/* $NetBSD: ppp-deflate.c,v 1.17 2008/05/05 13:41:30 ad Exp $ */ /* Id: ppp-deflate.c,v 1.5 1997/03/04 03:33:28 paulus Exp */ /* * ppp_deflate.c - interface the zlib procedures for Deflate compression * and decompression (as used by gzip) to the PPP code. * This version is for use with mbufs on BSD-derived systems. * * Copyright (c) 1989-2002 Paul Mackerras. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. The name(s) of the authors of this software must not be used to * endorse or promote products derived from this software without * prior written permission. * * 4. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by Paul Mackerras * ". * * THE AUTHORS OF THIS SOFTWARE DISCLAIM ALL WARRANTIES WITH REGARD TO * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS, IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __KERNEL_RCSID(0, "$NetBSD: ppp-deflate.c,v 1.17 2008/05/05 13:41:30 ad Exp $"); #include #include #include #include #include #define PACKETPTR struct mbuf * #include #if DO_DEFLATE #define DEFLATE_DEBUG 1 /* * State for a Deflate (de)compressor. */ struct deflate_state { int seqno; int w_size; int unit; int hdrlen; int mru; int debug; z_stream strm; struct compstat stats; }; #define DEFLATE_OVHD 2 /* Deflate overhead/packet */ static void *zalloc(void *, u_int items, u_int size); static void zfree(void *, void *ptr); static void *z_comp_alloc(u_char *options, int opt_len); static void *z_decomp_alloc(u_char *options, int opt_len); static void z_comp_free(void *state); static void z_decomp_free(void *state); static int z_comp_init(void *state, u_char *options, int opt_len, int unit, int hdrlen, int debug); static int z_decomp_init(void *state, u_char *options, int opt_len, int unit, int hdrlen, int mru, int debug); static int z_compress(void *state, struct mbuf **mret, struct mbuf *mp, int slen, int maxolen); static void z_incomp(void *state, struct mbuf *dmsg); static int z_decompress(void *state, struct mbuf *cmp, struct mbuf **dmpp); static void z_comp_reset(void *state); static void z_decomp_reset(void *state); static void z_comp_stats(void *state, struct compstat *stats); /* * Procedures exported to if_ppp.c. */ struct compressor ppp_deflate = { CI_DEFLATE, /* compress_proto */ z_comp_alloc, /* comp_alloc */ z_comp_free, /* comp_free */ z_comp_init, /* comp_init */ z_comp_reset, /* comp_reset */ z_compress, /* compress */ z_comp_stats, /* comp_stat */ z_decomp_alloc, /* decomp_alloc */ z_decomp_free, /* decomp_free */ z_decomp_init, /* decomp_init */ z_decomp_reset, /* decomp_reset */ z_decompress, /* decompress */ z_incomp, /* incomp */ z_comp_stats, /* decomp_stat */ }; struct compressor ppp_deflate_draft = { CI_DEFLATE_DRAFT, /* compress_proto */ z_comp_alloc, /* comp_alloc */ z_comp_free, /* comp_free */ z_comp_init, /* comp_init */ z_comp_reset, /* comp_reset */ z_compress, /* compress */ z_comp_stats, /* comp_stat */ z_decomp_alloc, /* decomp_alloc */ z_decomp_free, /* decomp_free */ z_decomp_init, /* decomp_init */ z_decomp_reset, /* decomp_reset */ z_decompress, /* decompress */ z_incomp, /* incomp */ z_comp_stats, /* decomp_stat */ }; /* * Space allocation and freeing routines for use by zlib routines. */ void * zalloc(void *notused, u_int items, u_int size) { void *ptr; ptr = malloc(items * size, M_DEVBUF, M_NOWAIT); return ptr; } void zfree(void *notused, void *ptr) { free(ptr, M_DEVBUF); } /* * Allocate space for a compressor. */ static void * z_comp_alloc(u_char *options, int opt_len) { struct deflate_state *state; int w_size; if (opt_len != CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || options[3] != DEFLATE_CHK_SEQUENCE) return NULL; w_size = DEFLATE_SIZE(options[2]); if (w_size < DEFLATE_MIN_SIZE || w_size > DEFLATE_MAX_SIZE) return