/* $NetBSD: dir.c,v 1.58 2008/12/28 18:32:54 christos Exp $ */ /* * Copyright (c) 1988, 1989, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Adam de Boor. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1988, 1989 by Adam de Boor * Copyright (c) 1989 by Berkeley Softworks * All rights reserved. * * This code is derived from software contributed to Berkeley by * Adam de Boor. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef MAKE_NATIVE static char rcsid[] = "$NetBSD: dir.c,v 1.58 2008/12/28 18:32:54 christos Exp $"; #else #include #ifndef lint #if 0 static char sccsid[] = "@(#)dir.c 8.2 (Berkeley) 1/2/94"; #else __RCSID("$NetBSD: dir.c,v 1.58 2008/12/28 18:32:54 christos Exp $"); #endif #endif /* not lint */ #endif /*- * dir.c -- * Directory searching using wildcards and/or normal names... * Used both for source wildcarding in the Makefile and for finding * implicit sources. * * The interface for this module is: * Dir_Init Initialize the module. * * Dir_InitCur Set the cur Path. * * Dir_InitDot Set the dot Path. * * Dir_End Cleanup the module. * * Dir_SetPATH Set ${.PATH} to reflect state of dirSearchPath. * * Dir_HasWildcards Returns TRUE if the name given it needs to * be wildcard-expanded. * * Dir_Expand Given a pattern and a path, return a Lst of names * which match the pattern on the search path. * * Dir_FindFile Searches for a file on a given search path. * If it exists, the entire path is returned. * Otherwise NULL is returned. * * Dir_FindHereOrAbove Search for a path in the current directory and * then all the directories above it in turn until * the path is found or we reach the root ("/"). * * Dir_MTime Return the modification time of a node. The file * is searched for along the default search path. * The path and mtime fields of the node are filled * in. * * Dir_AddDir Add a directory to a search path. * * Dir_MakeFlags Given a search path and a command flag, create * a string with each of the directories in the path * preceded by the command flag and all of them * separated by a space. * * Dir_Destroy Destroy an element of a search path. Frees up all * things that can be freed for the element as long * as the element is no longer referenced by any other * search path. * Dir_ClearPath Resets a search path to the empty list. * * For debugging: * Dir_PrintDirectories Print stats about the directory cache. */ #include #include #include #include #include #include "make.h" #include "hash.h" #include "dir.h" /* * A search path consists of a Lst of Path structures. A Path structure * has in it the name of the directory and a hash table of all the files * in the directory. This is used to cut down on the number of system * calls necessary to find implicit dependents and their like. Since * these searches are made before any actions are taken, we need not * worry about the directory changing due to creation commands. If this * hampers the style of some makefiles, they must be changed. * * A list of all previously-read directories is kept in the * openDirectories Lst. This list is checked first before a directory * is opened. * * The need for the caching of whole directories is brought about by * the multi-level transformation code in suff.c, which tends to search * for far more files than regular make does. In the initial * implementation, the amount of time spent performing "stat" calls was * truly astronomical. The problem with hashing at the start is, * of course, that pmake doesn't then detect changes to these directories * during the course of the make. Three possibilities suggest themselves: * * 1) just use stat to test for a file's existence. As mentioned * above, this is very inefficient due to the number of checks * engendered by the multi-level transformation code. * 2) use readdir() and company to search the directories, keeping * them open between checks. I have tried this and while it * didn't slow down the process too much, it could severely * affect the amount of parallelism available as each directory * open would take another file descriptor out of play for * handling I/O for another job. Given that it is only recently * that UNIX OS's have taken to allowing more than 20 or 32 * file descriptors for a process, this doesn't seem acceptable * to me. * 3) record the mtime of the directory in the Path structure and * verify the directory hasn't changed since the contents were * hashed. This will catch the creation or deletion of files, * but not the updating of files. However, since it is the * creation and deletion that is the problem, this could be * a good thing to do. Unfortunately, if the directory (say ".") * were fairly large and changed fairly frequently, the constant * rehashing could seriously degrade performance. It might be * good in such cases to keep track of the number of rehashes * and if the number goes over a (small) limit, resort to using * stat in its place. * * An additional thing to consider is that pmake is used primarily * to create C programs and until recently pcc-based compilers refused * to allow you to specify where the resulting object file should be * placed. This forced all objects to be created in the current * directory. This isn't meant as a full excuse, just an explanation of * some of the reasons for the caching used here. * * One more note: the location of a target's file is only performed * on the downward traversal of