/* $NetBSD: ip6_output.c,v 1.155 2013/10/03 20:27:55 christos Exp $ */ /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.155 2013/10/03 20:27:55 christos Exp $"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #include #include #endif #include extern pfil_head_t *inet6_pfil_hook; /* XXX */ struct ip6_exthdrs { struct mbuf *ip6e_ip6; struct mbuf *ip6e_hbh; struct mbuf *ip6e_dest1; struct mbuf *ip6e_rthdr; struct mbuf *ip6e_dest2; }; static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, kauth_cred_t, int); static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, int, int, int); static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **); static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *); static int ip6_copyexthdr(struct mbuf **, void *, int); static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, struct ip6_frag **); static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, const struct in6_addr *, u_long *, int *); static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); #ifdef RFC2292 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); #endif /* * IP6 output. The packet in mbuf chain m contains a skeletal IP6 * header (with pri, len, nxt, hlim, src, dst). * This function may modify ver and hlim only. * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, * which is rt_rmx.rmx_mtu. */ int ip6_output( struct mbuf *m0, struct ip6_pktopts *opt, struct route *ro, int flags, struct ip6_moptions *im6o, struct socket *so, struct ifnet **ifpp /* XXX: just for statistics */ ) { struct ip6_hdr *ip6, *mhip6; struct ifnet *ifp, *origifp; struct mbuf *m = m0; int hlen, tlen, len, off; bool tso; struct route ip6route; struct rtentry *rt = NULL; const struct sockaddr_in6 *dst = NULL; struct sockaddr_in6 src_sa, dst_sa; int error = 0; struct in6_ifaddr *ia = NULL; u_long mtu; int alwaysfrag, dontfrag; u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; struct ip6_exthdrs exthdrs; struct in6_addr finaldst, src0, dst0; u_int32_t zone; struct route *ro_pmtu = NULL; int hdrsplit = 0; int needipsec = 0; #ifdef IPSEC struct secpolicy *sp = NULL; int s; #endif memset(&ip6route, 0, sizeof(ip6route)); #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) panic("ip6_output: no HDR"); if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { panic("ip6_output: IPv4 checksum offload flags: %d", m->m_pkthdr.csum_flags); } if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == (M_CSUM_TCPv6|M_CSUM_UDPv6)) { panic("ip6_output: conflicting checksum offload flags: %d", m->m_pkthdr.csum_flags); } #endif M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); #define MAKE_EXTHDR(hp, mp) \ do { \ if (hp) { \ struct ip6_ext *eh = (struct ip6_ext *)(hp); \ error = ip6_copyexthdr((mp), (void *)(hp), \ ((eh)->ip6e_len + 1) << 3); \ if (error) \ goto freehdrs; \ } \ } while (/*CONSTCOND*/ 0) memset(&exthdrs, 0, sizeof(exthdrs)); if (opt) { /* Hop-by-Hop options header */ MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); /* Destination options header(1st part) */ MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); /* Routing header */ MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); /* Destination options header(2nd part) */ MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); } /* * Calculate the total length of the extension header chain. * Keep the length of the unfragmentable part for fragmentation. */ optlen = 0; if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; unfragpartlen = optlen + sizeof(struct ip6_hdr); /* NOTE: we don't add AH/ESP length here. do that later. */ if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; #ifdef IPSEC /* Check the security policy (SP) for the packet */ sp = ipsec6_check_policy(m,so,flags,&needipsec,&error); if (error != 0) { /* * Hack: -EINVAL is used to signal that a packet * should be silently discarded. This is typically * because we asked key management for an SA and * it was delayed (e.g. kicked up to IKE). */ if (error == -EINVAL) error = 0; goto freehdrs; } #endif /* IPSEC */ if (needipsec && (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { in6_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); } /* * If we need IPsec, or there is at least one extension header, * separate IP6 header from the payload. */ if ((needipsec || optlen) && !hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; hdrsplit++; } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); /* adjust mbuf packet header length */ m->m_pkthdr.len += optlen; plen = m->m_pkthdr.len - sizeof(*ip6); /* If this is a jumbo payload, insert a jumbo payload option. */ if (plen > IPV6_MAXPACKET) { if (!hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; hdrsplit++; } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) goto