/* $NetBSD: if.c,v 1.484 2020/10/15 10:20:44 roy Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by William Studenmund and Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 */ #include __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.484 2020/10/15 10:20:44 roy Exp $"); #if defined(_KERNEL_OPT) #include "opt_inet.h" #include "opt_ipsec.h" #include "opt_atalk.h" #include "opt_wlan.h" #include "opt_net_mpsafe.h" #include "opt_mrouting.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef NETATALK #include #include #endif #include #include #include #include #include #ifdef INET6 #include #include #endif #include "ether.h" #include "bridge.h" #if NBRIDGE > 0 #include #endif #include "carp.h" #if NCARP > 0 #include #endif #include MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); /* * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex * for each ifnet. It doesn't matter because: * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on * ifq_lock don't happen * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock * because if_snd, if_link_state_change and if_link_state_change_process * are all called with KERNEL_LOCK */ #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ mutex_enter((ifp)->if_snd.ifq_lock) #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ mutex_exit((ifp)->if_snd.ifq_lock) /* * Global list of interfaces. */ /* DEPRECATED. Remove it once kvm(3) users disappeared */ struct ifnet_head ifnet_list; struct pslist_head ifnet_pslist; static ifnet_t ** ifindex2ifnet = NULL; static u_int if_index = 1; static size_t if_indexlim = 0; static uint64_t index_gen; /* Mutex to protect the above objects. */ kmutex_t ifnet_mtx __cacheline_aligned; static struct psref_class *ifnet_psref_class __read_mostly; static pserialize_t ifnet_psz; static struct workqueue *ifnet_link_state_wq __read_mostly; static kmutex_t if_clone_mtx; struct ifnet *lo0ifp; int ifqmaxlen = IFQ_MAXLEN; struct psref_class *ifa_psref_class __read_mostly; static int if_delroute_matcher(struct rtentry *, void *); static bool if_is_unit(const char *); static struct if_clone *if_clone_lookup(const char *, int *); static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); static int if_cloners_count; /* Packet filtering hook for interfaces. */ pfil_head_t * if_pfil __read_mostly; static kauth_listener_t if_listener; static int doifioctl(struct socket *, u_long, void *, struct lwp *); static void if_detach_queues(struct ifnet *, struct ifqueue *); static void sysctl_sndq_setup(struct sysctllog **, const char *, struct ifaltq *); static void if_slowtimo(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, void *); static int if_transmit(struct ifnet *, struct mbuf *); static int if_clone_create(const char *); static int if_clone_destroy(const char *); static void if_link_state_change_work(struct work *, void *); static void if_up_locked(struct ifnet *); static void _if_down(struct ifnet *); static void if_down_deactivated(struct ifnet *); struct if_percpuq { struct ifnet *ipq_ifp; void *ipq_si; struct percpu *ipq_ifqs; /* struct ifqueue */ }; static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); static void if_percpuq_drops(void *, void *, struct cpu_info *); static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); static void sysctl_percpuq_setup(struct sysctllog **, const char *, struct if_percpuq *); struct if_deferred_start { struct ifnet *ids_ifp; void (*ids_if_start)(struct ifnet *); void *ids_si; }; static void if_deferred_start_softint(void *); static void if_deferred_start_common(struct ifnet *); static void if_deferred_start_destroy(struct ifnet *); #if defined(INET) || defined(INET6) static void sysctl_net_pktq_setup(struct sysctllog **, int); #endif /* * Hook for if_vlan - needed by if_agr */ struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; static void if_sysctl_setup(struct sysctllog **); static int if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { int result; enum kauth_network_req req; result = KAUTH_RESULT_DEFER; req = (enum kauth_network_req)(uintptr_t)arg1; if (action != KAUTH_NETWORK_INTERFACE) return result; if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) result = KAUTH_RESULT_ALLOW; return result; } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ void ifinit(void) { #if (defined(INET) || defined(INET6)) encapinit(); #endif if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, if_listener_cb, NULL); /* interfaces are available, inform socket code */ ifioctl = doifioctl; } /* * XXX Initialization before configure(). * XXX hack to get pfil_add_hook working in autoconf. */ void ifinit1(void) { int error __diagused; #ifdef NET_MPSAFE printf("NET_MPSAFE enabled\n"); #endif mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); TAILQ_INIT(&ifnet_list); mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); ifnet_psz = pserialize_create(); ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); error = workqueue_create(&ifnet_link_state_wq, "iflnkst", if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, WQ_MPSAFE); KASSERT(error == 0); PSLIST_INIT(&ifnet_pslist); if_indexlim = 8; if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); KASSERT(if_pfil != NULL); #if NETHER > 0 || defined(NETATALK) || defined(WLAN) etherinit(); #endif } /* XXX must be after domaininit() */ void ifinit_post(void) { if_sysctl_setup(NULL); } ifnet_t * if_alloc(u_char type) { return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); } void if_free(ifnet_t *ifp) { kmem_free(ifp, sizeof(ifnet_t)); } void if_initname(struct ifnet *ifp, const char *name, int unit) { (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", name, unit); } /* * Null routines used while an interface is going away. These routines * just return an error. */ int if_nulloutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *so, const struct rtentry *rt) { return ENXIO; } void if_nullinput(struct ifnet *ifp, struct mbuf *m) { /* Nothing. */ } void if_nullstart(struct ifnet *ifp) { /* Nothing. */ } int if_nulltransmit(struct ifnet *ifp, struct mbuf *m) { m_freem(m); return ENXIO; } int if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) { return ENXIO; } int if_nullinit(struct ifnet *ifp) { return ENXIO; } void if_nullstop(struct ifnet *ifp, int disable) { /* Nothing. */ } void if_nullslowtimo(struct ifnet *ifp) { /* Nothing. */ } void if_nulldrain(struct ifnet *ifp) { /* Nothing. */ } void if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) { struct ifaddr *ifa; struct sockaddr_dl *sdl; ifp->if_addrlen = addrlen; if_alloc_sadl(ifp); ifa = ifp->if_dl; sdl = satosdl(ifa->ifa_addr); (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); if (factory) { KASSERT(ifp->if_hwdl == NULL); ifp->if_hwdl = ifp->if_dl; ifaref(ifp->if_hwdl); } /* TBD routing socket */ } struct ifaddr * if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) { unsigned socksize, ifasize; int addrlen, namelen; struct sockaddr_dl *mask, *sdl; struct ifaddr *ifa; namelen = strlen(ifp->if_xname); addrlen = ifp->if_addrlen; socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); sdl = (struct sockaddr_dl *)(ifa + 1); mask = (struct sockaddr_dl *)(socksize + (char *)sdl); sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, ifp->if_xname, namelen, NULL, addrlen); mask->sdl_family = AF_LINK; mask->sdl_len = sockaddr_dl_measure(namelen, 0); memset(&mask->sdl_data[0], 0xff, namelen); ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; ifa->ifa_netmask = (struct sockaddr *)mask; ifa_psref_init(ifa); *sdlp = sdl; return ifa; } static void if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) { const struct sockaddr_dl *sdl; ifp->if_dl = ifa; ifaref(ifa); sdl = satosdl(ifa->ifa_addr); ifp->if_sadl = sdl; } /* * Allocate the link level name for the specified interface. This * is an attachment helper. It must be called after ifp->if_addrlen * is initialized, which may not be the case when if_attach() is * called. */ void if_alloc_sadl(struct ifnet *ifp) { struct ifaddr *ifa; const struct sockaddr_dl *sdl; /* * If the interface already has a link name, release it * now. This is useful for interfaces that can change * link types, and thus switch link names often. */ if (ifp->if_sadl != NULL) if_free_sadl(ifp, 0); ifa = if_dl_create(ifp, &sdl); ifa_insert(ifp, ifa); if_sadl_setrefs(ifp, ifa); } static void if_deactivate_sadl(struct ifnet *ifp) { struct ifaddr *ifa; KASSERT(ifp->if_dl != NULL); ifa = ifp->if_dl; ifp->if_sadl = NULL; ifp->if_dl = NULL; ifafree(ifa); } static void if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) { struct ifaddr *old; KASSERT(ifp->if_dl != NULL); old = ifp->if_dl; ifaref(ifa); /* XXX Update if_dl and if_sadl atomically */ ifp->if_dl = ifa; ifp->if_sadl = satosdl(ifa->ifa_addr); ifafree(old); } void if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, const struct sockaddr_dl *sdl) { int s, ss; struct ifaddr *ifa; int bound = curlwp_bind(); KASSERT(ifa_held(ifa0)); s = splsoftnet(); if_replace_sadl(ifp, ifa0); ss = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { struct psref psref; ifa_acquire(ifa, &psref); pserialize_read_exit(ss); rtinit(ifa, RTM_LLINFO_UPD, 0); ss = pserialize_read_enter(); ifa_release(ifa, &psref); } pserialize_read_exit(ss); splx(s); curlwp_bindx(bound); } /* * Free the link level name for the specified interface. This is * a detach helper. This is called from if_detach(). */ void if_free_sadl(struct ifnet *ifp, int factory) { struct ifaddr *ifa; int s; if (factory && ifp->if_hwdl != NULL) { ifa = ifp->if_hwdl; ifp->if_hwdl = NULL; ifafree(ifa); } ifa = ifp->if_dl; if (ifa == NULL) { KASSERT(ifp->if_sadl == NULL); return; } KASSERT(ifp->if_sadl != NULL); s = splsoftnet(); KASSERT(ifa->ifa_addr->sa_family == AF_LINK); ifa_remove(ifp, ifa); if_deactivate_sadl(ifp); splx(s); } static void if_getindex(ifnet_t *ifp) { bool hitlimit = false; ifp->if_index_gen = index_gen++; ifp->if_index = if_index; if (ifindex2ifnet == NULL) { if_index++; goto skip; } while (if_byindex(ifp->if_index)) { /* * If we hit USHRT_MAX, we skip back to 0 since * there are a number of places where the value * of if_index or if_index itself is compared * to or stored in an unsigned short. By * jumping back, we won't botch those assignments * or comparisons. */ if (++if_index == 0) { if_index = 1; } else if (if_index == USHRT_MAX) { /* * However, if we have to jump back to * zero *twice* without finding an empty * slot in ifindex2ifnet[], then there * there are too many (>65535) interfaces. */ if (hitlimit) { panic("too many interfaces"); } hitlimit = true; if_index = 1; } ifp->if_index = if_index; } skip: /* * ifindex2ifnet is indexed by if_index. Since if_index will * grow dynamically, it should grow too. */ if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { size_t m, n, oldlim; void *q; oldlim = if_indexlim; while (ifp->if_index >= if_indexlim) if_indexlim <<= 1; /* grow ifindex2ifnet */ m = oldlim * sizeof(struct ifnet *); n = if_indexlim * sizeof(struct ifnet *); q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); if (ifindex2ifnet != NULL) { memcpy(q, ifindex2ifnet, m); free(ifindex2ifnet, M_IFADDR); } ifindex2ifnet = (struct ifnet **)q; } ifindex2ifnet[ifp->if_index] = ifp; } /* * Initialize an interface and assign an index for it. * * It must be called prior to a device specific attach routine * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, * and be followed by if_register: * * if_initialize(ifp); * ether_ifattach(ifp, enaddr); * if_register(ifp); */ int if_initialize(ifnet_t *ifp) { int rv = 0; KASSERT(if_indexlim > 0); TAILQ_INIT(&ifp->if_addrlist); /* * Link level name is allocated later by a separate call to * if_alloc_sadl(). */ if (ifp->if_snd.ifq_maxlen == 0) ifp->if_snd.ifq_maxlen = ifqmaxlen; ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ ifp->if_link_state = LINK_STATE_UNKNOWN; ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ ifp->if_link_scheduled = false; ifp->if_capenable = 0; ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; #ifdef ALTQ ifp->if_snd.altq_type = 0; ifp->if_snd.altq_disc = NULL; ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; ifp->if_snd.altq_tbr = NULL; ifp->if_snd.altq_ifp = ifp; #endif IFQ_LOCK_INIT(&ifp->if_snd); ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); IF_AFDATA_LOCK_INIT(ifp); PSLIST_ENTRY_INIT(ifp, if_pslist_entry); PSLIST_INIT(&ifp->if_addr_pslist); psref_target_init(&ifp->if_psref, ifnet_psref_class); ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); LIST_INIT(&ifp->if_multiaddrs); if ((rv = if_stats_init(ifp)) != 0) { goto fail; } IFNET_GLOBAL_LOCK(); if_getindex(ifp); IFNET_GLOBAL_UNLOCK(); return 0; fail: IF_AFDATA_LOCK_DESTROY(ifp); pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); (void)pfil_head_destroy(ifp->if_pfil); IFQ_LOCK_DESTROY(&ifp->if_snd); return rv; } /* * Register an interface to the list of "active" interfaces. */ void if_register(ifnet_t *ifp) { /* * If the driver has not supplied its own if_ioctl, then * supply the default. */ if (ifp->if_ioctl == NULL) ifp->if_ioctl = ifioctl_common; sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); if (!STAILQ_EMPTY(&domains)) if_attachdomain1(ifp); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); if (ifp->if_slowtimo != NULL) { ifp->if_slowtimo_ch = kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); callout_init(ifp->if_slowtimo_ch, 0); callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); if_slowtimo(ifp); } if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) ifp->if_transmit = if_transmit; IFNET_GLOBAL_LOCK(); TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); IFNET_WRITER_INSERT_TAIL(ifp); IFNET_GLOBAL_UNLOCK(); } /* * The if_percpuq framework * * It allows network device drivers to execute the network stack * in softint (so called softint-based if_input). It utilizes * softint and percpu ifqueue. It doesn't distribute any packets * between CPUs, unlike pktqueue(9). * * Currently we support two options for device drivers to apply the framework: * - Use it implicitly with less changes * - If you use if_attach in driver's _attach function and if_input in * driver's Rx interrupt handler, a packet is queued and a softint handles * the packet implicitly * - Use it explicitly in each driver (recommended) * - You can use if_percpuq_* directly in your driver * - In this case, you need to allocate struct if_percpuq in driver's softc * - See wm(4) as a reference implementation */ static void if_percpuq_softint(void *arg) { struct if_percpuq *ipq = arg; struct ifnet *ifp = ipq->ipq_ifp; struct mbuf *m; while ((m = if_percpuq_dequeue(ipq)) != NULL) { if_statinc(ifp, if_ipackets); bpf_mtap(ifp, m, BPF_D_IN); ifp->_if_input(ifp, m); } } static void if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) { struct ifqueue *const ifq = p; memset(ifq, 0, sizeof(*ifq)); ifq->ifq_maxlen = IFQ_MAXLEN; } struct if_percpuq * if_percpuq_create(struct ifnet *ifp) { struct if_percpuq *ipq; u_int flags = SOFTINT_NET; flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); ipq->ipq_ifp = ifp; ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); return ipq; } static struct mbuf * if_percpuq_dequeue(struct if_percpuq *ipq) { struct mbuf *m; struct ifqueue *ifq; int s; s = splnet(); ifq = percpu_getref(ipq->ipq_ifqs); IF_DEQUEUE(ifq, m); percpu_putref(ipq->ipq_ifqs); splx(s); return m; } static void if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) { struct ifqueue *const ifq = p; IF_PURGE(ifq); } void if_percpuq_destroy(struct if_percpuq *ipq) { /* if_detach may already destroy it */ if (ipq == NULL) return; softint_disestablish(ipq->ipq_si); percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); kmem_free(ipq, sizeof(*ipq)); } void if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) { struct ifqueue *ifq; int s; KASSERT(ipq != NULL); s = splnet(); ifq = percpu_getref(ipq->ipq_ifqs); if (IF_QFULL(ifq)) { IF_DROP(ifq); percpu_putref(ipq->ipq_ifqs); m_freem(m); goto out; } IF_ENQUEUE(ifq, m); percpu_putref(ipq->ipq_ifqs); softint_schedule(ipq->ipq_si); out: splx(s); } static void if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) { struct ifqueue *const ifq = p; int *sum = arg; *sum += ifq->ifq_drops; } static int sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) { struct sysctlnode node; struct if_percpuq *ipq; int sum = 0; int error; node = *rnode; ipq = node.sysctl_data; percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); node.sysctl_data = ∑ error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error != 0 || newp == NULL) return error; return 0; } static void sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, struct if_percpuq *ipq) { const struct sysctlnode *cnode, *rnode; if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", SYSCTL_DESCR("Per-interface controls"), NULL, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, ifname, SYSCTL_DESCR("Interface controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "rcvq", SYSCTL_DESCR("Interface input queue controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; #ifdef NOTYET /* XXX Should show each per-CPU queue length? */ if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "len", SYSCTL_DESCR("Current input queue length"), sysctl_percpuq_len, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "maxlen", SYSCTL_DESCR("Maximum allowed input queue length"), sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; #endif if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "drops", SYSCTL_DESCR("Total packets dropped due to full input queue"), sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; return; bad: printf("%s: could not attach sysctl nodes\n", ifname); return; } /* * The deferred if_start framework * * The common APIs to defer if_start to softint when if_start is requested * from a device driver running in hardware interrupt context. */ /* * Call ifp->if_start (or equivalent) in a dedicated softint for * deferred if_start. */ static void if_deferred_start_softint(void *arg) { struct if_deferred_start *ids = arg; struct ifnet *ifp = ids->ids_ifp; ids->ids_if_start(ifp); } /* * The default callback function for deferred if_start. */ static void if_deferred_start_common(struct ifnet *ifp) { int s; s = splnet(); if_start_lock(ifp); splx(s); } static inline bool if_snd_is_used(struct ifnet *ifp) { return ALTQ_IS_ENABLED(&ifp->if_snd) || ifp->if_transmit == if_transmit || ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit; } /* * Schedule deferred if_start. */ void if_schedule_deferred_start(struct ifnet *ifp) { KASSERT(ifp->if_deferred_start != NULL); if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) return; softint_schedule(ifp->if_deferred_start->ids_si); } /* * Create an instance of deferred if_start. A driver should call the function * only if the driver needs deferred if_start. Drivers can setup their own * deferred if_start function via 2nd argument. */ void if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) { struct if_deferred_start *ids; u_int flags = SOFTINT_NET; flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); ids->ids_ifp = ifp; ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); if (func != NULL) ids->ids_if_start = func; else ids->ids_if_start = if_deferred_start_common; ifp->if_deferred_start = ids; } static void if_deferred_start_destroy(struct ifnet *ifp) { if (ifp->if_deferred_start == NULL) return; softint_disestablish(ifp->if_deferred_start->ids_si); kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); ifp->if_deferred_start = NULL; } /* * The common interface input routine that is called by device drivers, * which should be used only when the driver's rx handler already runs * in softint. */ void if_input(struct ifnet *ifp, struct mbuf *m) { KASSERT(ifp->if_percpuq == NULL); KASSERT(!cpu_intr_p()); if_statinc(ifp, if_ipackets); bpf_mtap(ifp, m, BPF_D_IN); ifp->_if_input(ifp, m); } /* * DEPRECATED. Use if_initialize and if_register instead. * See the above comment of if_initialize. * * Note that it implicitly enables if_percpuq to make drivers easy to * migrate softint-based if_input without much changes. If you don't * want to enable it, use if_initialize instead. */ int if_attach(ifnet_t *ifp) { int rv; rv = if_initialize(ifp); if (rv != 0) return rv; ifp->if_percpuq = if_percpuq_create(ifp); if_register(ifp); return 0; } void if_attachdomain(void) { struct ifnet *ifp; int s; int bound = curlwp_bind(); s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { struct psref psref; psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); pserialize_read_exit(s); if_attachdomain1(ifp); s = pserialize_read_enter(); psref_release(&psref, &ifp->if_psref, ifnet_psref_class); } pserialize_read_exit(s); curlwp_bindx(bound); } static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; int s; s = splsoftnet(); /* address family dependent data region */ memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); DOMAIN_FOREACH(dp) { if (dp->dom_ifattach != NULL) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } splx(s); } /* * Deactivate an interface. This points all of the procedure * handles at error stubs. May be called from interrupt context. */ void if_deactivate(struct ifnet *ifp) { int s; s = splsoftnet(); ifp->if_output = if_nulloutput; ifp->_if_input = if_nullinput; ifp->if_start = if_nullstart; ifp->if_transmit = if_nulltransmit; ifp->if_ioctl = if_nullioctl; ifp->if_init = if_nullinit; ifp->if_stop = if_nullstop; ifp->if_slowtimo = if_nullslowtimo; ifp->if_drain = if_nulldrain; ifp->if_link_state_changed = NULL; /* No more packets may be enqueued. */ ifp->if_snd.ifq_maxlen = 0; splx(s); } bool if_is_deactivated(const struct ifnet *ifp) { return ifp->if_output == if_nulloutput; } void if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) { struct ifaddr *ifa, *nifa; int s; s = pserialize_read_enter(); for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { nifa = IFADDR_READER_NEXT(ifa); if (ifa->ifa_addr->sa_family != family) continue; pserialize_read_exit(s); (*purgeaddr)(ifa); s = pserialize_read_enter(); } pserialize_read_exit(s); } #ifdef IFAREF_DEBUG static struct ifaddr **ifa_list; static int ifa_list_size; /* Depends on only one if_attach runs at once */ static void if_build_ifa_list(struct ifnet *ifp) { struct ifaddr *ifa; int i; KASSERT(ifa_list == NULL); KASSERT(ifa_list_size == 0); IFADDR_READER_FOREACH(ifa, ifp) ifa_list_size++; ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); i = 0; IFADDR_READER_FOREACH(ifa, ifp) { ifa_list[i++] = ifa; ifaref(ifa); } } static void if_check_and_free_ifa_list(struct ifnet *ifp) { int i; struct ifaddr *ifa; if (ifa_list == NULL) return; for (i = 0; i < ifa_list_size; i++) { char buf[64]; ifa = ifa_list[i]; sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); if (ifa->ifa_refcnt > 1) { log(LOG_WARNING, "ifa(%s) still referenced (refcnt=%d)\n", buf, ifa->ifa_refcnt - 1); } else log(LOG_DEBUG, "ifa(%s) not referenced (refcnt=%d)\n", buf, ifa->ifa_refcnt - 1); ifafree(ifa); } kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); ifa_list = NULL; ifa_list_size = 0; } #endif /* * Detach an interface from the list of "active" interfaces, * freeing any resources as we go along. * * NOTE: This routine must be called with a valid thread context, * as it may block. */ void if_detach(struct ifnet *ifp) { struct socket so; struct ifaddr *ifa; #ifdef IFAREF_DEBUG struct ifaddr *last_ifa = NULL; #endif struct domain *dp; const struct protosw *pr; int s, i, family, purged; #ifdef IFAREF_DEBUG if_build_ifa_list(ifp); #endif /* * XXX It's kind of lame that we have to have the * XXX socket structure... */ memset(&so, 0, sizeof(so)); s = splnet(); sysctl_teardown(&ifp->if_sysctl_log); IFNET_LOCK(ifp); /* * Unset all queued link states and pretend a * link state change is scheduled. * This stops any more link state changes occuring for this * interface while it's being detached so it's safe * to drain the workqueue. */ IF_LINK_STATE_CHANGE_LOCK(ifp); ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ ifp->if_link_scheduled = true; IF_LINK_STATE_CHANGE_UNLOCK(ifp); workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); if_deactivate(ifp); IFNET_UNLOCK(ifp); /* * Unlink from the list and wait for all readers to leave * from pserialize read sections. Note that we can't do * psref_target_destroy here. See below. */ IFNET_GLOBAL_LOCK(); ifindex2ifnet[ifp->if_index] = NULL; TAILQ_REMOVE(&ifnet_list, ifp, if_list); IFNET_WRITER_REMOVE(ifp); pserialize_perform(ifnet_psz); IFNET_GLOBAL_UNLOCK(); if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { ifp->if_slowtimo = NULL; callout_halt(ifp->if_slowtimo_ch, NULL); callout_destroy(ifp->if_slowtimo_ch); kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); } if_deferred_start_destroy(ifp); /* * Do an if_down() to give protocols a chance to do something. */ if_down_deactivated(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif #if NCARP > 0 /* Remove the interface from any carp group it is a part of. */ if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) carp_ifdetach(ifp); #endif /* * Rip all the addresses off the interface. This should make * all of the routes go away. * * pr_usrreq calls can remove an arbitrary number of ifaddrs * from the list, including our "cursor", ifa. For safety, * and to honor the TAILQ abstraction, I just restart the * loop after each removal. Note that the loop will exit * when all of the remaining ifaddrs belong to the AF_LINK * family. I am counting on the historical fact that at * least one pr_usrreq in each address domain removes at * least one ifaddr. */ again: /* * At this point, no other one tries to remove ifa in the list, * so we don't need to take a lock or psref. Avoid using * IFADDR_READER_FOREACH to pass over an inspection of contract * violations of pserialize. */ IFADDR_WRITER_FOREACH(ifa, ifp) { family = ifa->ifa_addr->sa_family; #ifdef IFAREF_DEBUG printf("if_detach: ifaddr %p, family %d, refcnt %d\n", ifa, family, ifa->ifa_refcnt); if (last_ifa != NULL && ifa == last_ifa) panic("if_detach: loop detected"); last_ifa = ifa; #endif if (family == AF_LINK) continue; dp = pffinddomain(family); KASSERTMSG(dp != NULL, "no domain for AF %d", family); /* * XXX These PURGEIF calls are redundant with the * purge-all-families calls below, but are left in for * now both to make a smaller change, and to avoid * unplanned interactions with clearing of * ifp->if_addrlist. */ purged = 0; for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { so.so_proto = pr; if (pr->pr_usrreqs) { (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); purged = 1; } } if (purged == 0) { /* * XXX What's really the best thing to do * XXX here? --thorpej@NetBSD.org */ printf("if_detach: WARNING: AF %d not purged\n", family); ifa_remove(ifp, ifa); } goto again; } if_free_sadl(ifp, 1); restart: IFADDR_WRITER_FOREACH(ifa, ifp) { family = ifa->ifa_addr->sa_family; KASSERT(family == AF_LINK); ifa_remove(ifp, ifa); goto restart; } /* Delete stray routes from the routing table. */ for (i = 0; i <= AF_MAX; i++) rt_delete_matched_entries(i, if_delroute_matcher, ifp); DOMAIN_FOREACH(dp) { if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) { void *p = ifp->if_afdata[dp->dom_family]; if (p) { ifp->if_afdata[dp->dom_family] = NULL; (*dp->dom_ifdetach)(ifp, p); } } /* * One would expect multicast memberships (INET and * INET6) on UDP sockets to be purged by the PURGEIF * calls above, but if all addresses were removed from * the interface prior to destruction, the calls will * not be made (e.g. ppp, for which pppd(8) generally * removes addresses before destroying the interface). * Because there is no invariant that multicast * memberships only exist for interfaces with IPv4 * addresses, we must call PURGEIF regardless of * addresses. (Protocols which might store ifnet * pointers are marked with PR_PURGEIF.) */ for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { so.so_proto = pr; if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); } } /* * Must be done after the above pr_purgeif because if_psref may be * still used in pr_purgeif. */ psref_target_destroy(&ifp->if_psref, ifnet_psref_class); PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); (void)pfil_head_destroy(ifp->if_pfil); /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); IF_AFDATA_LOCK_DESTROY(ifp); /* * remove packets that came from ifp, from software interrupt queues. */ DOMAIN_FOREACH(dp) { for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { struct ifqueue *iq = dp->dom_ifqueues[i]; if (iq == NULL) break; dp->dom_ifqueues[i] = NULL; if_detach_queues(ifp, iq); } } /* * IP queues have