/* $NetBSD: sys_sched.c,v 1.35 2010/07/01 02:38:31 rmind Exp $ */ /* * Copyright (c) 2008, Mindaugas Rasiukevicius * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * System calls relating to the scheduler. * * Lock order: * * cpu_lock -> * proc_lock -> * proc_t::p_lock -> * lwp_t::lwp_lock * * TODO: * - Handle pthread_setschedprio() as defined by POSIX; * - Handle sched_yield() case for SCHED_FIFO as defined by POSIX; */ #include __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.35 2010/07/01 02:38:31 rmind Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_sa.h" static struct sysctllog *sched_sysctl_log; static kauth_listener_t sched_listener; /* * Convert user priority or the in-kernel priority or convert the current * priority to the appropriate range according to the policy change. */ static pri_t convert_pri(lwp_t *l, int policy, pri_t pri) { /* Convert user priority to the in-kernel */ if (pri != PRI_NONE) { /* Only for real-time threads */ KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX); KASSERT(policy != SCHED_OTHER); return PRI_USER_RT + pri; } /* Neither policy, nor priority change */ if (l->l_class == policy) return l->l_priority; /* Time-sharing -> real-time */ if (l->l_class == SCHED_OTHER) { KASSERT(policy == SCHED_FIFO || policy == SCHED_RR); return PRI_USER_RT; } /* Real-time -> time-sharing */ if (policy == SCHED_OTHER) { KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR); return l->l_priority - PRI_USER_RT; } /* Real-time -> real-time */ return l->l_priority; } int do_sched_setparam(pid_t pid, lwpid_t lid, int policy, const struct sched_param *params) { struct proc *p; struct lwp *t; pri_t pri; u_int lcnt; int error; error = 0; pri = params->sched_priority; /* If no parameters specified, just return (this should not happen) */ if (pri == PRI_NONE && policy == SCHED_NONE) return 0; /* Validate scheduling class */ if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR)) return EINVAL; /* Validate priority */ if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX)) return EINVAL; if (pid != 0) { /* Find the process */ mutex_enter(proc_lock); p = proc_find(pid); if (p == NULL) { mutex_exit(proc_lock); return ESRCH; } mutex_enter(p->p_lock); mutex_exit(proc_lock); /* Disallow modification of system processes */ if ((p->p_flag & PK_SYSTEM) != 0) { mutex_exit(p->p_lock); return EPERM; } } else { /* Use the calling process */ p = curlwp->l_proc; mutex_enter(p->p_lock); } /* Find the LWP(s) */ lcnt = 0; LIST_FOREACH(t, &p->p_lwps, l_sibling) { pri_t kpri; int lpolicy; if (lid && lid != t->l_lid) continue; lcnt++; lwp_lock(t); lpolicy = (policy == SCHED_NONE) ? t->l_class : policy; /* Disallow setting of priority for SCHED_OTHER threads */ if (lpolicy == SCHED_OTHER && pri != PRI_NONE) { lwp_unlock(t); error = EINVAL; break; } /* Convert priority, if needed */ kpri = convert_pri(t, lpolicy, pri); /* Check the permission */ error = kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy), KAUTH_ARG(kpri)); if (error) { lwp_unlock(t); break; } /* Set the scheduling class, change the priority */ t->l_class = lpolicy; lwp_changepri(t, kpri); lwp_unlock(t); } mutex_exit(p->p_lock); return (lcnt == 0) ? ESRCH : error; } /* * Set scheduling parameters. */ int sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap, register_t *retval) { /* { syscallarg(pid_t) pid; syscallarg(lwpid_t) lid; syscallarg(int) policy; syscallarg(const struct sched_param *) params; } */ struct sched_param params; int error; /* Get the parameters from the user-space */ error = copyin(SCARG(uap, params), ¶ms, sizeof(params)); if (error) goto out; error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid), SCARG(uap, policy), ¶ms); out: return error; } int do_sched_getparam(pid_t pid, lwpid_t lid, int *policy, struct sched_param *params) { struct sched_param