to card 0=8 or 1=16 */ u_char is790; /* set by probe if NIC is a 790 */ caddr_t mem_start; /* NIC memory start address */ caddr_t mem_end; /* NIC memory end address */ u_long mem_size; /* total NIC memory size */ caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */ u_char mem_shared; /* NIC memory is shared with host */ u_char xmit_busy; /* transmitter is busy */ u_char txb_cnt; /* number of transmit buffers */ u_char txb_inuse; /* number of TX buffers currently in-use*/ u_char txb_new; /* pointer to where new buffer will be added */ u_char txb_next_tx; /* pointer to next buffer ready to xmit */ u_short txb_len[8]; /* buffered xmit buffer lengths */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ }; int edprobe __P((struct device *, void *, void *)); void edattach __P((struct device *, struct device *, void *)); int edintr __P((void *)); int ed_ioctl __P((struct ifnet *, u_long, caddr_t)); void ed_start __P((struct ifnet *)); void ed_watchdog __P((int)); void ed_reset __P((struct ed_softc *)); void ed_init __P((struct ed_softc *)); void ed_stop __P((struct ed_softc *)); void ed_getmcaf __P((struct arpcom *, u_long *)); #define inline /* XXX for debugging porpoises */ void ed_get_packet __P((struct ed_softc *, caddr_t, u_short)); static inline void ed_rint __P((struct ed_softc *)); static inline void ed_xmit __P((struct ed_softc *)); static inline caddr_t ed_ring_copy __P((struct ed_softc *, caddr_t, caddr_t, u_short)); void ed_pio_readmem __P((struct ed_softc *, u_short, caddr_t, u_short)); void ed_pio_writemem __P((struct ed_softc *, caddr_t, u_short, u_short)); u_short ed_pio_write_mbufs __P((struct ed_softc *, struct mbuf *, u_short)); struct cfdriver edcd = { NULL, "ed", edprobe, edattach, DV_IFNET, sizeof(struct ed_softc) }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 #define NIC_PUT(sc, off, val) outb(sc->nic_addr + off, val) #define NIC_GET(sc, off) inb(sc->nic_addr + off) /* * Determine if the device is present. */ int edprobe(parent, match, aux) struct device *parent; void *match, *aux; { struct ed_softc *sc = match; struct cfdata *cf = sc->sc_dev.dv_cfdata; struct isa_attach_args *ia = aux; if (ed_probe_WD80x3(sc, cf, ia)) return (1); if (ed_probe_3Com(sc, cf, ia)) return (1); if (ed_probe_Novell(sc, cf, ia)) return (1); return (0); } /* * Generic probe routine for testing for the existance of a DS8390. Must be * called after the NIC has just been reset. This routine works by looking at * certain register values that are guaranteed to be initialized a certain way * after power-up or reset. Seems not to currently work on the 83C690. * * Specifically: * * Register reset bits set bits * Command Register (CR) TXP, STA RD2, STP * Interrupt Status (ISR) RST * Interrupt Mask (IMR) All bits * Data Control (DCR) LAS * Transmit Config. (TCR) LB1, LB0 * * We only look at the CR and ISR registers, however, because looking at the * others would require changing register pages (which would be intrusive if * this isn't an 8390). * * Return 1 if 8390 was found, 0 if not. */ int ed_probe_generic8390(sc) struct ed_softc *sc; { if ((NIC_GET(sc, ED_P0_CR) & (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) != (ED_CR_RD2 | ED_CR_STP)) return (0); if ((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST) return (0); return (1); } int ed_wd584_irq[] = { 9, 3, 5, 7, 10, 11, 15, 4 }; int ed_wd790_irq[] = { IRQUNK, 9, 3, 5, 7, 10, 11, 15 }; /* * Probe and vendor-specific initialization routine for SMC/WD80x3 boards. */ int ed_probe_WD80x3(sc, cf, ia) struct ed_softc *sc; struct cfdata *cf; struct isa_attach_args *ia; { int i; u_int memsize; u_char iptr, isa16bit, sum; sc->asic_addr = ia->ia_iobase; sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET; sc->is790 = 0; #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW); delay(10000); #endif /* * Attempt to do a checksum over the station address PROM. If it * fails, it's probably not a SMC/WD board. There is a problem with * this, though: some clone WD boards don't pass the checksum test. * Danpex boards for one. */ for (sum = 0, i = 0; i < 8; ++i) sum += inb(sc->asic_addr + ED_WD_PROM + i); if (sum != ED_WD_ROM_CHECKSUM_TOTAL) { /* * Checksum is invalid. This often happens with cheap WD8003E * clones. In this case, the checksum byte (the eighth byte) * seems to always be zero. */ if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E || inb(sc->asic_addr + ED_WD_PROM + 7) != 0) return (0); } /* Reset card to force it into a known state. */ #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW); #else outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST); #endif delay(100); outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST); /* Wait in the case this card is reading it's EEROM. */ delay(5000); sc->vendor = ED_VENDOR_WD_SMC; sc->type = inb(sc->asic_addr + ED_WD_CARD_ID); /* Set initial values for width/size. */ memsize = 8192; isa16bit = 0; switch (sc->type) { case ED_TYPE_WD8003S: sc->type_str = "WD8003S"; break; case ED_TYPE_WD8003E: sc->type_str = "WD8003E"; break; case ED_TYPE_WD8003EB: sc->type_str = "WD8003EB"; break; case ED_TYPE_WD8003W: sc->type_str = "WD8003W"; break; case ED_TYPE_WD8013EBT: sc->type_str = "WD8013EBT"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013W: sc->type_str = "WD8013W"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EP: /* also WD8003EP */ if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) { isa16bit = 1; memsize = 16384; sc->type_str = "WD8013EP"; } else sc->type_str = "WD8003EP"; break; case ED_TYPE_WD8013WC: sc->type_str = "WD8013WC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EBP: sc->type_str = "WD8013EBP"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EPC: sc->type_str = "WD8013EPC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_SMC8216C: sc->type_str = "SMC8216/SMC8216C"; memsize = 16384; isa16bit = 1; sc->is790 = 1; break; case ED_TYPE_SMC8216T: sc->type_str = "SMC8216T"; memsize = 16384; isa16bit = 1; sc->is790 = 1; break; #ifdef TOSH_ETHER case ED_TYPE_TOSHIBA1: sc->type_str = "Toshiba1"; memsize = 32768; isa16bit = 1; break; case ED_TYPE_TOSHIBA4: sc->type_str = "Toshiba4"; memsize = 32768; isa16bit = 1; break; #endif default: sc->type_str = NULL; break; } /* * Make some adjustments to initial values depending on what is found * in the ICR. */ if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) && #ifdef TOSH_ETHER (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) && #endif ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) { isa16bit = 0; memsize = 8192; } #ifdef ED_DEBUG printf("type=%x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n", sc->type, sc->type_str ?: "unknown", isa16bit, memsize, ia->ia_msize); for (i = 0; i < 8; i++) printf("%x -> %x\n", i, inb(sc->asic_addr + i)); #endif /* Allow the user to override the autoconfiguration. */ if (ia->ia_msize) memsize = ia->ia_msize; /* * (Note that if the user specifies both of the following flags that * '8-bit' mode intentionally has precedence.) */ if (cf->cf_flags & ED_FLAGS_FORCE_16BIT_MODE) isa16bit = 1; if (cf->cf_flags & ED_FLAGS_FORCE_8BIT_MODE) isa16bit = 0; /* * If possible, get the assigned interrupt number from the card and * use it. */ if (sc->is790) { u_char x; /* Assemble together the encoded interrupt number. */ outb(ia->ia_iobase + ED_WD790_HWR, inb(ia->ia_iobase + ED_WD790_HWR) | ED_WD790_HWR_SWH); x = inb(ia->ia_iobase + ED_WD790_GCR); iptr = ((x & ED_WD790_GCR_IR2) >> 4) | ((x & (ED_WD790_GCR_IR1|ED_WD790_GCR_IR0)) >> 2); outb(ia->ia_iobase + ED_WD790_HWR, inb(ia->ia_iobase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH); /* * Translate it using translation table, and check for * correctness. */ if (ia->ia_irq != IRQUNK) { if (ia->ia_irq != ed_wd790_irq[iptr]) { printf("%s: irq mismatch; kernel configured %d != board configured %d\n", sc->sc_dev.dv_xname, ia->ia_irq, ed_wd790_irq[iptr]); return (0); } } else ia->ia_irq = ed_wd790_irq[iptr]; /* Enable the interrupt. */ outb(ia->ia_iobase + ED_WD790_ICR, inb(ia->ia_iobase + ED_WD790_ICR) | ED_WD790_ICR_EIL); } else if (sc->type & ED_WD_SOFTCONFIG) { /* Assemble together the encoded interrupt number. */ iptr = (inb(ia->ia_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) | ((inb(ia->ia_iobase + ED_WD_IRR) & (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5); /* * Translate it using translation table, and check for * correctness. */ if (ia->ia_irq != IRQUNK) { if (ia->ia_irq != ed_wd584_irq[iptr]) { printf("%s: irq mismatch; kernel configured %d != board configured %d\n", sc->sc_dev.dv_xname, ia->ia_irq, ed_wd584_irq[iptr]); return (0); } } else ia->ia_irq = ed_wd584_irq[iptr]; /* Enable the interrupt. */ outb(ia->ia_iobase + ED_WD_IRR, inb(ia->ia_iobase + ED_WD_IRR) | ED_WD_IRR_IEN); } else { if (ia->ia_irq == IRQUNK) { printf("%s: %s does not have soft configuration\n", sc->sc_dev.dv_xname, sc->type_str); return (0); } } /* XXX Figure out the shared memory address. */ sc->isa16bit = isa16bit; sc->mem_shared = 1; ia->ia_msize = memsize; sc->mem_start = ISA_HOLE_VADDR(ia->ia_maddr); /* Allocate one xmit buffer if < 16k, two buffers otherwise. */ if ((memsize < 16384) || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = ED_WD_PAGE_OFFSET; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT); sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT); sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* Get station address from on-board ROM. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i); /* * Set upper address bits and 8/16 bit access to shared memory. */ if (isa16bit) { if (sc->is790) { sc->wd_laar_proto = inb(sc->asic_addr + ED_WD_LAAR) & ~ED_WD_LAAR_M16EN; } else { sc->wd_laar_proto = ED_WD_LAAR_L16EN | ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI); } outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); } else { if ((sc->type & ED_WD_SOFTCONFIG) || #ifdef TOSH_ETHER (sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) || #endif (sc->type == ED_TYPE_WD8013EBT) && !sc->is790) { sc->wd_laar_proto = ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI); outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } } /* * Set address and enable interface shared memory. */ if (!sc->is790) { #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4); outb(sc->asic_addr + ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f)); sc->wd_msr_proto = ED_WD_MSR_POW; #else sc->wd_msr_proto = (kvtop(sc->mem_start) >> 13) & ED_WD_MSR_ADDR; #endif sc->cr_proto = ED_CR_RD2; } else { outb(sc->asic_addr + 0x04, inb(sc->asic_addr + 0x04) | 0x80); outb(sc->asic_addr + 0x0b, ((kvtop(sc->mem_start) >> 13) & 0x0f) | ((kvtop(sc->mem_start) >> 11) & 0x40) | (inb(sc->asic_addr + 0x0b) & 0xb0)); outb(sc->asic_addr + 0x04, inb(sc->asic_addr + 0x04) & ~0x80); sc->wd_msr_proto = 0x00; sc->cr_proto = 0; } outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto | ED_WD_MSR_MENB); (void) inb(0x84); (void) inb(0x84); /* Now zero memory and verify that it is clear. */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { printf("%s: failed to clear shared memory at %x - check configuration\n", sc->sc_dev.dv_xname, kvtop(sc->mem_start + i)); /* Disable 16 bit access to shared memory. */ outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto); if (isa16bit) outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); (void) inb(0x84); (void) inb(0x84); return (0); } /* * Disable 16bit access to shared memory - we leave it disabled * so that 1) machines reboot properly when the board is set 16 * 16 bit mode and there are conflicting 8bit devices/ROMS in * the same 128k address space as this boards shared memory, * and 2) so that other 8 bit devices with shared memory can be * used in this 128k region, too. */ outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto); if (isa16bit) outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); (void) inb(0x84); (void) inb(0x84); ia->ia_iosize = ED_WD_IO_PORTS; return (1); } int ed_3com_iobase[] = {0x2e0, 0x2a0, 0x280, 0x250, 0x350, 0x330, 0x310, 0x300}; int ed_3com_maddr[] = {MADDRUNK, MADDRUNK, MADDRUNK, MADDRUNK, 0xc8000, 0xcc000, 0xd8000, 0xdc000}; #if 0 int ed_3com_irq[] = {IRQUNK, IRQUNK, IRQUNK, IRQUNK, 9, 3, 4, 5}; #endif /* * Probe and vendor-specific initialization routine for 3Com 3c503 boards. */ int ed_probe_3Com(sc, cf, ia) struct ed_softc *sc; struct cfdata *cf; struct isa_attach_args *ia; { int i; u_int memsize; u_char isa16bit, sum, x; int ptr; sc->asic_addr = ia->ia_iobase + ED_3COM_ASIC_OFFSET; sc->nic_addr = ia->ia_iobase + ED_3COM_NIC_OFFSET; /* * Verify that the kernel configured I/O address matches the board * configured address. * * This is really only useful to see if something that looks like the * board is there; after all, we are already talking it at that * address. */ x = inb(sc->asic_addr + ED_3COM_BCFR); if (x == 0 || (x & (x - 1)) != 0) return (0); ptr = ffs(x) - 1; if (ia->ia_iobase != IOBASEUNK) { if (ia->ia_iobase != ed_3com_iobase[ptr]) { printf("%s: %s mismatch; kernel configured %x != board configured %x\n", "iobase", sc->sc_dev.dv_xname, ia->ia_iobase, ed_3com_iobase[ptr]); return (0); } } else ia->ia_iobase = ed_3com_iobase[ptr]; x = inb(sc->asic_addr + ED_3COM_PCFR); if (x == 0 || (x & (x - 1)) != 0) return (0); ptr = ffs(x) - 1; if (ia->ia_maddr != MADDRUNK) { if (ia->ia_maddr != ed_3com_maddr[ptr]) { printf("%s: %s mismatch; kernel configured %x != board configured %x\n", "maddr", sc->sc_dev.dv_xname, ia->ia_maddr, ed_3com_maddr[ptr]); return (0); } } else ia->ia_maddr = ed_3com_maddr[ptr]; #if 0 x = inb(sc->asic_addr + ED_3COM_IDCFR) & ED_3COM_IDCFR_IRQ; if (x == 0 || (x & (x - 1)) != 0) return (0); ptr = ffs(x) - 1; if (ia->ia_irq != IRQUNK) { if (ia->ia_irq != ed_3com_irq[ptr]) { printf("%s: irq mismatch; kernel configured %d != board configured %d\n", sc->sc_dev.dv_xname, ia->ia_irq, ed_3com_irq[ptr]); return (0); } } else ia->ia_irq = ed_3com_irq[ptr]; #endif /* * Reset NIC and ASIC. Enable on-board transceiver throughout reset * sequence because it'll lock up if the cable isn't connected if we * don't. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL); /* Wait for a while, then un-reset it. */ delay(50); /* * The 3Com ASIC defaults to rather strange settings for the CR after a * reset - it's important to set it again after the following outb * (this is done when we map the PROM below). */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); /* Wait a bit for the NIC to recover from the reset. */ delay(5000); sc->vendor = ED_VENDOR_3COM; sc->type_str = "3c503"; sc->mem_shared = 1; sc->cr_proto = ED_CR_RD2; /* * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window * to it. */ memsize = 8192; /* * Get station address from on-board ROM. * * First, map ethernet address PROM over the top of where the NIC * registers normally appear. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL); for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = NIC_GET(sc, i); /* * Unmap PROM - select NIC registers. The proper setting of the * tranceiver is set in ed_init so that the attach code is given a * chance to set the default based on a compile-time config option. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); /* Determine if this is an 8bit or 16bit board. */ /* Select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP); /* * Attempt to clear WTS bit. If it doesn't clear, then this is a * 16-bit board. */ NIC_PUT(sc, ED_P0_DCR, 0); /* Select page 2 registers. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_2 | ED_CR_STP); /* The 3c503 forces the WTS bit to a one if this is a 16bit board. */ if (NIC_GET(sc, ED_P2_DCR) & ED_DCR_WTS) isa16bit = 1; else isa16bit = 0; /* Select page 0 registers. */ NIC_PUT(sc, ED_P2_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP); sc->mem_start = ISA_HOLE_VADDR(ia->ia_maddr); sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * We have an entire 8k window to put the transmit buffers on the * 16-bit boards. But since the 16bit 3c503's shared memory is only * fast enough to overlap the loading of one full-size packet, trying * to load more than 2 buffers can actually leave the transmitter idle * during the load. So 2 seems the best value. (Although a mix of * variable-sized packets might change this assumption. Nonetheless, * we optimize for linear transfers of same-size packets.) */ if (isa16bit) { if (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT; sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT; sc->rec_page_stop = (memsize >> ED_PAGE_SHIFT) + ED_3COM_RX_PAGE_OFFSET_16BIT; sc->mem_ring = sc->mem_start; } else { sc->txb_cnt = 1; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_stop = (memsize >> ED_PAGE_SHIFT) + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->mem_ring = sc->mem_start + (ED_TXBUF_SIZE << ED_PAGE_SHIFT); } sc->isa16bit = isa16bit; /* * Initialize GA page start/stop registers. Probably only needed if * doing DMA, but what the Hell. */ outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start); outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop); /* Set IRQ. 3c503 only allows a choice of irq 3-5 or 9. */ switch (ia->ia_irq) { case 9: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2); break; case 3: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3); break; case 4: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4); break; case 5: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5); break; default: printf("%s: invalid irq configuration (%d) must be 3-5 or 9 for 3c503\n", sc->sc_dev.dv_xname, ia->ia_irq); return (0); } /* * Initialize GA configuration register. Set bank and enable shared * mem. */ outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); /* * Initialize "Vector Pointer" registers. These gawd-awful things are * compared to 20 bits of the address on ISA, and if they match, the * shared memory is disabled. We set them