the graph and then only for terminal * nodes in the graph. This could be construed as wrong in some cases, * but prevents inadvertent modification of files when the "installed" * directory for a file is provided in the search path. * * Another data structure maintained by this module is an mtime * cache used when the searching of cached directories fails to find * a file. In the past, Dir_FindFile would simply perform an access() * call in such a case to determine if the file could be found using * just the name given. When this hit, however, all that was gained * was the knowledge that the file existed. Given that an access() is * essentially a stat() without the copyout() call, and that the same * filesystem overhead would have to be incurred in Dir_MTime, it made * sense to replace the access() with a stat() and record the mtime * in a cache for when Dir_MTime was actually called. */ Lst dirSearchPath; /* main search path */ static Lst openDirectories; /* the list of all open directories */ /* * Variables for gathering statistics on the efficiency of the hashing * mechanism. */ static int hits, /* Found in directory cache */ misses, /* Sad, but not evil misses */ nearmisses, /* Found under search path */ bigmisses; /* Sought by itself */ static Path *dot; /* contents of current directory */ static Path *cur; /* contents of current directory, if not dot */ static Path *dotLast; /* a fake path entry indicating we need to * look for . last */ static Hash_Table mtimes; /* Results of doing a last-resort stat in * Dir_FindFile -- if we have to go to the * system to find the file, we might as well * have its mtime on record. XXX: If this is done * way early, there's a chance other rules will * have already updated the file, in which case * we'll update it again. Generally, there won't * be two rules to update a single file, so this * should be ok, but... */ static int DirFindName(ClientData, ClientData); static int DirMatchFiles(const char *, Path *, Lst); static void DirExpandCurly(const char *, const char *, Lst, Lst); static void DirExpandInt(const char *, Lst, Lst); static int DirPrintWord(ClientData, ClientData); static int DirPrintDir(ClientData, ClientData); static char *DirLookup(Path *, const char *, const char *, Boolean); static char *DirLookupSubdir(Path *, const char *); static char *DirFindDot(Boolean, const char *, const char *); static char *DirLookupAbs(Path *, const char *, const char *); /*- *----------------------------------------------------------------------- * Dir_Init -- * initialize things for this module * * Results: * none * * Side Effects: * some directories may be opened. *----------------------------------------------------------------------- */ void Dir_Init(const char *cdname) { dirSearchPath = Lst_Init(FALSE); openDirectories = Lst_Init(FALSE); Hash_InitTable(&mtimes, 0); Dir_InitCur(cdname); dotLast = bmake_malloc(sizeof(Path)); dotLast->refCount = 1; dotLast->hits = 0; dotLast->name = bmake_strdup(".DOTLAST"); Hash_InitTable(&dotLast->files, -1); } /* * Called by Dir_Init() and whenever .CURDIR is assigned to. */ void Dir_InitCur(const char *cdname) { Path *p; if (cdname != NULL) { /* * Our build directory is not the same as our source directory. * Keep this one around too. */ if ((p = Dir_AddDir(NULL, cdname))) { p->refCount += 1; if (cur && cur != p) { /* * We've been here before, cleanup. */ cur->refCount -= 1; Dir_Destroy(cur); } cur = p; } } } /*- *----------------------------------------------------------------------- * Dir_InitDot -- * (re)initialize "dot" (current/object directory) path hash * * Results: * none * * Side Effects: * some directories may be opened. *----------------------------------------------------------------------- */ void Dir_InitDot(void) { if (dot != NULL) { LstNode ln; /* Remove old entry from openDirectories, but do not destroy. */ ln = Lst_Member(openDirectories, dot); (void)Lst_Remove(openDirectories, ln); } dot = Dir_AddDir(NULL, "."); if (dot == NULL) { Error("Cannot open `.' (%s)", strerror(errno)); exit(1); } /* * We always need to have dot around, so we increment its reference count * to make sure it's not destroyed. */ dot->refCount += 1; Dir_SetPATH(); /* initialize */ } /*- *----------------------------------------------------------------------- * Dir_End -- * cleanup things for this module * * Results: * none * * Side Effects: * none *----------------------------------------------------------------------- */ void Dir_End(void) { #ifdef CLEANUP if (cur) { cur->refCount -= 1; Dir_Destroy(cur); } dot->refCount -= 1; dotLast->refCount -= 1; Dir_Destroy(dotLast); Dir_Destroy(dot); Dir_ClearPath(dirSearchPath); Lst_Destroy(dirSearchPath, NULL); Dir_ClearPath(openDirectories); Lst_Destroy(openDirectories, NULL); Hash_DeleteTable(&mtimes); #endif } /* * We want ${.PATH} to indicate the order in which we will actually * search, so we rebuild it after any .PATH: target. * This is the simplest way to deal with the effect of .DOTLAST. */ void Dir_SetPATH(void) { LstNode ln; /* a list element */ Path *p; Boolean hasLastDot = FALSE; /* true we should search dot last */ Var_Delete(".PATH", VAR_GLOBAL); if (Lst_Open(dirSearchPath) == SUCCESS) { if ((ln = Lst_First(dirSearchPath)) != NULL) { p = (Path *)Lst_Datum(ln); if (p == dotLast) { hasLastDot = TRUE; Var_Append(".PATH", dotLast->name, VAR_GLOBAL); } } if (!hasLastDot) { if (dot) Var_Append(".PATH", dot->name, VAR_GLOBAL); if (cur) Var_Append(".PATH", cur->name, VAR_GLOBAL); } while ((ln = Lst_Next(dirSearchPath)) != NULL) { p = (Path *)Lst_Datum(ln); if (p == dotLast) continue; if (p == dot && hasLastDot) continue; Var_Append(".PATH", p->name, VAR_GLOBAL); } if (hasLastDot) { if (dot) Var_Append(".PATH", dot->name, VAR_GLOBAL); if (cur) Var_Append(".PATH", cur->name, VAR_GLOBAL); } Lst_Close(dirSearchPath); } } /*- *----------------------------------------------------------------------- * DirFindName -- * See if the Path structure describes the same directory as the * given one by comparing their names. Called from Dir_AddDir via * Lst_Find when searching the list of open directories. * * Input: * p Current name * dname Desired name * * Results: * 0 if it is the same. Non-zero otherwise * * Side Effects: * None *----------------------------------------------------------------------- */ static int DirFindName(ClientData p, ClientData dname) { return (strcmp(((Path *)p)->name, (char *)dname)); } /*- *----------------------------------------------------------------------- * Dir_HasWildcards -- * see if the given name has any wildcard characters in it * be careful not to expand unmatching brackets or braces. * XXX: This code is not 100% correct. ([^]] fails etc.) * I really don't think that make(1) should be expanding * patterns, because then you have to set a mechanism for * escaping the expansion! * * Input: * name name to check * * Results: * returns TRUE if the word should be expanded, FALSE otherwise * * Side Effects: * none *----------------------------------------------------------------------- */ Boolean Dir_HasWildcards(char *name) { char *cp; int wild = 0, brace = 0, bracket = 0; for (cp = name; *cp; cp++) { switch(*cp) { case '{': brace++; wild = 1; break; case '}': brace--; break; case '[': bracket++; wild = 1; break; case ']': bracket--; break; case '?': case '*': wild = 1; break; default: break; } } return wild && bracket == 0 && brace == 0; } /*- *----------------------------------------------------------------------- * DirMatchFiles -- * Given a pattern and a Path structure, see if any files * match the pattern and add their names to the 'expansions' list if * any do. This is incomplete -- it doesn't take care of patterns like * src / *src / *.c properly (just *.c on any of the directories), but it * will do for now. * * Input: * pattern Pattern to look for * p Directory to search * expansion Place to store the results * * Results: * Always returns 0 * * Side Effects: * File names are added to the expansions lst. The directory will be * fully hashed when this is done. *----------------------------------------------------------------------- */ static int DirMatchFiles(const char *pattern, Path *p, Lst expansions) { Hash_Search search; /* Index into the directory's table */ Hash_Entry *entry; /* Current entry in the table */ Boolean isDot; /* TRUE if the directory being searched is . */ isDot = (*p->name == '.' && p->name[1] == '\0'); for (entry = Hash_EnumFirst(&p->files, &search); entry != NULL; entry = Hash_EnumNext(&search)) { /* * See if the file matches the given pattern. Note we follow the UNIX * convention that dot files will only be found if the pattern * begins with a dot (note also that as a side effect of the hashing * scheme, .* won't match . or .. since they aren't hashed). */ if (Str_Match(entry->name, pattern) && ((entry->name[0] != '.') || (pattern[0] == '.'))) { (void)Lst_AtEnd(expansions, (isDot ? bmake_strdup(entry->name) : str_concat(p->name, entry->name, STR_ADDSLASH))); } } return (0); } /*- *----------------------------------------------------------------------- * DirExpandCurly -- * Expand curly braces like the C shell. Does this recursively. * Note the special case: if after the piece of the curly brace is * done there are no wildcard characters in the result, the result is * placed on the list WITHOUT CHECKING FOR ITS EXISTENCE. * * Input: * word Entire word to expand * brace First curly brace in it * path Search path to use * expansions Place to store the expansions * * Results: * None. * * Side Effects: * The given list is filled with the expansions... * *----------------------------------------------------------------------- */ static void DirExpandCurly(const char *word, const char *brace, Lst path, Lst expansions) { const char *end; /* Character after the closing brace */ const char *cp; /* Current position in brace clause */ const char *start; /* Start of current piece of brace clause */ int bracelevel; /* Number of braces we've seen. If we see a * right brace when this is 0, we've hit the * end of the clause. */ char *file; /* Current expansion */ int otherLen; /* The length of the other pieces of the * expansion (chars before and after the * clause in 'word') */ char *cp2; /* Pointer for checking for wildcards in * expansion before calling Dir_Expand */ start = brace+1; /* * Find the end of the brace clause first, being wary of nested brace * clauses. */ for (end = start, bracelevel = 0; *end != '\0'; end++) { if (*end == '{') { bracelevel++; } else if ((*end == '}') && (bracelevel-- == 0)) { break; } } if (*end == '\0') { Error("Unterminated {} clause \"%s\"", start); return; } else { end++; } otherLen = brace - word + strlen(end); for (cp = start; cp < end; cp++) { /* * Find the end of this piece of the clause. */ bracelevel = 0; while (*cp != ',') { if (*cp == '{') { bracelevel++; } else if ((*cp == '}') && (bracelevel-- <= 0)) { break; } cp++; } /* * Allocate room for the combination and install the three pieces. */ file = bmake_malloc(otherLen + cp - start + 1); if (brace != word) { strncpy(file, word, brace-word); } if (cp != start) { strncpy(&file[brace-word], start, cp-start); } strcpy(&file[(brace-word)+(cp-start)], end); /* * See if the result has any wildcards in it. If we find one, call * Dir_Expand right away, telling it to place the result on our list * of expansions. */ for (cp2 = file; *cp2 != '\0'; cp2++) { switch(*cp2) { case '*': case '?': case '{': case '[': Dir_Expand(file, path, expansions); goto next; } } if (*cp2 == '\0') { /* * Hit the end w/o finding any wildcards, so stick the expansion * on the end of the list. */ (void)Lst_AtEnd(expansions, file); } else { next: free(file); } start = cp+1; } } /*- *----------------------------------------------------------------------- * DirExpandInt -- * Internal expand routine. Passes through the directories in the * path one by one, calling DirMatchFiles for each. NOTE: This still * doesn't handle patterns in directories... * * Input: * word Word to expand * path Path on which to look * expansions Place to store the result * * Results: * None. * * Side Effects: * Things are added to the expansions list. * *----------------------------------------------------------------------- */ static void DirExpandInt(const char *word, Lst path, Lst expansions) { LstNode ln; /* Current node */ Path *p; /* Directory in the node */ if (Lst_Open(path) == SUCCESS) { while ((ln = Lst_Next(path)) != NULL) { p = (Path *)Lst_Datum(ln); DirMatchFiles(word, p, expansions); } Lst_Close(path); } } /*- *----------------------------------------------------------------------- * DirPrintWord -- * Print a word in the list of expansions. Callback for Dir_Expand * when DEBUG(DIR), via Lst_ForEach. * * Results: * === 0 * * Side Effects: * The passed word is printed, followed by a space. * *----------------------------------------------------------------------- */ static int DirPrintWord(ClientData word, ClientData dummy) { fprintf(debug_file, "%s ", (char *)word); return(dummy ? 0 : 0); } /*- *----------------------------------------------------------------------- * Dir_Expand -- * Expand the given word into a list of words by globbing it looking * in the directories on the given search path. * * Input: * word the word to expand * path the list of directories in which to find the * resulting files * expansions the list on which to place the results * * Results: * A list of words consisting of the files which exist along the search * path matching the given pattern. * * Side Effects: * Directories may be opened. Who knows? *----------------------------------------------------------------------- */ void Dir_Expand(const char *word, Lst path, Lst expansions) { const char *cp; if (DEBUG(DIR)) { fprintf(debug_file, "Expanding \"%s\"... ", word); } cp = strchr(word, '{'); if (cp) { DirExpandCurly(word, cp, path, expansions); } else { cp = strchr(word, '/'); if (cp) { /* * The thing has a directory component -- find the first wildcard * in the string. */ for (cp = word; *cp; cp++) { if (*cp == '?' || *cp == '[' || *cp == '*' || *cp == '{') { break; } } if (*cp == '{') { /* * This one will be fun. */ DirExpandCurly(word, cp, path, expansions); return; } else if (*cp != '\0') { /* * Back up to the start of the component */ char *dirpath; while (cp > word && *cp != '/') { cp--; } if (cp != word) { char sc; /* * If the glob isn't in the first component, try and find * all the components up to the one with a wildcard. */ sc = cp[1]; ((char *)UNCONST(cp))[1] = '\0'; dirpath = Dir_FindFile(word, path); ((char *)UNCONST(cp))[1] = sc; /* * dirpath is null if can't find the leading component * XXX: Dir_FindFile won't find internal components. * i.e. if the path contains ../Etc/Object and we're * looking for Etc, it won't be found. Ah well. * Probably not important. */ if (dirpath != NULL) { char *dp = &dirpath[strlen(dirpath) - 1]; if (*dp == '/') *dp = '\0'; path = Lst_Init(FALSE); (void)Dir_AddDir(path, dirpath); DirExpandInt(cp+1, path, expansions); Lst_Destroy(path, NULL); } } else { /* * Start the search from the local directory */ DirExpandInt(word, path, expansions); } } else { /* * Return the file -- this should never happen. */ DirExpandInt(word, path, expansions); } } else { /* * First the files in dot */ DirMatchFiles(word, dot, expansions); /* * Then the files in every other directory on the path. */ DirExpandInt(word, path, expansions); } } if (DEBUG(DIR)) { Lst_ForEach(expansions, DirPrintWord, NULL); fprintf(debug_file, "\n"); } } /*- *----------------------------------------------------------------------- * DirLookup -- * Find if the file with the given name exists in the given path. * * Results: * The path to the file or NULL. This path is guaranteed to be in a * different part of memory than name and so may be safely free'd. * * Side Effects: * None. *----------------------------------------------------------------------- */ static char * DirLookup(Path *p, const char *name __unused, const char *cp, Boolean hasSlash __unused) { char *file; /* the current filename to check */ if (DEBUG(DIR)) { fprintf(debug_file, " %s ...