NULL; MALLOC(state, struct deflate_state *, sizeof(struct deflate_state), M_DEVBUF, M_NOWAIT); if (state == NULL) return NULL; state->strm.next_in = NULL; state->strm.zalloc = zalloc; state->strm.zfree = zfree; if (deflateInit2(&state->strm, Z_DEFAULT_COMPRESSION, DEFLATE_METHOD_VAL, -w_size, 8, Z_DEFAULT_STRATEGY) != Z_OK) { FREE(state, M_DEVBUF); return NULL; } state->w_size = w_size; memset(&state->stats, 0, sizeof(state->stats)); return (void *) state; } static void z_comp_free(void *arg) { struct deflate_state *state = (struct deflate_state *) arg; deflateEnd(&state->strm); FREE(state, M_DEVBUF); } static int z_comp_init(void *arg, u_char *options, int opt_len, int unit, int hdrlen, int debug) { struct deflate_state *state = (struct deflate_state *) arg; if (opt_len < CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || DEFLATE_SIZE(options[2]) != state->w_size || options[3] != DEFLATE_CHK_SEQUENCE) return 0; state->seqno = 0; state->unit = unit; state->hdrlen = hdrlen; state->debug = debug; deflateReset(&state->strm); return 1; } static void z_comp_reset(void *arg) { struct deflate_state *state = (struct deflate_state *) arg; state->seqno = 0; deflateReset(&state->strm); } int z_compress(void *arg, struct mbuf **mret /* compressed packet (out) */, struct mbuf *mp /* uncompressed packet (in) */, int orig_len, int maxolen) { struct deflate_state *state = (struct deflate_state *) arg; u_char *rptr, *wptr; int proto, olen, wspace, r, flush; struct mbuf *m; /* * Check that the protocol is in the range we handle. */ rptr = mtod(mp, u_char *); proto = PPP_PROTOCOL(rptr); if (proto > 0x3fff || proto == 0xfd || proto == 0xfb) { *mret = NULL; return orig_len; } /* Allocate one mbuf initially. */ if (maxolen > orig_len) maxolen = orig_len; MGET(m, M_DONTWAIT, MT_DATA); *mret = m; if (m != NULL) { m->m_len = 0; if (maxolen + state->hdrlen > MLEN) MCLGET(m, M_DONTWAIT); wspace = M_TRAILINGSPACE(m); if (state->hdrlen + PPP_HDRLEN + 2 < wspace) { m->m_data += state->hdrlen; wspace -= state->hdrlen; } wptr = mtod(m, u_char *); /* * Copy over the PPP header and store the 2-byte sequence number. */ wptr[0] = PPP_ADDRESS(rptr); wptr[1] = PPP_CONTROL(rptr); wptr[2] = PPP_COMP >> 8; wptr[3] = PPP_COMP; wptr += PPP_HDRLEN; wptr[0] = state->seqno >> 8; wptr[1] = state->seqno; wptr += 2; state->strm.next_out = wptr; state->strm.avail_out = wspace - (PPP_HDRLEN + 2); } else { state->strm.next_out = NULL; state->strm.avail_out = 1000000; wptr = NULL; wspace = 0; } ++state->seqno; rptr += (proto > 0xff)? 2: 3; /* skip 1st proto byte if 0 */ state->strm.next_in = rptr; state->strm.avail_in = mtod(mp, u_char *) + mp->m_len - rptr; mp = mp->m_next; flush = (mp == NULL)? Z_PACKET_FLUSH: Z_NO_FLUSH; olen = 0; for (;;) { r = deflate(&state->strm, flush); if (r != Z_OK) { printf("z_compress: deflate returned %d (%s)\n", r, (state->strm.msg? state->strm.msg: "")); break; } if (flush != Z_NO_FLUSH && state->strm.avail_out != 0) break; /* all done */ if (state->strm.avail_in == 0 && mp != NULL) { state->strm.next_in = mtod(mp, u_char *); state->strm.avail_in = mp->m_len; mp = mp->m_next; if (mp == NULL) flush = Z_PACKET_FLUSH; } if (state->strm.avail_out == 0) { if (m != NULL) { m->m_len = wspace; olen += wspace; MGET(m->m_next, M_DONTWAIT, MT_DATA); m = m->m_next; if (m != NULL) { m->m_len = 0; if (maxolen - olen > MLEN) MCLGET(m, M_DONTWAIT); state->strm.next_out = mtod(m, u_char *); state->strm.avail_out = wspace = M_TRAILINGSPACE(m); } } if (m == NULL) { state->strm.next_out = NULL; state->strm.avail_out = 1000000; } } } if (m != NULL) olen += (m->m_len = wspace - state->strm.avail_out); /* * See if we managed to reduce the size of the packet. */ if (m != NULL && olen < orig_len) { state->stats.comp_bytes += olen; state->stats.comp_packets++; } else { if (*mret != NULL) { m_freem(*mret); *mret = NULL; } state->stats.inc_bytes += orig_len; state->stats.inc_packets++; olen = orig_len; } state->stats.unc_bytes += orig_len; state->stats.unc_packets++; return olen; } static void z_comp_stats(void *arg, struct compstat *stats) { struct deflate_state *state = (struct deflate_state *) arg; u_int out; *stats = state->stats; stats->ratio = stats->unc_bytes; out = stats->comp_bytes + stats->inc_bytes; if (stats->ratio <= 0x7ffffff) stats->ratio <<= 8; else out >>= 8; if (out != 0) stats->ratio /= out; } /* * Allocate space for a decompressor. */ static void * z_decomp_alloc(u_char *options, int opt_len) { struct deflate_state *state; int w_size; if (opt_len != CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || options[3] != DEFLATE_CHK_SEQUENCE) return NULL; w_size = DEFLATE_SIZE(options[2]); if (w_size < DEFLATE_MIN_SIZE || w_size > DEFLATE_MAX_SIZE) return NULL; MALLOC(state, struct deflate_state *, sizeof(struct deflate_state), M_DEVBUF, M_NOWAIT); if (state == NULL) return NULL; state->strm.next_out = NULL; state->strm.zalloc = zalloc; state->strm.zfree = zfree; if (inflateInit2(&state->strm, -w_size) != Z_OK) { FREE(state, M_DEVBUF); return NULL; } state->w_size = w_size; memset(&state->stats, 0, sizeof(state->stats)); return (void *) state; } static void z_decomp_free(void *arg) { struct deflate_state *state = (struct deflate_state *) arg; inflateEnd(&state->strm); FREE(state, M_DEVBUF); } static int z_decomp_init(void *arg, u_char *options, int opt_len, int unit, int hdrlen, int mru, int debug) { struct deflate_state *state = (struct deflate_state *) arg; if (opt_len < CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || DEFLATE_SIZE(options[2]) != state->w_size || options[3] != DEFLATE_CHK_SEQUENCE) return 0; state->seqno = 0; state->unit = unit; state->hdrlen = hdrlen; state->debug = debug; state->mru = mru; inflateReset(&state->strm); return 1; } static void z_decomp_reset(void *arg) { struct deflate_state *state = (struct deflate_state *) arg; state->seqno = 0; inflateReset(&state->strm); } /* * Decompress a Deflate-compressed packet. * * Because of patent problems, we return DECOMP_ERROR for errors * found by inspecting the input data and for system problems, but * DECOMP_FATALERROR for any errors which could possibly be said to * be being detected "after" decompression. For DECOMP_ERROR, * we can issue a CCP reset-request; for DECOMP_FATALERROR, we may be * infringing a patent of Motorola's if we do, so we take CCP down * instead. * * Given that the frame has the correct sequence number and a good FCS, * errors such as invalid codes in the input most likely indicate a * bug, so we return DECOMP_FATALERROR for them in order to turn off * compression, even though they are detected by inspecting the input. */ int z_decompress(void *arg, struct mbuf *mi, struct mbuf **mop) { struct deflate_state *state = (struct deflate_state *) arg; struct mbuf *mo, *mo_head; u_char *rptr, *wptr; int rlen, olen, ospace; int seq, i, flush, r, decode_proto; u_char hdr[PPP_HDRLEN + DEFLATE_OVHD]; *mop = NULL; rptr = mtod(mi, u_char *); rlen = mi->m_len; for (i = 0; i < PPP_HDRLEN + DEFLATE_OVHD; ++i) { while (rlen <= 0) { mi = mi->m_next; if (mi == NULL) return DECOMP_ERROR; rptr = mtod(mi, u_char *); rlen = mi->m_len; } hdr[i] = *rptr++; --rlen; } /* Check the sequence number. */ seq = (hdr[PPP_HDRLEN] << 8) + hdr[PPP_HDRLEN+1]; if (seq != state->seqno) { if (state->debug) printf("z_decompress%d: bad seq # %d, expected %d\n", state->unit, seq, state->seqno); return DECOMP_ERROR; } ++state->seqno; /* Allocate an output mbuf. */ MGETHDR(mo, M_DONTWAIT, MT_DATA); if (mo == NULL) return