to 0xffff0...allegedly the * reset vector. */ outb(sc->asic_addr + ED_3COM_VPTR2, 0xff); outb(sc->asic_addr + ED_3COM_VPTR1, 0xff); outb(sc->asic_addr + ED_3COM_VPTR0, 0x00); /* Zero memory and verify that it is clear. */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { printf("%s: failed to clear shared memory at %x - check configuration\n", sc->sc_dev.dv_xname, kvtop(sc->mem_start + i)); return (0); } ia->ia_msize = memsize; ia->ia_iosize = ED_3COM_IO_PORTS; return (1); } /* * Probe and vendor-specific initialization routine for NE1000/2000 boards. */ int ed_probe_Novell(sc, cf, ia) struct ed_softc *sc; struct cfdata *cf; struct isa_attach_args *ia; { u_int memsize, n; u_char romdata[16], isa16bit = 0, tmp; static u_char test_pattern[32] = "THIS is A memory TEST pattern"; u_char test_buffer[32]; sc->asic_addr = ia->ia_iobase + ED_NOVELL_ASIC_OFFSET; sc->nic_addr = ia->ia_iobase + ED_NOVELL_NIC_OFFSET; /* XXX - do Novell-specific probe here */ /* Reset the board. */ #ifdef GWETHER outb(sc->asic_addr + ED_NOVELL_RESET, 0); delay(200); #endif /* GWETHER */ tmp = inb(sc->asic_addr + ED_NOVELL_RESET); /* * I don't know if this is necessary; probably cruft leftover from * Clarkson packet driver code. Doesn't do a thing on the boards I've * tested. -DG [note that a outb(0x84, 0) seems to work here, and is * non-invasive...but some boards don't seem to reset and I don't have * complete documentation on what the 'right' thing to do is...so we do * the invasive thing for now. Yuck.] */ outb(sc->asic_addr + ED_NOVELL_RESET, tmp); delay(5000); /* * This is needed because some NE clones apparently don't reset the NIC * properly (or the NIC chip doesn't reset fully on power-up) * XXX - this makes the probe invasive! ...Done against my better * judgement. -DLG */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP); delay(5000); /* Make sure that we really have an 8390 based board. */ if (!ed_probe_generic8390(sc)) return (0); sc->vendor = ED_VENDOR_NOVELL; sc->mem_shared = 0; sc->cr_proto = ED_CR_RD2; ia->ia_msize = 0; /* * Test the ability to read and write to the NIC memory. This has the * side affect of determining if this is an NE1000 or an NE2000. */ /* * This prevents packets from being stored in the NIC memory when the * readmem routine turns on the start bit in the CR. */ NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON); /* Temporarily initialize DCR for byte operations. */ NIC_PUT(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); NIC_PUT(sc, ED_P0_PSTART, 8192 >> ED_PAGE_SHIFT); NIC_PUT(sc, ED_P0_PSTOP, 16384 >> ED_PAGE_SHIFT); sc->isa16bit = 0; /* * Write a test pattern in byte mode. If this fails, then there * probably isn't any memory at 8k - which likely means that the board * is an NE2000. */ ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern)); ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) { /* not an NE1000 - try NE2000 */ NIC_PUT(sc, ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS); NIC_PUT(sc, ED_P0_PSTART, 16384 >> ED_PAGE_SHIFT); NIC_PUT(sc, ED_P0_PSTOP, 32768 >> ED_PAGE_SHIFT); sc->isa16bit = 1; /* * Write a test pattern in word mode. If this also fails, then * we don't know what this board is. */ ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern)); ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) return (0); /* not an NE2000 either */ sc->type = ED_TYPE_NE2000; sc->type_str = "NE2000"; } else { sc->type = ED_TYPE_NE1000; sc->type_str = "NE1000"; } if (ia->ia_irq == IRQUNK) { printf("%s: %s does not have soft configuration\n", sc->sc_dev.dv_xname, sc->type_str); return (0); } /* 8k of memory plus an additional 8k if 16-bit. */ memsize = 8192 + sc->isa16bit * 8192; #if 0 /* probably not useful - NE boards only come two ways */ /* Allow kernel config file overrides. */ if (ia->ia_msize) memsize = ia->ia_msize; #endif /* NIC memory doesn't start at zero on an NE board. */ /* The start address is tied to the bus width. */ sc->mem_start = (caddr_t)(8192 + sc->isa16bit * 8192); sc->tx_page_start = memsize >> ED_PAGE_SHIFT; #ifdef GWETHER { int x, i, mstart = 0; char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE]; for (i = 0; i < ED_PAGE_SIZE; i++) pbuf0[i] = 0; /* Search for the start of RAM. */ for (x = 1; x < 256; x++) { ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE)) { mstart = x << ED_PAGE_SHIFT; memsize = ED_PAGE_SIZE; break; } } } if (mstart == 0) { printf("%s: cannot find start of RAM\n", sc->sc_dev.dv_xname); return (0); } /* Search for the end of RAM. */ for (++x; x < 256; x++) { ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE)) memsize += ED_PAGE_SIZE; else break; } else break; } printf("%s: RAM start %x, size %d\n", sc->sc_dev.dv_xname, mstart, memsize); sc->mem_start = (caddr_t)mstart; sc->tx_page_start = mstart >> ED_PAGE_SHIFT; } #endif /* GWETHER */ sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * Use one xmit buffer if < 16k, two buffers otherwise (if not told * otherwise). */ if ((memsize < 16384) || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT); sc->mem_ring = sc->mem_start + ((sc->txb_cnt * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); ed_pio_readmem(sc, 0, romdata, 16); for (n = 0; n < ETHER_ADDR_LEN; n++) sc->sc_arpcom.ac_enaddr[n] = romdata[n*(sc->isa16bit+1)]; #ifdef GWETHER if (sc->arpcom.ac_enaddr[2] == 0x86) sc->type_str = "Gateway AT"; #endif /* GWETHER */ /* Clear any pending interrupts that might have occurred above. */ NIC_PUT(sc, ED_P0_ISR, 0xff); ia->ia_iosize = ED_NOVELL_IO_PORTS; return (1); } /* * Install interface into kernel networking data structures. */ void edattach(parent, self, aux) struct device *parent, *self; void *aux; { struct ed_softc *sc = (void *)self; struct isa_attach_args *ia = aux; struct cfdata *cf = sc->sc_dev.dv_cfdata; struct ifnet *ifp = &sc->sc_arpcom.ac_if; /* Set interface to stopped condition (reset). */ ed_stop(sc); /* Initialize ifnet structure. */ ifp->if_unit = sc->sc_dev.dv_unit; ifp->if_name = edcd.cd_name; ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_watchdog = ed_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; /* * Set default state for LINK0 flag (used to disable the tranceiver * for AUI operation), based on compile-time config option. */ switch (sc->vendor) { case ED_VENDOR_3COM: if (cf->cf_flags & ED_FLAGS_DISABLE_TRANCEIVER) ifp->if_flags |= IFF_LINK0; break; case ED_VENDOR_WD_SMC: if ((sc->type & ED_WD_SOFTCONFIG) == 0) break; if ((inb(sc->asic_addr + ED_WD_IRR) & ED_WD_IRR_OUT2) == 0) ifp->if_flags |= IFF_LINK0; break; } /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); /* Print additional info when attached. */ printf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr)); if (sc->type_str) printf("type %s ", sc->type_str); else printf("type unknown (0x%x) ", sc->type); printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)"); switch (sc->vendor) { case ED_VENDOR_WD_SMC: if ((sc->type & ED_WD_SOFTCONFIG) == 0) break; case ED_VENDOR_3COM: if (ifp->if_flags & IFF_LINK0) printf(" aui"); else printf(" bnc"); break; } printf("\n"); #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif sc->sc_ih = isa_intr_establish(ia->ia_irq, ISA_IST_EDGE, ISA_IPL_NET, edintr, sc); } /* * Reset interface. */ void ed_reset(sc) struct ed_softc *sc; { int s; s = splimp(); ed_stop(sc); ed_init(sc); splx(s); } /* * Take interface offline. */ void ed_stop(sc) struct ed_softc *sc; { int n = 5000; /* Stop everything on the interface, and select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to generate * an interrupt after a transmit has been started on it. */ void ed_watchdog(unit) int unit; { struct ed_softc *sc = edcd.cd_devs[unit]; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++sc->sc_arpcom.ac_if.if_oerrors; ed_reset(sc); } /* * Initialize device. */ void ed_init(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i, s; u_char command; u_long mcaf[2]; /* Address not known. */ if (ifp->if_addrlist == 0) return; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ s = splimp(); /* Reset transmitter flags. */ sc->xmit_busy = 0; sc->sc_arpcom.ac_if.if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* Set interface for page 0, remote DMA complete, stopped. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); if (sc->isa16bit) { /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ NIC_PUT(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); } else { /* Same as above, but byte-wide DMA xfers. */ NIC_PUT(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); } /* Clear remote byte count registers. */ NIC_PUT(sc, ED_P0_RBCR0, 0); NIC_PUT(sc, ED_P0_RBCR1, 0); /* Tell RCR to do nothing for now. */ NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON); /* Place NIC in internal loopback mode. */ NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0); /* Set lower bits of byte addressable framing to 0. */ if (sc->is790) NIC_PUT(sc, 0x09, 0); /* Initialize receive buffer ring. */ NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start); NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start); NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ NIC_PUT(sc, ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ NIC_PUT(sc, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* Program command register for page 1. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* Copy out our station address. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]); /* Set multicast filter on chip. */ ed_getmcaf(&sc->sc_arpcom, mcaf); for (i = 0; i < 8; i++) NIC_PUT(sc, ED_P1_MAR0 + i, ((u_char *)mcaf)[i]); /* * Set current page pointer to one page after the boundary pointer, as * recommended in the National manual. */ sc->next_packet = sc->rec_page_start + 1; NIC_PUT(sc, ED_P1_CURR, sc->next_packet); /* Program command register for page 0. */ NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); i = ED_RCR_AB | ED_RCR_AM; if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode. Multicast filter was set earlier so * that we should receive all multicast packets. */ i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP; } NIC_PUT(sc, ED_P0_RCR, i); /* Take interface out of loopback. */ NIC_PUT(sc, ED_P0_TCR, 0); /* * If this is a 3Com board, the tranceiver must be software enabled * (there is no settable hardware default). */ switch (sc->vendor) { u_char x; case ED_VENDOR_3COM: if (ifp->if_flags & IFF_LINK0) outb(sc->asic_addr + ED_3COM_CR, 0); else outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); break; case ED_VENDOR_WD_SMC: if ((sc->type & ED_WD_SOFTCONFIG) == 0) break; x = inb(sc->asic_addr + ED_WD_IRR); if (ifp->if_flags & IFF_LINK0) x &= ~ED_WD_IRR_OUT2; else x |= ED_WD_IRR_OUT2; outb(sc->asic_addr + ED_WD_IRR, x); break; } /* Fire up the interface. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* ...and attempt to start output. */ ed_start(ifp); splx(s); } /* * This routine actually starts the transmission on the interface. */ static inline void ed_xmit(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_short len; len = sc->txb_len[sc->txb_next_tx]; /* Set NIC for page 0 register access. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set TX buffer start page. */ NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* Set TX length. */ NIC_PUT(sc, ED_P0_TBCR0, len); NIC_PUT(sc, ED_P0_TBCR1, len >> 8); /* Set page 0, remote DMA complete, transmit packet, and *start*. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA); sc->xmit_busy = 1; /* Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* Set a timer just in case we never hear from the board again. */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splimp _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void ed_start(ifp) struct ifnet *ifp; { struct ed_softc *sc = edcd.cd_devs[ifp->if_unit]; struct mbuf *m0, *m; caddr_t buffer; int len; outloop: /* * First, see if there are buffered packets and an idle transmitter - * should never happen at this point. */ if (sc->txb_inuse && (sc->xmit_busy == 0)) { printf("%s: packets buffered, but transmitter idle\n", sc->sc_dev.dv_xname); ed_xmit(sc); } /* See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m); if (m == 0) { /* * We are using the !OACTIVE flag to indicate to the outside * world that we can accept an additional packet rather than * that the transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't filled all the * buffers with data then we still want to accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; } /* Copy the mbuf chain into the transmit buffer. */ m0 = m; /* txb_new points to next open buffer slot. */ buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); if (sc->mem_shared) { /* Special case setup for 16 bit boards... */ switch (sc->vendor) { /* * For 16bit 3Com boards (which have 16k of memory), we * have the xmit buffers in a different page of memory * ('page 0') - so change pages. */ case ED_VENDOR_3COM: if (sc->isa16bit) outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL); break; /* * Enable 16bit access to shared memory on WD/SMC * boards. */ case ED_VENDOR_WD_SMC: if (sc->isa16bit) outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto | ED_WD_MSR_MENB); (void) inb(0x84); (void) inb(0x84); break; } for (len = 0; m; m = m->m_next) { bcopy(mtod(m, caddr_t), buffer, m->m_len); buffer += m->m_len; len += m->m_len; } /* Restore previous shared memory access. */ switch (sc->vendor) { case ED_VENDOR_3COM: if (sc->isa16bit) outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); break; case ED_VENDOR_WD_SMC: outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto); if (sc->isa16bit) outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); (void) inb(0x84); (void) inb(0x84); break; } } else len = ed_pio_write_mbufs(sc, m, (long)buffer); sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN); sc->txb_inuse++; /* Point to next buffer slot and wrap if necessary. */ if (++sc->txb_new == sc->txb_cnt) sc->txb_new = 0; if (sc->xmit_busy == 0) ed_xmit(sc); #if NBPFILTER > 0 /* Tap off here if there is a BPF listener. */ if (sc->sc_arpcom.ac_if.if_bpf) bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0); #endif m_freem(m0); /* Loop back to the top to possibly buffer more packets. */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static inline void ed_rint(sc) struct ed_softc *sc; { u_char boundary, current; u_short len; u_char nlen; struct ed_ring packet_hdr; caddr_t packet_ptr; loop: /* Set NIC to page 1 registers to get 'current' pointer. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' (current) * register points to the logical end of the ring-buffer - i.e. it * points to where additional new data will be added. We loop here * until the logical beginning equals the logical end (or in other * words, until the ring-buffer is empty). */ current = NIC_GET(sc, ED_P1_CURR); if (sc->next_packet == current) return; /* Set NIC to page 0 registers to update boundary register. */ NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); do { /* Get pointer to this buffer's header structure. */ packet_ptr = sc->mem_ring + ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT); /* * The byte count includes a 4 byte header that was added by * the NIC. */ if (sc->mem_shared) packet_hdr = *(struct ed_ring *)packet_ptr; else ed_pio_readmem(sc, (long)packet_ptr, (caddr_t) &packet_hdr, sizeof(packet_hdr)); len = packet_hdr.count; /* * Try do deal with old, buggy chips that sometimes duplicate * the low byte of the length into the high byte. We do this * by simply ignoring the high byte of the length and always * recalculating it. * * NOTE: sc->next_packet is pointing at the current packet. */ if (packet_hdr.next_packet >= sc->next_packet) nlen = (packet_hdr.next_packet - sc->next_packet); else nlen = ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)); --nlen; if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE) --nlen; len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT); #ifdef DIAGNOSTIC if (len != packet_hdr.count) { printf("%s: length does not match next packet pointer\n", sc->sc_dev.dv_xname); printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n", sc->sc_dev.dv_xname, packet_hdr.count, len, sc->rec_page_start, sc->next_packet, current, packet_hdr.next_packet, sc->rec_page_stop); } #endif /* * Be fairly liberal about what we allow as a "reasonable" * length so that a [crufty] packet will make it to BPF (and * can thus be analyzed). Note that all that is really * important is that we have a length that will fit into one * mbuf cluster or less; the upper layer protocols can then * figure out the length from their own length field(s). */ if (len <= MCLBYTES && packet_hdr.next_packet >= sc->rec_page_start && packet_hdr.next_packet < sc->rec_page_stop) { /* Go get packet. */ ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring), len - sizeof(struct ed_ring)); ++sc->sc_arpcom.ac_if.if_ipackets; } else { /* Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", sc->sc_dev.dv_xname, len); ++sc->sc_arpcom.ac_if.if_ierrors; ed_reset(sc); return; } /* Update next packet pointer. */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundary pointer - being careful to keep it one * buffer behind (as recommended by NS databook). */ boundary = sc->next_packet - 1; if (boundary < sc->rec_page_start) boundary = sc->rec_page_stop - 1; NIC_PUT(sc, ED_P0_BNRY, boundary); } while (sc->next_packet != current); goto loop; } /* Ethernet interface interrupt processor. */ int edintr(arg) void *arg; { struct ed_softc *sc = arg; u_char isr; /* Set NIC to page 0 registers. */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); isr = NIC_GET(sc, ED_P0_ISR); if (!isr) return (0); /* Loop until there are no more new interrupts. */ for (;;) { /* * Reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set. * (Writing a '1' *clears* the bit.) */ NIC_PUT(sc, ED_P0_ISR, isr); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow the * automatic mechanisms of TCP to backoff the flow. Of * course, with UDP we're screwed, but this is expected * when a network is heavily loaded. */ (void) NIC_GET(sc, ED_P0_TSR); if (isr & ED_ISR_TXE) { /* * Excessive collisions (16). */ if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the P0_NCR * will indicate 0, and the TSR_ABT is * set. */ collisions = 16; } /* Update output errors counter. */ ++sc->sc_arpcom.ac_if.if_oerrors; } else { /* * Update total number of successfully * transmitted packets. */ ++sc->sc_arpcom.ac_if.if_opackets; } /* Reset TX busy and output active flags. */ sc->xmit_busy = 0; sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE; /* Clear watchdog timer. */ sc->sc_arpcom.ac_if.if_timer = 0; /* * Add in total number of collisions on last * transmission. */ sc->sc_arpcom.ac_if.if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while not * actually transmitting). * If data is ready to transmit, start it transmitting, * otherwise defer until after handling receiver. */ if (sc->txb_inuse && --sc->txb_inuse) ed_xmit(sc); } /* Handle receiver interrupts. */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++sc->sc_arpcom.ac_if.if_ierrors; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", sc->sc_dev.dv_xname); #endif /* Stop/reset/re-init NIC. */ ed_reset(sc); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++sc->sc_arpcom.ac_if.if_ierrors; #ifdef ED_DEBUG printf("%s: receive error %x\n", sc->sc_dev.dv_xname, NIC_GET(sc, ED_P0_RSR)); #endif } /* * Go get the packet(s). * XXX - Doing this on an error is dubious * because there shouldn't be any data to get * (we've configured the interface to not * accept packets with errors). */ /* * Enable 16bit access to shared memory first * on WD/SMC boards. */ if (sc->vendor == ED_VENDOR_WD_SMC) { if (sc->isa16bit) outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto | ED_WD_MSR_MENB); (void) inb(0x84); (void) inb(0x84); } ed_rint(sc); /* Disable 16-bit access. */ if (sc->vendor == ED_VENDOR_WD_SMC) { outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto); if (sc->isa16bit) outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); (void) inb(0x84); (void) inb(0x84); } } } /* * If it looks like the transmitter can take more data, attempt * to start output on the interface. This is done after * handling the receiver to give the receiver priority. */ if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0) ed_start(&sc->sc_arpcom.ac_if); /* * Return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high). */ NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) NIC_GET(sc, ED_P0_CNTR0); (void) NIC_GET(sc, ED_P0_CNTR1); (void) NIC_GET(sc, ED_P0_CNTR2); } isr = NIC_GET(sc, ED_P0_ISR); if (!isr) return (1); } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int ed_ioctl(ifp, command, data) register struct ifnet *ifp; u_long command; caddr_t data; { struct ed_softc *sc = edcd.cd_devs[ifp->if_unit]; register struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splimp(); switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ed_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif #ifdef NS /* XXX - This code is probably wrong. */ case AF_NS: { register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)(sc->sc_arpcom.ac_enaddr); else bcopy(ina->x_host.c_host, sc->sc_arpcom.ac_enaddr, sizeof(sc->sc_arpcom.ac_enaddr)); /* Set new address. */ ed_init(sc); break; } #endif default: ed_init(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ ed_stop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ ed_init(sc); } else { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ ed_stop(sc); ed_init(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ ed_stop(sc); /* XXX for ds_setmcaf? */ ed_init(sc); error = 0; } break; default: error = EINVAL; } splx(s); return (error); } /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ void ed_get_packet(sc, buf, len) struct ed_softc *sc; caddr_t buf; u_short len; { struct ether_header *eh; struct mbuf *m, *ed_ring_to_mbuf(); /* Allocate a header mbuf. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return; m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if; m->m_pkthdr.len = len; m->m_len = 0; /* The following silliness is to make NFS happy. */ #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) /* * The following assumes there is room for the ether header in the * header mbuf. */ m->m_data += EOFF; eh = mtod(m, struct ether_header *); if (sc->mem_shared) bcopy(buf, mtod(m, caddr_t), sizeof(struct ether_header)); else ed_pio_readmem(sc, (long)buf, mtod(m, caddr_t), sizeof(struct ether_header)); buf += sizeof(struct ether_header); m->m_len += sizeof(struct ether_header); len -= sizeof(struct ether_header); /* Pull packet off interface. */ if (ed_ring_to_mbuf(sc, buf, m, len) == 0) { m_freem(m); return; } #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. If so, hand off * the raw packet to bpf. */ if (sc->sc_arpcom.ac_if.if_bpf) { bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. */ if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) && (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0) { m_freem(m); return; } } #endif /* Fix up data start offset in mbuf to point past ether header. */ m_adj(m, sizeof(struct ether_header)); ether_input(&sc->sc_arpcom.ac_if, eh, m); } /* * Supporting routines. */ /* * Given a NIC memory source address and a host memory destination address, * copy 'amount' from NIC to host using Programmed I/O. The 'amount' is * rounded up to a word - okay as long as mbufs are word sized. * This routine is currently Novell-specific. */ void ed_pio_readmem(sc, src, dst, amount) struct ed_softc *sc; u_short src; caddr_t dst; u_short amount; { /* Select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA); /* Round up to a word. */ if (amount & 1) ++amount; /* Set up DMA byte count. */ NIC_PUT(sc, ED_P0_RBCR0, amount); NIC_PUT(sc, ED_P0_RBCR1, amount >> 8); /* Set up source address in NIC mem. */ NIC_PUT(sc, ED_P0_RSAR0, src); NIC_PUT(sc, ED_P0_RSAR1, src >> 8); NIC_PUT(sc, ED_P0_CR, ED_CR_RD0 | ED_CR_PAGE_0 | ED_CR_STA); if (sc->isa16bit) insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount / 2); else insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount); } /* * Stripped down routine for writing a linear buffer to NIC memory. Only used * in the probe routine to test the memory. 