\n", p->name); } if (Hash_FindEntry(&p->files, cp) == NULL) return NULL; file = str_concat(p->name, cp, STR_ADDSLASH); if (DEBUG(DIR)) { fprintf(debug_file, " returning %s\n", file); } p->hits += 1; hits += 1; return file; } /*- *----------------------------------------------------------------------- * DirLookupSubdir -- * Find if the file with the given name exists in the given path. * * Results: * The path to the file or NULL. This path is guaranteed to be in a * different part of memory than name and so may be safely free'd. * * Side Effects: * If the file is found, it is added in the modification times hash * table. *----------------------------------------------------------------------- */ static char * DirLookupSubdir(Path *p, const char *name) { struct stat stb; /* Buffer for stat, if necessary */ Hash_Entry *entry; /* Entry for mtimes table */ char *file; /* the current filename to check */ if (p != dot) { file = str_concat(p->name, name, STR_ADDSLASH); } else { /* * Checking in dot -- DON'T put a leading ./ on the thing. */ file = bmake_strdup(name); } if (DEBUG(DIR)) { fprintf(debug_file, "checking %s ...\n", file); } if (stat(file, &stb) == 0) { if (stb.st_mtime == 0) stb.st_mtime++; /* * Save the modification time so if it's needed, we don't have * to fetch it again. */ if (DEBUG(DIR)) { fprintf(debug_file, " Caching %s for %s\n", Targ_FmtTime(stb.st_mtime), file); } entry = Hash_CreateEntry(&mtimes, (char *)file, NULL); Hash_SetValue(entry, (long)stb.st_mtime); nearmisses += 1; return (file); } free(file); return NULL; } /*- *----------------------------------------------------------------------- * DirLookupAbs -- * Find if the file with the given name exists in the given path. * * Results: * The path to the file, the empty string or NULL. If the file is * the empty string, the search should be terminated. * This path is guaranteed to be in a different part of memory * than name and so may be safely free'd. * * Side Effects: * None. *----------------------------------------------------------------------- */ static char * DirLookupAbs(Path *p, const char *name, const char *cp) { char *p1; /* pointer into p->name */ const char *p2; /* pointer into name */ if (DEBUG(DIR)) { fprintf(debug_file, " %s ...\n", p->name); } /* * If the file has a leading path component and that component * exactly matches the entire name of the current search * directory, we can attempt another cache lookup. And if we don't * have a hit, we can safely assume the file does not exist at all. */ for (p1 = p->name, p2 = name; *p1 && *p1 == *p2; p1++, p2++) { continue; } if (*p1 != '\0' || p2 != cp - 1) { return NULL; } if (Hash_FindEntry(&p->files, cp) == NULL) { if (DEBUG(DIR)) { fprintf(debug_file, " must be here but isn't -- returning\n"); } /* Return empty string: terminates search */ return bmake_strdup(""); } p->hits += 1; hits += 1; if (DEBUG(DIR)) { fprintf(debug_file, " returning %s\n", name); } return (bmake_strdup(name)); } /*- *----------------------------------------------------------------------- * DirFindDot -- * Find the file given on "." or curdir * * Results: * The path to the file or NULL. This path is guaranteed to be in a * different part of memory than name and so may be safely free'd. * * Side Effects: * Hit counts change *----------------------------------------------------------------------- */ static char * DirFindDot(Boolean hasSlash __unused, const char *name, const char *cp) { if (Hash_FindEntry(&dot->files, cp) != NULL) { if (DEBUG(DIR)) { fprintf(debug_file, " in '.'\n"); } hits += 1; dot->hits += 1; return (bmake_strdup(name)); } if (cur && Hash_FindEntry(&cur->files, cp) != NULL) { if (DEBUG(DIR)) { fprintf(debug_file, " in ${.CURDIR} = %s\n", cur->name); } hits += 1; cur->hits += 1; return str_concat(cur->name, cp, STR_ADDSLASH); } return NULL; } /*- *----------------------------------------------------------------------- * Dir_FindFile -- * Find the file with the given name along the given search path. * * Input: * name the file to find * path the Lst of directories to search * * Results: * The path to the file or NULL. This path is guaranteed to be in a * different part of memory than name and so may be safely free'd. * * Side Effects: * If the file is found in a directory which is not on the path * already (either 'name' is absolute or it is a relative path * [ dir1/.../dirn/file ] which exists below one of the directories * already on the search path), its directory is added to the end * of the path on the assumption that there will be more files in * that directory later on. Sometimes this is true. Sometimes not. *----------------------------------------------------------------------- */ char * Dir_FindFile(const char *name, Lst path) { LstNode ln; /* a list element */ char *file; /* the current filename to check */ Path *p; /* current path member */ const char *cp; /* Terminal name of file */ Boolean hasLastDot = FALSE; /* true we should search dot last */ Boolean hasSlash; /* true if 'name' contains a / */ struct stat stb; /* Buffer for stat, if necessary */ Hash_Entry *entry; /* Entry for mtimes table */ /* * Find the final component of the name and note whether it has a * slash in it (the name, I mean) */ cp = strrchr(name, '/'); if (cp) { hasSlash = TRUE; cp += 1; } else { hasSlash = FALSE; cp = name; } if (DEBUG(DIR)) { fprintf(debug_file, "Searching for %s ...", name); } if (Lst_Open(path) == FAILURE) { if (DEBUG(DIR)) { fprintf(debug_file, "couldn't open path, file not found\n"); } misses += 1; return NULL; } if ((ln = Lst_First(path)) != NULL) { p = (Path *)Lst_Datum(ln); if (p == dotLast) { hasLastDot = TRUE; if (DEBUG(DIR)) fprintf(debug_file, "[dot last]..."); } } if (DEBUG(DIR)) { fprintf(debug_file, "\n"); } /* * If there's no leading directory components or if the leading * directory component is exactly `./', consult the cached contents * of each of the directories on the search path. */ if (!hasSlash || (cp - name == 2 && *name == '.')) { /* * We look through all the directories on the path seeking one which * contains the final component of the given name. If such a beast * is found, we concatenate the directory name and the final * component and return the resulting string. If we don't find any * such thing, we go on to phase two... * * No matter what, we always look for the file in the current * directory before anywhere else (unless we found the magic * DOTLAST path, in which case we search it last) and we *do not* * add the ./ to it if it exists. * This is so there are no conflicts between what the user * specifies (fish.c) and what pmake finds (./fish.c). */ if (!hasLastDot && (file = DirFindDot(hasSlash, name, cp)) != NULL) { Lst_Close(path); return file; } while ((ln = Lst_Next(path)) != NULL) { p = (Path *)Lst_Datum(ln); if (p == dotLast) continue; if ((file = DirLookup(p, name, cp, hasSlash)) != NULL) { Lst_Close(path); return file; } } if (hasLastDot && (file = DirFindDot(hasSlash, name, cp)) != NULL) { Lst_Close(path); return file; } } Lst_Close(path); /* * We didn't find the file on any directory in the search path. * If the name doesn't contain a slash, that means it doesn't exist. * If it *does* contain a slash, however, there is still hope: it * could be in a subdirectory of one of the members of the search * path. (eg. /usr/include and sys/types.h. The above search would * fail to turn up types.h in /usr/include, but it *is* in * /usr/include/sys/types.h). * [ This no longer applies: If we find such a beast, we assume there * will be more (what else can we assume?) and add all but the last * component of the resulting name onto the search path (at the * end).] * This phase is only performed if the file is *not* absolute. */ if (!hasSlash) { if (DEBUG(DIR)) { fprintf(debug_file, " failed.\n"); } misses += 1; return NULL; } if (name[0] != '/') { Boolean checkedDot = FALSE; if (DEBUG(DIR)) { fprintf(debug_file, " Trying subdirectories...\n"); } if (!hasLastDot) { if (dot) { checkedDot = TRUE; if ((file = DirLookupSubdir(dot, name)) != NULL) return file; } if (cur && (file = DirLookupSubdir(cur, name)) != NULL) return file; } (void)Lst_Open(path); while ((ln = Lst_Next(path)) != NULL) { p = (Path *)Lst_Datum(ln); if (p == dotLast) continue; if (p == dot) { if (checkedDot) continue; checkedDot = TRUE; } if ((file = DirLookupSubdir(p, name)) != NULL) { Lst_Close(path); return file; } } Lst_Close(path); if (hasLastDot) { if (dot && !checkedDot) { checkedDot = TRUE; if ((file = DirLookupSubdir(dot, name)) != NULL) return file; } if (cur && (file = DirLookupSubdir(cur, name)) != NULL) return file; } if (checkedDot) { /* * Already checked by the given name, since . was in the path, * so no point in proceeding... */ if (DEBUG(DIR)) { fprintf(debug_file, " Checked . already, returning NULL\n"); } return NULL; } } else { /* name[0] == '/' */ /* * For absolute names, compare directory path prefix against the * the directory path of each member on the search path for an exact * match. If we have an exact match on any member of the search path, * use the cached contents of that member to lookup the final file * component. If that lookup fails we can safely assume that the * file does not exist at all. This is signified by DirLookupAbs() * returning an empty string. */ if (DEBUG(DIR)) { fprintf(debug_file, " Trying exact path matches...\n"); } if (!hasLastDot && cur && (file = DirLookupAbs(cur, name, cp)) != NULL) return *file?file:NULL; (void)Lst_Open(path); while ((ln = Lst_Next(path)) != NULL) { p = (Path *)Lst_Datum(ln); if (p == dotLast) continue; if ((file = DirLookupAbs(p, name, cp)) != NULL) { Lst_Close(path); return *file?file:NULL; } } Lst_Close(path); if (hasLastDot && cur && (file = DirLookupAbs(cur, name, cp)) != NULL) return *file?file:NULL; } /* * Didn't find it that way, either. Sigh. Phase 3. Add its directory * onto the search path in any case, just in case, then look for the * thing in the hash table. If we find it, grand. We return a new * copy of the name. Otherwise we sadly return a NULL pointer. Sigh. * Note that if the directory holding the file doesn't exist, this will * do an extra search of the final directory on the path. Unless something * weird happens, this search won't succeed and life will be groovy. * * Sigh. We cannot add the directory onto the search path because * of this amusing case: * $(INSTALLDIR)/$(FILE): $(FILE) * * $(FILE) exists in $(INSTALLDIR) but not in the current one. * When searching for $(FILE), we will find it in $(INSTALLDIR) * b/c we added it here. This is not good... */ #ifdef notdef cp[-1] = '\0'; (void)Dir_AddDir(path, name); cp[-1] = '/'; bigmisses += 1; ln = Lst_Last(path); if (ln == NULL) { return NULL; } else { p = (Path *)Lst_Datum(ln); } if (Hash_FindEntry(&p->files, cp) != NULL) { return (bmake_strdup(name)); } else { return NULL; } #else /* !notdef */ if (DEBUG(DIR)) { fprintf(debug_file, " Looking for \"%s\" ...