to be processed separately: net-queue barrier * ensures that the packets are dequeued while a cross-call will * ensure that the interrupts have completed. FIXME: not quite.. */ #ifdef INET pktq_barrier(ip_pktq); #endif #ifdef INET6 if (in6_present) pktq_barrier(ip6_pktq); #endif xc_barrier(0); if (ifp->if_percpuq != NULL) { if_percpuq_destroy(ifp->if_percpuq); ifp->if_percpuq = NULL; } mutex_obj_free(ifp->if_ioctl_lock); ifp->if_ioctl_lock = NULL; mutex_obj_free(ifp->if_snd.ifq_lock); if_stats_fini(ifp); splx(s); #ifdef IFAREF_DEBUG if_check_and_free_ifa_list(ifp); #endif } static void if_detach_queues(struct ifnet *ifp, struct ifqueue *q) { struct mbuf *m, *prev, *next; prev = NULL; for (m = q->ifq_head; m != NULL; m = next) { KASSERT((m->m_flags & M_PKTHDR) != 0); next = m->m_nextpkt; if (m->m_pkthdr.rcvif_index != ifp->if_index) { prev = m; continue; } if (prev != NULL) prev->m_nextpkt = m->m_nextpkt; else q->ifq_head = m->m_nextpkt; if (q->ifq_tail == m) q->ifq_tail = prev; q->ifq_len--; m->m_nextpkt = NULL; m_freem(m); IF_DROP(q); } } /* * Callback for a radix tree walk to delete all references to an * ifnet. */ static int if_delroute_matcher(struct rtentry *rt, void *v) { struct ifnet *ifp = (struct ifnet *)v; if (rt->rt_ifp == ifp) return 1; else return 0; } /* * Create a clone network interface. */ static int if_clone_create(const char *name) { struct if_clone *ifc; int unit; struct ifnet *ifp; struct psref psref; KASSERT(mutex_owned(&if_clone_mtx)); ifc = if_clone_lookup(name, &unit); if (ifc == NULL) return EINVAL; ifp = if_get(name, &psref); if (ifp != NULL) { if_put(ifp, &psref); return EEXIST; } return (*ifc->ifc_create)(ifc, unit); } /* * Destroy a clone network interface. */ static int if_clone_destroy(const char *name) { struct if_clone *ifc; struct ifnet *ifp; struct psref psref; int error; int (*if_ioctl)(struct ifnet *, u_long, void *); KASSERT(mutex_owned(&if_clone_mtx)); ifc = if_clone_lookup(name, NULL); if (ifc == NULL) return EINVAL; if (ifc->ifc_destroy == NULL) return EOPNOTSUPP; ifp = if_get(name, &psref); if (ifp == NULL) return ENXIO; /* We have to disable ioctls here */ IFNET_LOCK(ifp); if_ioctl = ifp->if_ioctl; ifp->if_ioctl = if_nullioctl; IFNET_UNLOCK(ifp); /* * We cannot call ifc_destroy with holding ifp. * Releasing ifp here is safe thanks to if_clone_mtx. */ if_put(ifp, &psref); error = (*ifc->ifc_destroy)(ifp); if (error != 0) { /* We have to restore if_ioctl on error */ IFNET_LOCK(ifp); ifp->if_ioctl = if_ioctl; IFNET_UNLOCK(ifp); } return error; } static bool if_is_unit(const char *name) { while (*name != '\0') { if (*name < '0' || *name > '9') return false; name++; } return true; } /* * Look up a network interface cloner. */ static struct if_clone * if_clone_lookup(const char *name, int *unitp) { struct if_clone *ifc; const char *cp; char *dp, ifname[IFNAMSIZ + 3]; int unit; KASSERT(mutex_owned(&if_clone_mtx)); strcpy(ifname, "if_"); /* separate interface name from unit */ /* TODO: search unit number from backward */ for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && *cp && !if_is_unit(cp);) *dp++ = *cp++; if (cp == name || cp - name == IFNAMSIZ || !*cp) return NULL; /* No name or unit number */ *dp++ = '\0'; again: LIST_FOREACH(ifc, &if_cloners, ifc_list) { if (strcmp(ifname + 3, ifc->ifc_name) == 0) break; } if (ifc == NULL) { int error; if (*ifname == '\0') return NULL; mutex_exit(&if_clone_mtx); error = module_autoload(ifname, MODULE_CLASS_DRIVER); mutex_enter(&if_clone_mtx); if (error) return NULL; *ifname = '\0'; goto again; } unit = 0; while (cp - name < IFNAMSIZ && *cp) { if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { /* Bogus unit number. */ return NULL; } unit = (unit * 10) + (*cp++ - '0'); } if (unitp != NULL) *unitp = unit; return ifc; } /* * Register a network interface cloner. */ void if_clone_attach(struct if_clone *ifc) { mutex_enter(&if_clone_mtx); LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); if_cloners_count++; mutex_exit(&if_clone_mtx); } /* * Unregister a network interface cloner. */ void if_clone_detach(struct if_clone *ifc) { mutex_enter(&if_clone_mtx); LIST_REMOVE(ifc, ifc_list); if_cloners_count--; mutex_exit(&if_clone_mtx); } /* * Provide list of interface cloners to userspace. */ int if_clone_list(int buf_count, char *buffer, int *total) { char outbuf[IFNAMSIZ], *dst; struct if_clone *ifc; int count, error = 0; mutex_enter(&if_clone_mtx); *total = if_cloners_count; if ((dst = buffer) == NULL) { /* Just asking how many there are. */ goto out; } if (buf_count < 0) { error = EINVAL; goto out; } count = (if_cloners_count < buf_count) ? if_cloners_count : buf_count; for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); if (outbuf[sizeof(outbuf) - 1] != '\0') { error = ENAMETOOLONG; goto out; } error = copyout(outbuf, dst, sizeof(outbuf)); if (error != 0) break; } out: mutex_exit(&if_clone_mtx); return error; } void ifa_psref_init(struct ifaddr *ifa) { psref_target_init(&ifa->ifa_psref, ifa_psref_class); } void ifaref(struct ifaddr *ifa) { atomic_inc_uint(&ifa->ifa_refcnt); } void ifafree(struct ifaddr *ifa) { KASSERT(ifa != NULL); KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) { free(ifa, M_IFADDR); } } bool ifa_is_destroying(struct ifaddr *ifa) { return ISSET(ifa->ifa_flags, IFA_DESTROYING); } void ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) { ifa->ifa_ifp = ifp; /* * Check MP-safety for IFEF_MPSAFE drivers. * Check !IFF_RUNNING for initialization routines that normally don't * take IFNET_LOCK but it's safe because there is no competitor. * XXX there are false positive cases because IFF_RUNNING can be off on * if_stop. */ KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || IFNET_LOCKED(ifp)); TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); IFADDR_ENTRY_INIT(ifa); IFADDR_WRITER_INSERT_TAIL(ifp, ifa); ifaref(ifa); } void ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) { KASSERT(ifa->ifa_ifp == ifp); /* * Check MP-safety for IFEF_MPSAFE drivers. * if_is_deactivated indicates ifa_remove is called form if_detach * where is safe even if IFNET_LOCK isn't held. */ KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); IFADDR_WRITER_REMOVE(ifa); #ifdef NET_MPSAFE IFNET_GLOBAL_LOCK(); pserialize_perform(ifnet_psz); IFNET_GLOBAL_UNLOCK(); #endif #ifdef NET_MPSAFE psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); #endif IFADDR_ENTRY_DESTROY(ifa); ifafree(ifa); } void ifa_acquire(struct ifaddr *ifa, struct psref *psref) { PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); } void ifa_release(struct ifaddr *ifa, struct psref *psref) { if (ifa == NULL) return; psref_release(psref, &ifa->ifa_psref, ifa_psref_class); } bool ifa_held(struct ifaddr *ifa) { return psref_held(&ifa->ifa_psref, ifa_psref_class); } static inline int equal(const struct sockaddr *sa1, const struct sockaddr *sa2) { return sockaddr_cmp(sa1, sa2) == 0; } /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) return ifa; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && /* IP6 doesn't have broadcast */ ifa->ifa_broadaddr->sa_len != 0 && equal(ifa->ifa_broadaddr, addr)) return ifa; } } return NULL; } struct ifaddr * ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) { struct ifaddr *ifa; int s = pserialize_read_enter(); ifa = ifa_ifwithaddr(addr); if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); return ifa; } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != addr->sa_family || ifa->ifa_dstaddr == NULL) continue; if (equal(addr, ifa->ifa_dstaddr)) return ifa; } } return NULL; } struct ifaddr * ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) { struct ifaddr *ifa; int s; s = pserialize_read_enter(); ifa = ifa_ifwithdstaddr(addr); if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); return ifa; } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa, *ifa_maybe = NULL; const struct sockaddr_dl *sdl; u_int af = addr->sa_family; const char *addr_data = addr->sa_data, *cplim; if (af == AF_LINK) { sdl = satocsdl(addr); if (sdl->sdl_index && sdl->sdl_index < if_indexlim && ifindex2ifnet[sdl->sdl_index] && !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { return ifindex2ifnet[sdl->sdl_index]->if_dl; } } #ifdef NETATALK if (af == AF_APPLETALK) { const struct sockaddr_at *sat, *sat2; sat = (const struct sockaddr_at *)addr; IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); if (ifa == NULL) continue; sat2 = (struct sockaddr_at *)ifa->ifa_addr; if (sat2->sat_addr.s_net == sat->sat_addr.s_net) return ifa; /* exact match */ if (ifa_maybe == NULL) { /* else keep the if with the right range */ ifa_maybe = ifa; } } return ifa_maybe; } #endif IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; IFADDR_READER_FOREACH(ifa, ifp) { const char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af || ifa->ifa_netmask == NULL) next: continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = (const char *)ifa->ifa_netmask + ifa->ifa_netmask->sa_len; while (cp3 < cplim) { if ((*cp++ ^ *cp2++) & *cp3++) { /* want to continue for() loop */ goto next; } } if (ifa_maybe == NULL || rt_refines(ifa->ifa_netmask, ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } return ifa_maybe; } struct ifaddr * ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) { struct ifaddr *ifa; int s; s = pserialize_read_enter(); ifa = ifa_ifwithnet(addr); if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); return ifa; } /* * Find the interface of the addresss. */ struct ifaddr * ifa_ifwithladdr(const struct sockaddr *addr) { struct ifaddr *ia; if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || (ia = ifa_ifwithnet(addr))) return ia; return NULL; } struct ifaddr * ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) { struct ifaddr *ifa; int s; s = pserialize_read_enter(); ifa = ifa_ifwithladdr(addr); if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); return ifa; } /* * Find an interface using a specific address family */ struct ifaddr * ifa_ifwithaf(int af) { struct ifnet *ifp; struct ifaddr *ifa = NULL; int s; s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == af) goto out; } } out: pserialize_read_exit(s); return ifa; } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; const char *cp, *cp2, *cp3; const char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (if_is_deactivated(ifp)) return NULL; if (af >= AF_MAX) return NULL; IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != af) continue; ifa_maybe = ifa; if (ifa->ifa_netmask == NULL) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) return ifa; continue; } cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) { if ((*cp++ ^ *cp2++) & *cp3) break; } if (cp3 == cplim) return ifa; } return ifa_maybe; } struct ifaddr * ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, struct psref *psref) { struct ifaddr *ifa; int s; s = pserialize_read_enter(); ifa = ifaof_ifpforaddr(addr, ifp); if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); return ifa; } /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ void link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) { struct ifaddr *ifa; const struct sockaddr *dst; struct ifnet *ifp; struct psref psref; if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) return; ifp = rt->rt_ifa->ifa_ifp; dst = rt_getkey(rt); if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { rt_replace_ifa(rt, ifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); ifa_release(ifa, &psref); } } /* * bitmask macros to manage a densely packed link_state change queue. * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and * LINK_STATE_UP(2) we need 2 bits for each state change. * As a state change to store is 0, treat all bits set as an unset item. */ #define LQ_ITEM_BITS 2 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) #define LINK_STATE_UNSET LQ_ITEM_MASK #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) #define LQ_STORE(q, i, v) \ do { \ (q) &= ~LQ_MASK((i)); \ (q) |= (v) << (i) * LQ_ITEM_BITS; \ } while (0 /* CONSTCOND */) #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) #define LQ_POP(q, v) \ do { \ (v) = LQ_ITEM((q), 0); \ (q) >>= LQ_ITEM_BITS; \ (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ } while (0 /* CONSTCOND */) #define LQ_PUSH(q, v) \ do { \ (q) >>= LQ_ITEM_BITS; \ (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ } while (0 /* CONSTCOND */) #define LQ_FIND_UNSET(q, i) \ for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ break; \ } /* * Handle a change in the interface link state and * queue notifications. */ void if_link_state_change(struct ifnet *ifp, int link_state) { int idx; /* Ensure change is to a valid state */ switch (link_state) { case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ case LINK_STATE_DOWN: /* FALLTHROUGH */ case LINK_STATE_UP: break; default: #ifdef DEBUG printf("%s: invalid link state %d\n", ifp->if_xname, link_state); #endif return; } IF_LINK_STATE_CHANGE_LOCK(ifp); /* Find the last unset event in the queue. */ LQ_FIND_UNSET(ifp->if_link_queue, idx); if (idx == 0) { /* * There is no queue of link state changes. * As we have the lock we can safely compare against the * current link state and return if the same. * Otherwise, if scheduled is true then the interface is being * detached and the queue is being drained so we need * to avoid queuing more work. */ if (ifp->if_link_state == link_state || ifp->if_link_scheduled) goto out; } else { /* Ensure link_state doesn't match the last queued state. */ if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) goto out; } /* Handle queue overflow. */ if (idx == LQ_MAX(ifp->if_link_queue)) { uint8_t lost; /* * The DOWN state must be protected from being pushed off * the queue to ensure that userland will always be * in a sane state. * Because DOWN is protected, there is no need to protect * UNKNOWN. * It should be invalid to change from any other state to * UNKNOWN anyway ... */ lost = LQ_ITEM(ifp->if_link_queue, 0); LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); if (lost == LINK_STATE_DOWN) { lost = LQ_ITEM(ifp->if_link_queue, 0); LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); } printf("%s: lost link state change %s\n", ifp->if_xname, lost == LINK_STATE_UP ? "UP" : lost == LINK_STATE_DOWN ? "DOWN" : "UNKNOWN"); } else LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); if (ifp->if_link_scheduled) goto out; ifp->if_link_scheduled = true; workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); out: IF_LINK_STATE_CHANGE_UNLOCK(ifp); } /* * Handle interface link state change notifications. */ static void if_link_state_change_process(struct ifnet *ifp, int link_state) { struct domain *dp; int s = splnet(); bool notify; KASSERT(!cpu_intr_p()); IF_LINK_STATE_CHANGE_LOCK(ifp); /* Ensure the change is still valid. */ if (ifp->if_link_state == link_state) { IF_LINK_STATE_CHANGE_UNLOCK(ifp); splx(s); return; } #ifdef DEBUG log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, link_state == LINK_STATE_UP ? "UP" : link_state == LINK_STATE_DOWN ? "DOWN" : "UNKNOWN", ifp->if_link_state == LINK_STATE_UP ? "UP" : ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : "UNKNOWN"); #endif /* * When going from UNKNOWN to UP, we need to mark existing * addresses as tentative and restart DAD as we may have * erroneously not found a duplicate. * * This needs to happen before rt_ifmsg to avoid a race where * listeners would have an address and expect it to work right * away. */ notify = (link_state == LINK_STATE_UP && ifp->if_link_state == LINK_STATE_UNKNOWN); ifp->if_link_state = link_state; /* The following routines may sleep so release the spin mutex */ IF_LINK_STATE_CHANGE_UNLOCK(ifp); KERNEL_LOCK_UNLESS_NET_MPSAFE(); if (notify) { DOMAIN_FOREACH(dp) { if (dp->dom_if_link_state_change != NULL) dp->dom_if_link_state_change(ifp, LINK_STATE_DOWN); } } /* Notify that the link state has changed. */ rt_ifmsg(ifp); #if NCARP > 0 if (ifp->if_carp) carp_carpdev_state(ifp); #endif if (ifp->if_link_state_changed != NULL) ifp->if_link_state_changed(ifp, link_state); #if NBRIDGE > 0 if (ifp->if_bridge != NULL) bridge_calc_link_state(ifp->if_bridge); #endif DOMAIN_FOREACH(dp) { if (dp->dom_if_link_state_change != NULL) dp->dom_if_link_state_change(ifp, link_state); } KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); splx(s); } /* * Process the interface link state change queue. */ static void if_link_state_change_work(struct work *work, void *arg) { struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); int s; uint8_t state; KERNEL_LOCK_UNLESS_NET_MPSAFE(); s = splnet(); /* Pop a link state change from the queue and process it. * If there is nothing to process then if_detach() has been called. * We keep if_link_scheduled = true so the queue can safely drain * without more work being queued. */ IF_LINK_STATE_CHANGE_LOCK(ifp); LQ_POP(ifp->if_link_queue, state); IF_LINK_STATE_CHANGE_UNLOCK(ifp); if (state == LINK_STATE_UNSET) goto out; if_link_state_change_process(ifp, state); /* If there is a link state change to come, schedule it. */ IF_LINK_STATE_CHANGE_LOCK(ifp); if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { ifp->if_link_scheduled = true; workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); } else ifp->if_link_scheduled = false; IF_LINK_STATE_CHANGE_UNLOCK(ifp); out: splx(s); KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); } /* * Used to mark addresses on an interface as DETATCHED or TENTATIVE * and thus start Duplicate Address Detection without changing the * real link state. */ void if_domain_link_state_change(struct ifnet *ifp, int link_state) { struct domain *dp; int s = splnet(); KERNEL_LOCK_UNLESS_NET_MPSAFE(); DOMAIN_FOREACH(dp) { if (dp->dom_if_link_state_change != NULL) dp->dom_if_link_state_change(ifp, link_state); } splx(s); KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); } /* * Default action when installing a local route on a point-to-point * interface. */ void p2p_rtrequest(int req, struct rtentry *rt, __unused const struct rt_addrinfo *info) { struct ifnet *ifp = rt->rt_ifp; struct ifaddr *ifa, *lo0ifa; int s = pserialize_read_enter(); switch (req) { case RTM_ADD: if ((rt->rt_flags & RTF_LOCAL) == 0) break; rt->rt_ifp = lo0ifp; if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) break; IFADDR_READER_FOREACH(ifa, ifp) { if (equal(rt_getkey(rt), ifa->ifa_addr)) break; } if (ifa == NULL) break; /* * Ensure lo0 has an address of the same family. */ IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { if (lo0ifa->ifa_addr->sa_family == ifa->ifa_addr->sa_family) break; } if (lo0ifa == NULL) break; /* * Make sure to set rt->rt_ifa to the interface * address we are using, otherwise we will have trouble * with source address selection. */ if (ifa != rt->rt_ifa) rt_replace_ifa(rt, ifa); break; case RTM_DELETE: default: break; } pserialize_read_exit(s); } static void _if_down(struct ifnet *ifp) { struct ifaddr *ifa; struct domain *dp; int s, bound; struct psref psref; ifp->if_flags &= ~IFF_UP; nanotime(&ifp->if_lastchange); bound = curlwp_bind(); s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { ifa_acquire(ifa, &psref); pserialize_read_exit(s); pfctlinput(PRC_IFDOWN, ifa->ifa_addr); s = pserialize_read_enter(); ifa_release(ifa, &psref); } pserialize_read_exit(s); curlwp_bindx(bound); IFQ_PURGE(&ifp->if_snd); #if NCARP > 0 if (ifp->if_carp) carp_carpdev_state(ifp); #endif rt_ifmsg(ifp); DOMAIN_FOREACH(dp) { if (dp->dom_if_down) dp->dom_if_down(ifp); } } static void if_down_deactivated(struct ifnet *ifp) { KASSERT(if_is_deactivated(ifp)); _if_down(ifp); } void if_down_locked(struct ifnet *ifp) { KASSERT(IFNET_LOCKED(ifp)); _if_down(ifp); } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splsoftnet or equivalent. */ void if_down(struct ifnet *ifp) { IFNET_LOCK(ifp); if_down_locked(ifp); IFNET_UNLOCK(ifp); } /* * Must be called with holding if_ioctl_lock. */ static void if_up_locked(struct ifnet *ifp) { #ifdef notyet struct ifaddr *ifa; #endif struct domain *dp; KASSERT(IFNET_LOCKED(ifp)); KASSERT(!if_is_deactivated(ifp)); ifp->if_flags |= IFF_UP; nanotime(&ifp->if_lastchange); #ifdef notyet /* this has no effect on IP, and will kill all ISO connections XXX */ IFADDR_READER_FOREACH(ifa, ifp) pfctlinput(PRC_IFUP, ifa->ifa_addr); #endif #if NCARP > 0 if (ifp->if_carp) carp_carpdev_state(ifp); #endif rt_ifmsg(ifp); DOMAIN_FOREACH(dp) { if (dp->dom_if_up) dp->dom_if_up(ifp); } } /* * Handle interface slowtimo timer routine. Called * from softclock, we decrement timer (if set) and * call the appropriate interface routine on expiration. */ static void if_slowtimo(void *arg) { void (*slowtimo)(struct ifnet *); struct ifnet *ifp = arg; int s; slowtimo = ifp->if_slowtimo; if (__predict_false(slowtimo == NULL)) return; s = splnet(); if (ifp->if_timer != 0 && --ifp->if_timer == 0) (*slowtimo)(ifp); splx(s); if (__predict_true(ifp->if_slowtimo != NULL)) callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splsoftnet or equivalent. */ void if_up(struct ifnet *ifp) { IFNET_LOCK(ifp); if_up_locked(ifp); IFNET_UNLOCK(ifp); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc_locked(struct ifnet *ifp, int pswitch) { int pcount, ret = 0; u_short nflags; KASSERT(IFNET_LOCKED(ifp)); pcount = ifp->if_pcount; if (pswitch) { /* * Allow the device to be "placed" into promiscuous * mode even if it is not configured up. It will * consult IFF_PROMISC when it is brought up. */ if (ifp->if_pcount++ != 0) goto out; nflags = ifp->if_flags | IFF_PROMISC; } else { if (--ifp->if_pcount > 0) goto out; nflags = ifp->if_flags & ~IFF_PROMISC; } ret = if_flags_set(ifp, nflags); /* Restore interface state if not successful. */ if (ret != 0) { ifp->if_pcount = pcount; } out: return ret; } int ifpromisc(struct ifnet *ifp, int pswitch) { int e; IFNET_LOCK(ifp); e = ifpromisc_locked(ifp, pswitch); IFNET_UNLOCK(ifp); return e; } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(const char *name) { struct ifnet *ifp; const char *cp = name; u_int unit = 0; u_int i; int s; /* * If the entire name is a number, treat it as an ifindex. */ for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { unit = unit * 10 + (*cp - '0'); } /* * If the number took all of the name, then it's a valid ifindex. */ if (i == IFNAMSIZ || (cp != name && *cp == '\0')) return if_byindex(unit); ifp = NULL; s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; if (strcmp(ifp->if_xname, name) == 0) goto out; } out: pserialize_read_exit(s); return ifp; } /* * Get a reference of an ifnet object by an interface name. * The returned reference is protected by psref(9). The caller * must release a returned reference by if_put after use. */ struct ifnet * if_get(const char *name, struct psref *psref) { struct ifnet *ifp; const char *cp = name; u_int unit = 0; u_int i; int s; /* * If the entire name is a number, treat it as an ifindex. */ for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { unit = unit * 10 + (*cp - '0'); } /* * If the number took all of the name, then it's a valid ifindex. */ if (i == IFNAMSIZ || (cp != name && *cp == '\0')) return if_get_byindex(unit, psref); ifp = NULL; s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; if (strcmp(ifp->if_xname, name) == 0) { PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); goto out; } } out: pserialize_read_exit(s); return ifp; } /* * Release a reference of an ifnet object given by if_get, if_get_byindex * or if_get_bylla. */ void if_put(const struct ifnet *ifp, struct psref *psref) { if (ifp == NULL) return; psref_release(psref, &ifp->if_psref, ifnet_psref_class); } /* * Return ifp having idx. Return NULL if not found. Normally if_byindex * should be used. */ ifnet_t * _if_byindex(u_int idx) { return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; } /* * Return ifp having idx. Return NULL if not found or the found ifp is * already deactivated. */ ifnet_t * if_byindex(u_int idx) { ifnet_t *ifp; ifp = _if_byindex(idx); if (ifp != NULL && if_is_deactivated(ifp)) ifp = NULL; return ifp; } /* * Get a reference of an ifnet object by an interface index. * The returned reference is protected by psref(9). The caller * must release a returned reference by if_put after use. */ ifnet_t * if_get_byindex(u_int idx, struct psref *psref) { ifnet_t *ifp; int s; s = pserialize_read_enter(); ifp = if_byindex(idx); if (__predict_true(ifp != NULL)) { PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); } pserialize_read_exit(s); return ifp; } ifnet_t * if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) { ifnet_t *ifp; int s; s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { if (if_is_deactivated(ifp)) continue; if (ifp->if_addrlen != lla_len) continue; if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); break; } } pserialize_read_exit(s); return ifp; } /* * Note that it's safe only if the passed ifp is guaranteed to not be freed, * for example using pserialize or the ifp is already held or some other * object is held which guarantes the ifp to not be freed indirectly. */ void if_acquire(struct ifnet *ifp, struct psref *psref) { KASSERT(ifp->if_index != 0); psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); } bool if_held(struct ifnet *ifp) { return psref_held(&ifp->if_psref, ifnet_psref_class); } /* * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. * Check the tunnel nesting count. * Return > 0, if tunnel nesting count is more than limit. * Return 0, if tunnel nesting count is equal or less than limit. */ int if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) { struct m_tag *mtag; int *count; mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); if (mtag != NULL) { count = (int *)(mtag + 1); if (++(*count) > limit) { log(LOG_NOTICE, "%s: recursively called too many times(%d)\n", ifp->if_xname, *count); return EIO; } } else { mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), M_NOWAIT); if (mtag != NULL) { m_tag_prepend(m, mtag); count = (int *)(mtag + 1); *count = 0; } else { log(LOG_DEBUG, "%s: m_tag_get() failed, recursion calls are not prevented.\n", ifp->if_xname); } } return 0; } static void if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) { struct tunnel_ro *tro = p; tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); } static void if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) { struct tunnel_ro *tro = p; rtcache_free(tro->tr_ro); kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); mutex_obj_free(tro->tr_lock); } percpu_t * if_tunnel_alloc_ro_percpu(void) { return percpu_create(sizeof(struct tunnel_ro), if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); } void if_tunnel_free_ro_percpu(percpu_t *ro_percpu) { percpu_free(ro_percpu, sizeof(struct tunnel_ro)); } static void if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) { struct tunnel_ro *tro = p; mutex_enter(tro->tr_lock); rtcache_free(tro->tr_ro); mutex_exit(tro->tr_lock); } void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) { percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); } void if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) { /* Collet the volatile stats first; this zeros *ifi. */ if_stats_to_if_data(ifp, ifi, zero_stats); ifi->ifi_type = ifp->if_type; ifi->ifi_addrlen = ifp->if_addrlen; ifi->ifi_hdrlen = ifp->if_hdrlen; ifi->ifi_link_state = ifp->if_link_state; ifi->ifi_mtu = ifp->if_mtu; ifi->ifi_metric = ifp->if_metric; ifi->ifi_baudrate = ifp->if_baudrate; ifi->ifi_lastchange = ifp->if_lastchange; } /* common */ int ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) { int s; struct ifreq *ifr; struct ifcapreq *ifcr; struct ifdatareq *ifdr; unsigned short flags; char *descr; int error; switch (cmd) { case SIOCSIFCAP: ifcr = data; if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) return EINVAL; if (ifcr->ifcr_capenable == ifp->if_capenable) return 0; ifp->if_capenable = ifcr->ifcr_capenable; /* Pre-compute the checksum flags mask. */ ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) ifp->if_csum_flags_tx |= M_CSUM_IPv4; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) ifp->if_csum_flags_rx |= M_CSUM_IPv4; if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) ifp->if_csum_flags_tx |= M_CSUM_TCPv4; if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) ifp->if_csum_flags_rx |= M_CSUM_TCPv4; if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) ifp->if_csum_flags_tx |= M_CSUM_UDPv4; if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) ifp->if_csum_flags_rx |= M_CSUM_UDPv4; if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) ifp->if_csum_flags_tx |= M_CSUM_TCPv6; if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) ifp->if_csum_flags_rx |= M_CSUM_TCPv6; if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) ifp->if_csum_flags_tx |= M_CSUM_UDPv6; if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) ifp->if_csum_flags_rx |= M_CSUM_UDPv6; if (ifp->if_capenable & IFCAP_TSOv4) ifp->if_csum_flags_tx |= M_CSUM_TSOv4; if (ifp->if_capenable & IFCAP_TSOv6) ifp->if_csum_flags_tx |= M_CSUM_TSOv6; #if NBRIDGE > 0 if (ifp->if_bridge != NULL) bridge_calc_csum_flags(ifp->if_bridge); #endif if (ifp->if_flags & IFF_UP) return ENETRESET; return 0; case SIOCSIFFLAGS: ifr = data; /* * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up * and if_down aren't MP-safe yet, so we must hold the lock. */ KERNEL_LOCK_IF_IFP_MPSAFE(ifp); if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { s = splsoftnet(); if_down_locked(ifp); splx(s); } if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { s = splsoftnet(); if_up_locked(ifp); splx(s); } KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); flags = (ifp->if_flags & IFF_CANTCHANGE) | (ifr->ifr_flags &~ IFF_CANTCHANGE); if (ifp->if_flags != flags) { ifp->if_flags = flags; /* Notify that the flags have changed. */ rt_ifmsg(ifp); } break; case SIOCGIFFLAGS: ifr = data; ifr->ifr_flags = ifp->if_flags; break; case SIOCGIFMETRIC: ifr = data; ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr = data; ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFDLT: ifr = data; ifr->ifr_dlt = ifp->if_dlt; break; case SIOCGIFCAP: ifcr = data; ifcr->ifcr_capabilities = ifp->if_capabilities; ifcr->ifcr_capenable = ifp->if_capenable; break; case SIOCSIFMETRIC: ifr = data; ifp->if_metric = ifr->ifr_metric; break; case SIOCGIFDATA: ifdr = data; if_export_if_data(ifp, &ifdr->ifdr_data, false); break; case SIOCGIFINDEX: ifr = data; ifr->ifr_index = ifp->if_index; break; case SIOCZIFDATA: ifdr = data; if_export_if_data(ifp, &ifdr->ifdr_data, true); getnanotime(&ifp->if_lastchange); break; case SIOCSIFMTU: ifr = data; if (ifp->if_mtu == ifr->ifr_mtu) break; ifp->if_mtu = ifr->ifr_mtu; return ENETRESET; case SIOCSIFDESCR: error = kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), NULL); if (error) return error; ifr = data; if (ifr->ifr_buflen > IFDESCRSIZE) return ENAMETOOLONG; if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { /* unset description */ descr = NULL; } else { descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); /* * copy (IFDESCRSIZE - 1) bytes to ensure * terminating nul */ error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); if (error) { kmem_free(descr, IFDESCRSIZE); return error; } } if (ifp->if_description != NULL) kmem_free(ifp->if_description, IFDESCRSIZE); ifp->if_description = descr; break; case SIOCGIFDESCR: ifr = data; descr = ifp->if_description; if (descr == NULL) return ENOMSG; if (ifr->ifr_buflen < IFDESCRSIZE) return EINVAL; error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); if (error) return error; break; default: return ENOTTY; } return 0; } int ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) { struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; struct ifaddr *ifa; const struct sockaddr *any, *sa; union { struct sockaddr sa; struct sockaddr_storage ss; } u, v; int s, error = 0; switch (cmd) { case SIOCSIFADDRPREF: error = kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), NULL); if (error) return error; break; case SIOCGIFADDRPREF: break; default: return EOPNOTSUPP; } /* sanity checks */ if (data == NULL || ifp == NULL) { panic("invalid argument to %s", __func__); /*NOTREACHED*/ } /* address must be specified on ADD and DELETE */ sa = sstocsa(&ifap->ifap_addr); if (sa->sa_family != sofamily(so)) return EINVAL; if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) return EINVAL; sockaddr_externalize(&v.sa, sizeof(v.ss), sa); s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != sa->sa_family) continue; sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); if (sockaddr_cmp(&u.sa, &v.sa) == 0) break; } if (ifa == NULL) { error = EADDRNOTAVAIL; goto out; } switch (cmd) { case SIOCSIFADDRPREF: ifa->ifa_preference = ifap->ifap_preference; goto out; case SIOCGIFADDRPREF: /* fill in the if_laddrreq structure */ (void)sockaddr_copy(sstosa(&ifap->ifap_addr), sizeof(ifap->ifap_addr), ifa->ifa_addr); ifap->ifap_preference = ifa->ifa_preference; goto out; default: error = EOPNOTSUPP; } out: pserialize_read_exit(s); return error; } /* * Interface ioctls. */ static int doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) { struct ifnet *ifp; struct ifreq *ifr; int error = 0; u_long ocmd = cmd; u_short oif_flags; struct ifreq ifrb; struct oifreq *oifr = NULL; int r; struct psref psref; int bound; bool do_if43_post = false; bool do_ifm80_post = false; switch (cmd) { case SIOCGIFCONF: return ifconf(cmd, data); case SIOCINITIFADDR: return EPERM; default: MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), error); if (error != ENOSYS) return error; MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), enosys(), error); if (error != ENOSYS) return error; error = 0; break; } ifr = data; /* Pre-conversion */ MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); if (cmd != ocmd) { oifr = data; data = ifr = &ifrb; IFREQO2N_43(oifr, ifr); do_if43_post = true; } MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), enosys(), error); switch (cmd) { case SIOCIFCREATE: case SIOCIFDESTROY: bound = curlwp_bind(); if (l != NULL) { ifp = if_get(ifr->ifr_name, &psref); error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), NULL); if (ifp != NULL) if_put(ifp, &psref); if (error != 0) { curlwp_bindx(bound); return error; } } KERNEL_LOCK_UNLESS_NET_MPSAFE(); mutex_enter(&if_clone_mtx); r = (cmd == SIOCIFCREATE) ? if_clone_create(ifr->ifr_name) : if_clone_destroy(ifr->ifr_name); mutex_exit(&if_clone_mtx); KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); curlwp_bindx(bound); return r; case SIOCIFGCLONERS: { struct if_clonereq *req = (struct if_clonereq *)data; return if_clone_list(req->ifcr_count, req->ifcr_buffer, &req->ifcr_total); } } bound = curlwp_bind(); ifp = if_get(ifr->ifr_name, &psref); if (ifp == NULL) { curlwp_bindx(bound); return ENXIO; } switch (cmd) { case SIOCALIFADDR: case SIOCDLIFADDR: case SIOCSIFADDRPREF: case SIOCSIFFLAGS: case SIOCSIFCAP: case SIOCSIFMETRIC: case SIOCZIFDATA: case SIOCSIFMTU: case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCSETHERCAP: case SIOCSIFMEDIA: case SIOCSDRVSPEC: case SIOCG80211: case SIOCS80211: case SIOCS80211NWID: case SIOCS80211NWKEY: case SIOCS80211POWER: case SIOCS80211BSSID: case SIOCS80211CHANNEL: case SIOCSLINKSTR: if (l != NULL) { error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), NULL); if (error != 0) goto out; } } oif_flags = ifp->if_flags; KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); IFNET_LOCK(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error != ENOTTY) ; else if (so->so_proto == NULL) error = EOPNOTSUPP; else { KERNEL_LOCK_IF_IFP_MPSAFE(ifp); MODULE_HOOK_CALL(if_ifioctl_43_hook, (so, ocmd, cmd, data, l), enosys(), error); if (error == ENOSYS) error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, cmd, data, ifp); KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); } if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { if ((ifp->if_flags & IFF_UP) != 0) { int s = splsoftnet(); if_up_locked(ifp); splx(s); } } /* Post-conversion */ if (do_ifm80_post && (error == 0)) MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), enosys(), error); if (do_if43_post) IFREQN2O_43(oifr, ifr); IFNET_UNLOCK(ifp); KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); out: if_put(ifp, &psref); curlwp_bindx(bound); return error; } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. * * Each record is a struct ifreq. Before the addition of * sockaddr_storage, the API rule was that sockaddr flavors that did * not fit would extend beyond the struct ifreq, with the next struct * ifreq starting sa_len beyond the struct sockaddr. Because the * union in struct ifreq includes struct sockaddr_storage, every kind * of sockaddr must fit. Thus, there are no longer any overlength * records. * * Records are added to the user buffer if they fit, and ifc_len is * adjusted to the length that was written. Thus, the user is only * assured of getting the complete list if ifc_len on return is at * least sizeof(struct ifreq) less than it was on entry. * * If the user buffer pointer is NULL, this routine copies no data and * returns the amount of space that would be needed. * * Invariants: * ifrp points to the next part of the user's buffer to be used. If * ifrp != NULL, space holds the number of bytes remaining that we may * write at ifrp. Otherwise, space holds the number of bytes that * would have been written had there been adequate space. */ /*ARGSUSED*/ static int ifconf(u_long cmd, void *data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr, *ifrp = NULL; int space = 0, error = 0; const int sz = (int)sizeof(struct ifreq); const bool docopy = ifc->ifc_req != NULL; int s; int bound; struct psref psref; if (docopy) { if (ifc->ifc_len < 0) return EINVAL; space = ifc->ifc_len; ifrp = ifc->ifc_req; } memset(&ifr, 0, sizeof(ifr)); bound = curlwp_bind(); s = pserialize_read_enter(); IFNET_READER_FOREACH(ifp) { psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); pserialize_read_exit(s); (void)strncpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)); if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { error = ENAMETOOLONG; goto release_exit; } if (IFADDR_READER_EMPTY(ifp)) { /* Interface with no addresses - send zero sockaddr. */ memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); if (!docopy) { space += sz; goto