'len' must be even. */ void ed_pio_writemem(sc, src, dst, len) struct ed_softc *sc; caddr_t src; u_short dst; u_short len; { int maxwait = 100; /* about 120us */ /* Select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA); /* Reset remote DMA complete flag. */ NIC_PUT(sc, ED_P0_ISR, ED_ISR_RDC); /* Set up DMA byte count. */ NIC_PUT(sc, ED_P0_RBCR0, len); NIC_PUT(sc, ED_P0_RBCR1, len >> 8); /* Set up destination address in NIC mem. */ NIC_PUT(sc, ED_P0_RSAR0, dst); NIC_PUT(sc, ED_P0_RSAR1, dst >> 8); /* Set remote DMA write. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA); if (sc->isa16bit) outsw(sc->asic_addr + ED_NOVELL_DATA, src, len / 2); else outsb(sc->asic_addr + ED_NOVELL_DATA, src, len); /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); } /* * Write an mbuf chain to the destination NIC memory address using programmed * I/O. */ u_short ed_pio_write_mbufs(sc, m, dst) struct ed_softc *sc; struct mbuf *m; u_short dst; { u_short len; struct mbuf *mp; int maxwait = 100; /* about 120us */ /* First, count up the total number of bytes to copy. */ for (len = 0, mp = m; mp; mp = mp->m_next) len += mp->m_len; /* Select page 0 registers. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA); /* Reset remote DMA complete flag. */ NIC_PUT(sc, ED_P0_ISR, ED_ISR_RDC); /* Set up DMA byte count. */ NIC_PUT(sc, ED_P0_RBCR0, len); NIC_PUT(sc, ED_P0_RBCR1, len >> 8); /* Set up destination address in NIC mem. */ NIC_PUT(sc, ED_P0_RSAR0, dst); NIC_PUT(sc, ED_P0_RSAR1, dst >> 8); /* Set remote DMA write. */ NIC_PUT(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA); /* * Transfer the mbuf chain to the NIC memory. * 16-bit cards require that data be transferred as words, and only * words, so that case requires some extra code to patch over * odd-length mbufs. */ if (!sc->isa16bit) { /* NE1000s are easy. */ for (; m != 0; m = m->m_next) { if (m->m_len) { outsb(sc->asic_addr + ED_NOVELL_DATA, mtod(m, u_char *), m->m_len); } } } else { /* NE2000s are a bit trickier. */ u_char *data, savebyte[2]; int len, wantbyte; wantbyte = 0; for (; m != 0; m = m->m_next) { len = m->m_len; if (len == 0) continue; data = mtod(m, u_char *); /* Finish the last word. */ if (wantbyte) { savebyte[1] = *data; outw(sc->asic_addr + ED_NOVELL_DATA, *(u_short *)savebyte); data++; len--; wantbyte = 0; } /* Output contiguous words. */ if (len > 1) outsw(sc->asic_addr + ED_NOVELL_DATA, data, len >> 1); /* Save last byte, if necessary. */ if (len & 1) { data += len & ~1; savebyte[0] = *data; wantbyte = 1; } } if (wantbyte) { savebyte[1] = 0; outw(sc->asic_addr + ED_NOVELL_DATA, *(u_short *)savebyte); } } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); if (!maxwait) { log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n", sc->sc_dev.dv_xname); ed_reset(sc); } return (len); } /* * Given a source and destination address, copy 'amount' of a packet from the * ring buffer into a linear destination buffer. Takes into account ring-wrap. */ static inline caddr_t ed_ring_copy(sc, src, dst, amount) struct ed_softc *sc; caddr_t src, dst; u_short amount; { u_short tmp_amount; /* Does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* Copy amount up to end of NIC memory. */ if (sc->mem_shared) bcopy(src, dst, tmp_amount); else ed_pio_readmem(sc, (long)src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } if (sc->mem_shared) bcopy(src, dst, amount); else ed_pio_readmem(sc, (long)src, dst, amount); return (src + amount); } /* * Copy data from receive buffer to end of mbuf chain allocate additional mbufs * as needed. Return pointer to last mbuf in chain. * sc = ed info (softc) * src = pointer in ed ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * ed_ring_to_mbuf(sc, src, dst, total_len) struct ed_softc *sc; caddr_t src; struct mbuf *dst; u_short total_len; { register struct mbuf *m = dst; while (total_len) { register u_short amount = min(total_len, M_TRAILINGSPACE(m)); if (amount == 0) { /* * No more data in this mbuf; alloc another. * * If there is enough data for an mbuf cluster, attempt * to allocate one of those, otherwise, a regular mbuf * will do. * Note that a regular mbuf is always required, even if * we get a cluster - getting a cluster does not * allocate any mbufs, and one is needed to assign the * cluster to. The mbuf that has a cluster extension * can not be used to contain data - only the cluster * can contain data. */ dst = m; MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); if (total_len >= MINCLSIZE) MCLGET(m, M_DONTWAIT); m->m_len = 0; dst->m_next = m; amount = min(total_len, M_TRAILINGSPACE(m)); } src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount); m->m_len += amount; total_len -= amount; } return (m); } /* * Compute the multicast address filter from the list of multicast addresses we * need to listen to. */ void ed_getmcaf(ac, af) struct arpcom *ac; u_long *af; { struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; register u_char *cp, c; register u_long crc; register int i, len; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } af[0] = af[1] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } cp = enm->enm_addrlo; crc = 0xffffffff; for (len = sizeof(enm->enm_addrlo); --len >= 0;) { c = *cp++; for (i = 8; --i >= 0;) { if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) { crc <<= 1; crc ^= 0x04c11db6 | 1; } else crc <<= 1; c >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 24); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; }