\n", name); } bigmisses += 1; entry = Hash_FindEntry(&mtimes, name); if (entry != NULL) { if (DEBUG(DIR)) { fprintf(debug_file, " got it (in mtime cache)\n"); } return(bmake_strdup(name)); } else if (stat(name, &stb) == 0) { if (stb.st_mtime == 0) stb.st_mtime++; entry = Hash_CreateEntry(&mtimes, name, NULL); if (DEBUG(DIR)) { fprintf(debug_file, " Caching %s for %s\n", Targ_FmtTime(stb.st_mtime), name); } Hash_SetValue(entry, (long)stb.st_mtime); return (bmake_strdup(name)); } else { if (DEBUG(DIR)) { fprintf(debug_file, " failed. Returning NULL\n"); } return NULL; } #endif /* notdef */ } /*- *----------------------------------------------------------------------- * Dir_FindHereOrAbove -- * search for a path starting at a given directory and then working * our way up towards the root. * * Input: * here starting directory * search_path the path we are looking for * result the result of a successful search is placed here * rlen the length of the result buffer * (typically MAXPATHLEN + 1) * * Results: * 0 on failure, 1 on success [in which case the found path is put * in the result buffer]. * * Side Effects: *----------------------------------------------------------------------- */ int Dir_FindHereOrAbove(char *here, char *search_path, char *result, int rlen) { struct stat st; char dirbase[MAXPATHLEN + 1], *db_end; char try[MAXPATHLEN + 1], *try_end; /* copy out our starting point */ snprintf(dirbase, sizeof(dirbase), "%s", here); db_end = dirbase + strlen(dirbase); /* loop until we determine a result */ while (1) { /* try and stat(2) it ... */ snprintf(try, sizeof(try), "%s/%s", dirbase, search_path); if (stat(try, &st) != -1) { /* * success! if we found a file, chop off * the filename so we return a directory. */ if ((st.st_mode & S_IFMT) != S_IFDIR) { try_end = try + strlen(try); while (try_end > try && *try_end != '/') try_end--; if (try_end > try) *try_end = 0; /* chop! */ } /* * done! */ snprintf(result, rlen, "%s", try); return(1); } /* * nope, we didn't find it. if we used up dirbase we've * reached the root and failed. */ if (db_end == dirbase) break; /* failed! */ /* * truncate dirbase from the end to move up a dir */ while (db_end > dirbase && *db_end != '/') db_end--; *db_end = 0; /* chop! */ } /* while (1) */ /* * we failed... */ return(0); } /*- *----------------------------------------------------------------------- * Dir_MTime -- * Find the modification time of the file described by gn along the * search path dirSearchPath. * * Input: * gn the file whose modification time is desired * * Results: * The modification time or 0 if it doesn't exist * * Side Effects: * The modification time is placed in the node's mtime slot. * If the node didn't have a path entry before, and Dir_FindFile * found one for it, the full name is placed in the path slot. *----------------------------------------------------------------------- */ int Dir_MTime(GNode *gn) { char *fullName; /* the full pathname of name */ struct stat stb; /* buffer for finding the mod time */ Hash_Entry *entry; if (gn->type & OP_ARCHV) { return Arch_MTime(gn); } else if (gn->type & OP_PHONY) { gn->mtime = 0; return 0; } else if (gn->path == NULL) { if (gn->type & OP_NOPATH) fullName = NULL; else { fullName = Dir_FindFile(gn->name, Suff_FindPath(gn)); if (DEBUG(DIR)) fprintf(debug_file, "Found '%s' as '%s'\n", gn->name, fullName ? fullName : "(not found)" ); } } else { fullName = gn->path; } if (fullName == NULL) { fullName = bmake_strdup(gn->name); } entry = Hash_FindEntry(&mtimes, fullName); if (entry != NULL) { /* * Only do this once -- the second time folks are checking to * see if the file was actually updated, so we need to actually go * to the file system. */ if (DEBUG(DIR)) { fprintf(debug_file, "Using cached time %s for %s\n", Targ_FmtTime((time_t)(long)Hash_GetValue(entry)), fullName); } stb.st_mtime = (time_t)(long)Hash_GetValue(entry); Hash_DeleteEntry(&mtimes, entry); } else if (stat(fullName, &stb) < 0) { if (gn->type & OP_MEMBER) { if (fullName != gn->path) free(fullName); return Arch_MemMTime(gn); } else { stb.st_mtime = 0; } } else if (stb.st_mtime == 0) { /* * 0 handled specially by the code, if the time is really 0, return * something else instead */ stb.st_mtime++; } if (fullName && gn->path == NULL) { gn->path = fullName; } gn->mtime = stb.st_mtime; return (gn->mtime); } /*- *----------------------------------------------------------------------- * Dir_AddDir -- * Add the given name to the end of the given path. The order of * the arguments is backwards so ParseDoDependency can do a * Lst_ForEach of its list of paths... * * Input: * path the path to which the directory should be * added * name the name of the directory to add * * Results: * none * * Side Effects: * A structure is added to the list and the directory is * read and hashed. *----------------------------------------------------------------------- */ Path * Dir_AddDir(Lst path, const char *name) { LstNode ln = NULL; /* node in case Path structure is found */ Path *p = NULL; /* pointer to new Path structure */ DIR *d; /* for reading directory */ struct dirent *dp; /* entry in directory */ if (strcmp(name, ".DOTLAST") == 0) { ln = Lst_Find(path, UNCONST(name), DirFindName); if (ln != NULL) return (Path *)Lst_Datum(ln); else { dotLast->refCount += 1; (void)Lst_AtFront(path, dotLast); } } if (path) ln = Lst_Find(openDirectories, UNCONST(name), DirFindName); if (ln != NULL) { p = (Path *)Lst_Datum(ln); if (path && Lst_Member(path, p) == NULL) { p->refCount += 1; (void)Lst_AtEnd(path, p); } } else { if (DEBUG(DIR)) { fprintf(debug_file, "Caching %s ...", name); } if ((d = opendir(name)) != NULL) { p = bmake_malloc(sizeof(Path)); p->name = bmake_strdup(name); p->hits = 0; p->refCount = 1; Hash_InitTable(&p->files, -1); while ((dp = readdir(d)) != NULL) { #if defined(sun) && defined(d_ino) /* d_ino is a sunos4 #define for d_fileno */ /* * The sun directory library doesn't check for a 0 inode * (0-inode slots just take up space), so we have to do * it ourselves. */ if (dp->d_fileno == 0) { continue; } #endif /* sun && d_ino */ (void)Hash_CreateEntry(&p->files, dp->d_name, NULL); } (void)closedir(d); (void)Lst_AtEnd(openDirectories, p); if (path != NULL) (void)Lst_AtEnd(path, p); } if (DEBUG(DIR)) { fprintf(debug_file, "done\n"); } } return p; } /*- *----------------------------------------------------------------------- * Dir_CopyDir -- * Callback function for duplicating a search path via Lst_Duplicate. * Ups the reference count for the directory. * * Results: * Returns the Path it was given. * * Side Effects: * The refCount of the path is incremented. * *----------------------------------------------------------------------- */ ClientData Dir_CopyDir(ClientData p) { ((Path *)p)->refCount += 1; return (p); } /*- *----------------------------------------------------------------------- * Dir_MakeFlags -- * Make a string by taking all the directories in the given search * path and preceding them by the given flag. Used by the suffix * module to create variables for compilers based on suffix search * paths. * * Input: * flag flag which should precede each directory * path list of directories * * Results: * The string mentioned above. Note that there is no space between * the given flag and each directory. The empty string is returned if * Things don't go well. * * Side Effects: * None *----------------------------------------------------------------------- */ char * Dir_MakeFlags(const char *flag, Lst path) { char *str; /* the string which will be returned */ char *s1, *s2;/* the current directory preceded by 'flag' */ LstNode ln; /* the node of the current directory */ Path *p; /* the structure describing the current directory */ str = bmake_strdup(""); if (Lst_Open(path) == SUCCESS) { while ((ln = Lst_Next(path)) != NULL) { p = (Path *)Lst_Datum(ln); s2 = str_concat(flag, p->name, 0); str = str_concat(s1 = str, s2, STR_ADDSPACE); free(s1); free(s2); } Lst_Close(path); } return (str); } /*- *----------------------------------------------------------------------- * Dir_Destroy -- * Nuke a directory descriptor, if possible. Callback procedure * for the suffixes module when destroying a search path. * * Input: * pp The directory descriptor to nuke * * Results: * None. * * Side Effects: * If no other path references this directory (refCount == 0), * the Path and all its data are freed. * *----------------------------------------------------------------------- */ void Dir_Destroy(ClientData pp) { Path *p = (Path *)pp; p->refCount -= 1; if (p->refCount == 0) { LstNode ln; ln = Lst_Member(openDirectories, p); (void)Lst_Remove(openDirectories, ln); Hash_DeleteTable(&p->files); free(p->name); free(p); } } /*- *----------------------------------------------------------------------- * Dir_ClearPath -- * Clear out all elements of the given search path. This is different * from destroying the list, notice. * * Input: * path Path to clear * * Results: * None. * * Side Effects: * The path is set to the empty list. * *----------------------------------------------------------------------- */ void Dir_ClearPath(Lst path) { Path *p; while (!Lst_IsEmpty(path)) { p = (Path *)Lst_DeQueue(path); Dir_Destroy(p); } } /*- *----------------------------------------------------------------------- * Dir_Concat -- * Concatenate two paths, adding the second to the end of the first. * Makes sure to avoid duplicates. * * Input: * path1 Dest * path2 Source * * Results: * None * * Side Effects: * Reference counts for added dirs are upped. * *----------------------------------------------------------------------- */ void Dir_Concat(Lst path1, Lst path2) { LstNode ln; Path *p; for (ln = Lst_First(path2); ln != NULL; ln = Lst_Succ(ln)) { p = (Path *)Lst_Datum(ln); if (Lst_Member(path1, p) == NULL) { p->refCount += 1; (void)Lst_AtEnd(path1, p); } } } /********** DEBUG INFO **********/ void Dir_PrintDirectories(void) { LstNode ln; Path *p; fprintf(debug_file, "#*** Directory Cache:\n"); fprintf(debug_file, "# Stats: %d hits %d misses %d near misses %d losers (%d%%)\n", hits, misses, nearmisses, bigmisses, (hits+bigmisses+nearmisses ? hits * 100 / (hits + bigmisses + nearmisses) : 0)); fprintf(debug_file, "# %-20s referenced\thits\n", "directory"); if (Lst_Open(openDirectories) == SUCCESS) { while ((ln = Lst_Next(openDirectories)) != NULL) { p = (Path *)Lst_Datum(ln); fprintf(debug_file, "# %-20s %10d\t%4d\n", p->name, p->refCount, p->hits); } Lst_Close(openDirectories); } } static int DirPrintDir(ClientData p, ClientData dummy) { fprintf(debug_file, "%s ", ((Path *)p)->name); return (dummy ? 0 : 0); } void Dir_PrintPath(Lst path) { Lst_ForEach(path, DirPrintDir, NULL); }