next; } if (space >= sz) { error = copyout(&ifr, ifrp, sz); if (error != 0) goto release_exit; ifrp++; space -= sz; } } s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { struct sockaddr *sa = ifa->ifa_addr; /* all sockaddrs must fit in sockaddr_storage */ KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); if (!docopy) { space += sz; continue; } memcpy(&ifr.ifr_space, sa, sa->sa_len); pserialize_read_exit(s); if (space >= sz) { error = copyout(&ifr, ifrp, sz); if (error != 0) goto release_exit; ifrp++; space -= sz; } s = pserialize_read_enter(); } pserialize_read_exit(s); next: s = pserialize_read_enter(); psref_release(&psref, &ifp->if_psref, ifnet_psref_class); } pserialize_read_exit(s); curlwp_bindx(bound); if (docopy) { KASSERT(0 <= space && space <= ifc->ifc_len); ifc->ifc_len -= space; } else { KASSERT(space >= 0); ifc->ifc_len = space; } return (0); release_exit: psref_release(&psref, &ifp->if_psref, ifnet_psref_class); curlwp_bindx(bound); return error; } int ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) { uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); struct ifreq ifrb; struct oifreq *oifr = NULL; u_long ocmd = cmd; int hook; MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); if (hook != ENOSYS) { if (cmd != ocmd) { oifr = (struct oifreq *)(void *)ifr; ifr = &ifrb; IFREQO2N_43(oifr, ifr); len = sizeof(oifr->ifr_addr); } } if (len < sa->sa_len) return EFBIG; memset(&ifr->ifr_addr, 0, len); sockaddr_copy(&ifr->ifr_addr, len, sa); if (cmd != ocmd) IFREQN2O_43(oifr, ifr); return 0; } /* * wrapper function for the drivers which doesn't have if_transmit(). */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int s, error; size_t pktlen = m->m_pkthdr.len; bool mcast = (m->m_flags & M_MCAST) != 0; s = splnet(); IFQ_ENQUEUE(&ifp->if_snd, m, error); if (error != 0) { /* mbuf is already freed */ goto out; } net_stat_ref_t nsr = IF_STAT_GETREF(ifp); if_statadd_ref(nsr, if_obytes, pktlen); if (mcast) if_statinc_ref(nsr, if_omcasts); IF_STAT_PUTREF(ifp); if ((ifp->if_flags & IFF_OACTIVE) == 0) if_start_lock(ifp); out: splx(s); return error; } int if_transmit_lock(struct ifnet *ifp, struct mbuf *m) { int error; kmsan_check_mbuf(m); #ifdef ALTQ KERNEL_LOCK(1, NULL); if (ALTQ_IS_ENABLED(&ifp->if_snd)) { error = if_transmit(ifp, m); KERNEL_UNLOCK_ONE(NULL); } else { KERNEL_UNLOCK_ONE(NULL); error = (*ifp->if_transmit)(ifp, m); /* mbuf is alredy freed */ } #else /* !ALTQ */ error = (*ifp->if_transmit)(ifp, m); /* mbuf is alredy freed */ #endif /* !ALTQ */ return error; } /* * Queue message on interface, and start output if interface * not yet active. */ int ifq_enqueue(struct ifnet *ifp, struct mbuf *m) { return if_transmit_lock(ifp, m); } /* * Queue message on interface, possibly using a second fast queue */ int ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) { int error = 0; if (ifq != NULL #ifdef ALTQ && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 #endif ) { if (IF_QFULL(ifq)) { IF_DROP(&ifp->if_snd); m_freem(m); if (error == 0) error = ENOBUFS; } else IF_ENQUEUE(ifq, m); } else IFQ_ENQUEUE(&ifp->if_snd, m, error); if (error != 0) { if_statinc(ifp, if_oerrors); return error; } return 0; } int if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) { int rc; KASSERT(IFNET_LOCKED(ifp)); if (ifp->if_initaddr != NULL) rc = (*ifp->if_initaddr)(ifp, ifa, src); else if (src || (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); return rc; } int if_do_dad(struct ifnet *ifp) { if ((ifp->if_flags & IFF_LOOPBACK) != 0) return 0; switch (ifp->if_type) { case IFT_FAITH: /* * These interfaces do not have the IFF_LOOPBACK flag, * but loop packets back. We do not have to do DAD on such * interfaces. We should even omit it, because loop-backed * responses would confuse the DAD procedure. */ return 0; default: /* * Our DAD routine requires the interface up and running. * However, some interfaces can be up before the RUNNING * status. Additionaly, users may try to assign addresses * before the interface becomes up (or running). * We simply skip DAD in such a case as a work around. * XXX: we should rather mark "tentative" on such addresses, * and do DAD after the interface becomes ready. */ if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; return 1; } } int if_flags_set(ifnet_t *ifp, const u_short flags) { int rc; KASSERT(IFNET_LOCKED(ifp)); if (ifp->if_setflags != NULL) rc = (*ifp->if_setflags)(ifp, flags); else { u_short cantflags, chgdflags; struct ifreq ifr; chgdflags = ifp->if_flags ^ flags; cantflags = chgdflags & IFF_CANTCHANGE; if (cantflags != 0) ifp->if_flags ^= cantflags; /* Traditionally, we do not call if_ioctl after * setting/clearing only IFF_PROMISC if the interface * isn't IFF_UP. Uphold that tradition. */ if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) return 0; memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = flags & ~IFF_CANTCHANGE; rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); if (rc != 0 && cantflags != 0) ifp->if_flags ^= cantflags; } return rc; } int if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) { int rc; struct ifreq ifr; /* * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK() * in some cases - e.g. when called from vlan/netinet/netinet6 code * directly rather than via doifoictl() */ ifreq_setaddr(cmd, &ifr, sa); rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); return rc; } static void sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, struct ifaltq *ifq) { const struct sysctlnode *cnode, *rnode; if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", SYSCTL_DESCR("Per-interface controls"), NULL, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, ifname, SYSCTL_DESCR("Interface controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sndq", SYSCTL_DESCR("Interface output queue controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "len", SYSCTL_DESCR("Current output queue length"), NULL, 0, &ifq->ifq_len, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "maxlen", SYSCTL_DESCR("Maximum allowed output queue length"), NULL, 0, &ifq->ifq_maxlen, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "drops", SYSCTL_DESCR("Packets dropped due to full output queue"), NULL, 0, &ifq->ifq_drops, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; return; bad: printf("%s: could not attach sysctl nodes\n", ifname); return; } #if defined(INET) || defined(INET6) #define SYSCTL_NET_PKTQ(q, cn, c) \ static int \ sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ { \ return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ } #if defined(INET) static int sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) { return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); } SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) #endif #if defined(INET6) static int sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) { return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); } SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) #endif static void sysctl_net_pktq_setup(struct sysctllog **clog, int pf) { sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; const char *pfname = NULL, *ipname = NULL; int ipn = 0, qid = 0; switch (pf) { #if defined(INET) case PF_INET: len_func = sysctl_net_ip_pktq_items; maxlen_func = sysctl_net_ip_pktq_maxlen; drops_func = sysctl_net_ip_pktq_drops; pfname = "inet", ipn = IPPROTO_IP; ipname = "ip", qid = IPCTL_IFQ; break; #endif #if defined(INET6) case PF_INET6: len_func = sysctl_net_ip6_pktq_items; maxlen_func = sysctl_net_ip6_pktq_maxlen; drops_func = sysctl_net_ip6_pktq_drops; pfname = "inet6", ipn = IPPROTO_IPV6; ipname = "ip6", qid = IPV6CTL_IFQ; break; #endif default: KASSERT(false); } sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, pfname, NULL, NULL, 0, NULL, 0, CTL_NET, pf, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, ipname, NULL, NULL, 0, NULL, 0, CTL_NET, pf, ipn, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ifq", SYSCTL_DESCR("Protocol input queue controls"), NULL, 0, NULL, 0, CTL_NET, pf, ipn, qid, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_QUAD, "len", SYSCTL_DESCR("Current input queue length"), len_func, 0, NULL, 0, CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "maxlen", SYSCTL_DESCR("Maximum allowed input queue length"), maxlen_func, 0, NULL, 0, CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_QUAD, "drops", SYSCTL_DESCR("Packets dropped due to full input queue"), drops_func, 0, NULL, 0, CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); } #endif /* INET || INET6 */ static int if_sdl_sysctl(SYSCTLFN_ARGS) { struct ifnet *ifp; const struct sockaddr_dl *sdl; struct psref psref; int error = 0; int bound; if (namelen != 1) return EINVAL; bound = curlwp_bind(); ifp = if_get_byindex(name[0], &psref); if (ifp == NULL) { error = ENODEV; goto out0; } sdl = ifp->if_sadl; if (sdl == NULL) { *oldlenp = 0; goto out1; } if (oldp == NULL) { *oldlenp = sdl->sdl_alen; goto out1; } if (*oldlenp >= sdl->sdl_alen) *oldlenp = sdl->sdl_alen; error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); out1: if_put(ifp, &psref); out0: curlwp_bindx(bound); return error; } static void if_sysctl_setup(struct sysctllog **clog) { const struct sysctlnode *rnode = NULL; sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sdl", SYSCTL_DESCR("Get active link-layer address"), if_sdl_sysctl, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL); #if defined(INET) sysctl_net_pktq_setup(NULL, PF_INET); #endif #ifdef INET6 if (in6_present) sysctl_net_pktq_setup(NULL, PF_INET6); #endif }