lparams; struct lwp *t; int error, lpolicy; /* Locks the LWP */ t = lwp_find2(pid, lid); if (t == NULL) return ESRCH; /* Check the permission */ error = kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL); if (error != 0) { mutex_exit(t->l_proc->p_lock); return error; } lwp_lock(t); lparams.sched_priority = t->l_priority; lpolicy = t->l_class; switch (lpolicy) { case SCHED_OTHER: lparams.sched_priority -= PRI_USER; break; case SCHED_RR: case SCHED_FIFO: lparams.sched_priority -= PRI_USER_RT; break; } if (policy != NULL) *policy = lpolicy; if (params != NULL) *params = lparams; lwp_unlock(t); mutex_exit(t->l_proc->p_lock); return error; } /* * Get scheduling parameters. */ int sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap, register_t *retval) { /* { syscallarg(pid_t) pid; syscallarg(lwpid_t) lid; syscallarg(int *) policy; syscallarg(struct sched_param *) params; } */ struct sched_param params; int error, policy; error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy, ¶ms); if (error) goto out; error = copyout(¶ms, SCARG(uap, params), sizeof(params)); if (error == 0 && SCARG(uap, policy) != NULL) error = copyout(&policy, SCARG(uap, policy), sizeof(int)); out: return error; } /* * Allocate the CPU set, and get it from userspace. */ static int genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size) { int error; *dset = kcpuset_create(); error = kcpuset_copyin(sset, *dset, size); if (error != 0) kcpuset_unuse(*dset, NULL); return error; } /* * Set affinity. */ int sys__sched_setaffinity(struct lwp *l, const struct sys__sched_setaffinity_args *uap, register_t *retval) { /* { syscallarg(pid_t) pid; syscallarg(lwpid_t) lid; syscallarg(size_t) size; syscallarg(const cpuset_t *) cpuset; } */ kcpuset_t *cpuset, *cpulst = NULL; struct cpu_info *ici, *ci; struct proc *p; struct lwp *t; CPU_INFO_ITERATOR cii; bool alloff; lwpid_t lid; u_int lcnt; int error; error = genkcpuset(&cpuset, SCARG(uap, cpuset), SCARG(uap, size)); if (error) return error; /* * Traverse _each_ CPU to: * - Check that CPUs in the mask have no assigned processor set. * - Check that at least one CPU from the mask is online. * - Find the first target CPU to migrate. * * To avoid the race with CPU online/offline calls and processor sets, * cpu_lock will be locked for the entire operation. */ ci = NULL; alloff = false; mutex_enter(&cpu_lock); for (CPU_INFO_FOREACH(cii, ici)) { struct schedstate_percpu *ispc; if (kcpuset_isset(cpu_index(ici), cpuset) == 0) continue; ispc = &ici->ci_schedstate; /* Check that CPU is not in the processor-set */ if (ispc->spc_psid != PS_NONE) { error = EPERM; goto out; } /* Skip offline CPUs */ if (ispc->spc_flags & SPCF_OFFLINE) { alloff = true; continue; } /* Target CPU to migrate */ if (ci == NULL) { ci = ici; } } if (ci == NULL) { if (alloff) { /* All CPUs in the set are offline */ error = EPERM; goto out; } /* Empty set */ kcpuset_unuse(cpuset, &cpulst); cpuset = NULL; } if (SCARG(uap, pid) != 0) { /* Find the process */ mutex_enter(proc_lock); p = proc_find(SCARG(uap, pid)); if (p == NULL) { mutex_exit(proc_lock); error = ESRCH; goto out; } mutex_enter(p->p_lock); mutex_exit(proc_lock); /* Disallow modification of system processes. */ if ((p->p_flag & PK_SYSTEM) != 0) { mutex_exit(p->p_lock); error = EPERM; goto out; } } else { /* Use the calling process */ p = l->l_proc; mutex_enter(p->p_lock); } /* * Check the permission. */ error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL); if (error != 0) { mutex_exit(p->p_lock); goto out; } #ifdef KERN_SA /* Changing the affinity of a SA process is not supported */ if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) { mutex_exit(p->p_lock); error = EINVAL; goto out; } #endif /* Find the LWP(s) */ lcnt = 0; lid = SCARG(uap, lid); LIST_FOREACH(t, &p->p_lwps, l_sibling) { if (lid && lid != t->l_lid) continue; lwp_lock(t); /* It is not allowed to set the affinity for zombie LWPs */ if (t->l_stat == LSZOMB) { lwp_unlock(t); continue; } if (cpuset) { /* Set the affinity flag and new CPU set */ t->l_flag |= LW_AFFINITY; kcpuset_use(cpuset); if (t->l_affinity != NULL) kcpuset_unuse(t->l_affinity, &cpulst); t->l_affinity = cpuset; /* Migrate to another CPU, unlocks LWP */ lwp_migrate(t, ci); } else { /* Unset the affinity flag */ t->l_flag &= ~LW_AFFINITY; if (t->l_affinity != NULL) kcpuset_unuse(t->l_affinity, &cpulst); t->l_affinity = NULL; lwp_unlock(t); } lcnt++; } mutex_exit(p->p_lock); if (lcnt == 0) error = ESRCH; out: mutex_exit(&cpu_lock); if (cpuset != NULL) kcpuset_unuse(cpuset, &cpulst); kcpuset_destroy(cpulst); return error; } /* * Get affinity. */ int sys__sched_getaffinity(struct lwp *l, const struct sys__sched_getaffinity_args *uap, register_t *retval) { /* { syscallarg(pid_t) pid; syscallarg(lwpid_t) lid; syscallarg(size_t) size; syscallarg(cpuset_t *) cpuset; } */ struct lwp *t; kcpuset_t *cpuset; int error; error = genkcpuset(&cpuset, SCARG(uap, cpuset), SCARG(uap, size)); if (error) return error; /* Locks the LWP */ t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid)); if (t == NULL) { error = ESRCH; goto out; } /* Check the permission */ if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) { mutex_exit(t->l_proc->p_lock); error = EPERM; goto out; } lwp_lock(t); if (t->l_flag & LW_AFFINITY) { KASSERT(t->l_affinity != NULL); kcpuset_copy(cpuset, t->l_affinity); } else kcpuset_zero(cpuset); lwp_unlock(t); mutex_exit(t->l_proc->p_lock); error = kcpuset_copyout(cpuset, SCARG(uap, cpuset), SCARG(uap, size)); out: kcpuset_unuse(cpuset, NULL); return error; } /* * Yield. */ int sys_sched_yield(struct lwp *l, const void *v, register_t *retval) { yield(); #ifdef KERN_SA if (l->l_flag & LW_SA) { sa_preempt(l); } #endif return 0; } /* * Sysctl nodes and initialization. */ static void sysctl_sched_setup(struct sysctllog **clog) { const struct sysctlnode *node = NULL; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", NULL, NULL, 0, NULL, 0, CTL_KERN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_sched", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " "Process Scheduling option to which the " "system attempts to conform"), NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0, CTL_KERN, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sched", SYSCTL_DESCR("Scheduler options"), NULL, 0, NULL, 0, CTL_KERN, CTL_CREATE, CTL_EOL); if (node == NULL) return; sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, CTLTYPE_INT, "pri_min", SYSCTL_DESCR("Minimal POSIX real-time priority"), NULL, SCHED_PRI_MIN, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, CTLTYPE_INT, "pri_max", SYSCTL_DESCR("Maximal POSIX real-time priority"), NULL, SCHED_PRI_MAX, NULL, 0, CTL_CREATE, CTL_EOL); } static int sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { struct proc *p; int result; result = KAUTH_RESULT_DEFER; p = arg0; switch (action) { case KAUTH_PROCESS_SCHEDULER_GETPARAM: if (kauth_cred_uidmatch(cred, p->p_cred)) result = KAUTH_RESULT_ALLOW; break; case KAUTH_PROCESS_SCHEDULER_SETPARAM: if (kauth_cred_uidmatch(cred, p->p_cred)) { struct lwp *l; int policy; pri_t priority; l = arg1; policy = (int)(unsigned long)arg2; priority = (pri_t)(unsigned long)arg3; if ((policy == l->l_class || (policy != SCHED_FIFO && policy != SCHED_RR)) && priority <= l->l_priority) result = KAUTH_RESULT_ALLOW; } break; case KAUTH_PROCESS_SCHEDULER_GETAFFINITY: result = KAUTH_RESULT_ALLOW; break; case KAUTH_PROCESS_SCHEDULER_SETAFFINITY: /* Privileged; we let the secmodel handle this. */ break; default: break; } return result; } void sched_init(void) { sysctl_sched_setup(&sched_sysctl_log); sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, sched_listener_cb, NULL); }