DECOMP_ERROR; mo_head = mo; mo->m_len = 0; mo->m_next = NULL; MCLGET(mo, M_DONTWAIT); ospace = M_TRAILINGSPACE(mo); if (state->hdrlen + PPP_HDRLEN < ospace) { mo->m_data += state->hdrlen; ospace -= state->hdrlen; } /* * Fill in the first part of the PPP header. The protocol field * comes from the decompressed data. */ wptr = mtod(mo, u_char *); wptr[0] = PPP_ADDRESS(hdr); wptr[1] = PPP_CONTROL(hdr); wptr[2] = 0; /* * Set up to call inflate. We set avail_out to 1 initially so we can * look at the first byte of the output and decide whether we have * a 1-byte or 2-byte protocol field. */ state->strm.next_in = rptr; state->strm.avail_in = rlen; mi = mi->m_next; flush = (mi == NULL)? Z_PACKET_FLUSH: Z_NO_FLUSH; rlen += PPP_HDRLEN + DEFLATE_OVHD; state->strm.next_out = wptr + 3; state->strm.avail_out = 1; decode_proto = 1; olen = 0; /* * Call inflate, supplying more input or output as needed. */ for (;;) { r = inflate(&state->strm, flush); if (r != Z_OK) { #if !DEFLATE_DEBUG if (state->debug) #endif printf("z_decompress%d: inflate returned %d (%s)\n", state->unit, r, (state->strm.msg? state->strm.msg: "")); m_freem(mo_head); return DECOMP_FATALERROR; } if (flush != Z_NO_FLUSH && state->strm.avail_out != 0) break; /* all done */ if (state->strm.avail_in == 0 && mi != NULL) { state->strm.next_in = mtod(mi, u_char *); state->strm.avail_in = mi->m_len; rlen += mi->m_len; mi = mi->m_next; if (mi == NULL) flush = Z_PACKET_FLUSH; } if (state->strm.avail_out == 0) { if (decode_proto) { state->strm.avail_out = ospace - PPP_HDRLEN; if ((wptr[3] & 1) == 0) { /* 2-byte protocol field */ wptr[2] = wptr[3]; --state->strm.next_out; ++state->strm.avail_out; --olen; } decode_proto = 0; } else { mo->m_len = ospace; olen += ospace; MGET(mo->m_next, M_DONTWAIT, MT_DATA); mo = mo->m_next; if (mo == NULL) { m_freem(mo_head); return DECOMP_ERROR; } MCLGET(mo, M_DONTWAIT); state->strm.next_out = mtod(mo, u_char *); state->strm.avail_out = ospace = M_TRAILINGSPACE(mo); } } } if (decode_proto) { m_freem(mo_head); return DECOMP_ERROR; } olen += (mo->m_len = ospace - state->strm.avail_out); #if DEFLATE_DEBUG if (olen > state->mru + PPP_HDRLEN) printf("ppp_deflate%d: exceeded mru (%d > %d)\n", state->unit, olen, state->mru + PPP_HDRLEN); #endif state->stats.unc_bytes += olen; state->stats.unc_packets++; state->stats.comp_bytes += rlen; state->stats.comp_packets++; *mop = mo_head; return DECOMP_OK; } /* * Incompressible data has arrived - add it to the history. */ static void z_incomp(void *arg, struct mbuf *mi) { struct deflate_state *state = (struct deflate_state *) arg; u_char *rptr; int rlen, proto, r; /* * Check that the protocol is one we handle. */ rptr = mtod(mi, u_char *); proto = PPP_PROTOCOL(rptr); if (proto > 0x3fff || proto == 0xfd || proto == 0xfb) return; ++state->seqno; /* * Iterate through the mbufs, adding the characters in them * to the decompressor's history. For the first mbuf, we start * at the either the 1st or 2nd byte of the protocol field, * depending on whether the protocol value is compressible. */ rlen = mi->m_len; state->strm.next_in = rptr + 3; state->strm.avail_in = rlen - 3; if (proto > 0xff) { --state->strm.next_in; ++state->strm.avail_in; } for (;;) { r = inflateIncomp(&state->strm); if (r != Z_OK) { /* gak! */ #if !DEFLATE_DEBUG if (state->debug) #endif printf("z_incomp%d: inflateIncomp returned %d (%s)\n", state->unit, r, (state->strm.msg? state->strm.msg: "")); return; } mi = mi->m_next; if (mi == NULL) break; state->strm.next_in = mtod(mi, u_char *); state->strm.avail_in = mi->m_len; rlen += mi->m_len; } /* * Update stats. */ state->stats.inc_bytes += rlen; state->stats.inc_packets++; state->stats.unc_bytes += rlen; state->stats.unc_packets++; } #endif /* DO_DEFLATE */