freehdrs; optlen += 8; /* XXX JUMBOOPTLEN */ ip6->ip6_plen = 0; } else ip6->ip6_plen = htons(plen); /* * Concatenate headers and fill in next header fields. * Here we have, on "m" * IPv6 payload * and we insert headers accordingly. Finally, we should be getting: * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] * * during the header composing process, "m" points to IPv6 header. * "mprev" points to an extension header prior to esp. */ { u_char *nexthdrp = &ip6->ip6_nxt; struct mbuf *mprev = m; /* * we treat dest2 specially. this makes IPsec processing * much easier. the goal here is to make mprev point the * mbuf prior to dest2. * * result: IPv6 dest2 payload * m and mprev will point to IPv6 header. */ if (exthdrs.ip6e_dest2) { if (!hdrsplit) panic("assumption failed: hdr not split"); exthdrs.ip6e_dest2->m_next = m->m_next; m->m_next = exthdrs.ip6e_dest2; *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_DSTOPTS; } #define MAKE_CHAIN(m, mp, p, i)\ do {\ if (m) {\ if (!hdrsplit) \ panic("assumption failed: hdr not split"); \ *mtod((m), u_char *) = *(p);\ *(p) = (i);\ p = mtod((m), u_char *);\ (m)->m_next = (mp)->m_next;\ (mp)->m_next = (m);\ (mp) = (m);\ }\ } while (/*CONSTCOND*/ 0) /* * result: IPv6 hbh dest1 rthdr dest2 payload * m will point to IPv6 header. mprev will point to the * extension header prior to dest2 (rthdr in the above case). */ MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr) + optlen); } /* * If there is a routing header, replace destination address field * with the first hop of the routing header. */ if (exthdrs.ip6e_rthdr) { struct ip6_rthdr *rh; struct ip6_rthdr0 *rh0; struct in6_addr *addr; struct sockaddr_in6 sa; rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *)); finaldst = ip6->ip6_dst; switch (rh->ip6r_type) { case IPV6_RTHDR_TYPE_0: rh0 = (struct ip6_rthdr0 *)rh; addr = (struct in6_addr *)(rh0 + 1); /* * construct a sockaddr_in6 form of * the first hop. * * XXX: we may not have enough * information about its scope zone; * there is no standard API to pass * the information from the * application. */ sockaddr_in6_init(&sa, addr, 0, 0, 0); if ((error = sa6_embedscope(&sa, ip6_use_defzone)) != 0) { goto bad; } ip6->ip6_dst = sa.sin6_addr; (void)memmove(&addr[0], &addr[1], sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); addr[rh0->ip6r0_segleft - 1] = finaldst; /* XXX */ in6_clearscope(addr + rh0->ip6r0_segleft - 1); break; default: /* is it possible? */ error = EINVAL; goto bad; } } /* Source address validation */ if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && (flags & IPV6_UNSPECSRC) == 0) { error = EOPNOTSUPP; IP6_STATINC(IP6_STAT_BADSCOPE); goto bad; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { error = EOPNOTSUPP; IP6_STATINC(IP6_STAT_BADSCOPE); goto bad; } IP6_STATINC(IP6_STAT_LOCALOUT); /* * Route packet. */ /* initialize cached route */ if (ro == NULL) { ro = &ip6route; } ro_pmtu = ro; if (opt && opt->ip6po_rthdr) ro = &opt->ip6po_route; /* * if specified, try to fill in the traffic class field. * do not override if a non-zero value is already set. * we check the diffserv field and the ecn field separately. */ if (opt && opt->ip6po_tclass >= 0) { int mask = 0; if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) mask |= 0xfc; if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) mask |= 0x03; if (mask != 0) ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); } /* fill in or override the hop limit field, if necessary. */ if (opt && opt->ip6po_hlim != -1) ip6->ip6_hlim = opt->ip6po_hlim & 0xff; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (im6o != NULL) ip6->ip6_hlim = im6o->im6o_multicast_hlim; else ip6->ip6_hlim = ip6_defmcasthlim; } #ifdef IPSEC if (needipsec) { s = splsoftnet(); error = ipsec6_process_packet(m,sp->req); /* * Preserve KAME behaviour: ENOENT can be returned * when an SA acquire is in progress. Don't propagate * this to user-level; it confuses applications. * XXX this will go away when the SADB is redone. */ if (error == ENOENT) error = 0; splx(s); goto done; } #endif /* IPSEC */ /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0)) != 0) { if (ifp != NULL) in6_ifstat_inc(ifp, ifs6_out_discard); goto bad; } if (rt == NULL) { /* * If in6_selectroute() does not return a route entry, * dst may not have been updated. */ error = rtcache_setdst(ro, sin6tosa(&dst_sa)); if (error) { goto bad; } } /* * then rt (for unicast) and ifp must be non-NULL valid values. */ if ((flags & IPV6_FORWARDING) == 0) { /* XXX: the FORWARDING flag can be set for mrouting. */ in6_ifstat_inc(ifp, ifs6_out_request); } if (rt != NULL) { ia = (struct in6_ifaddr *)(rt->rt_ifa); rt->rt_use++; } /* * The outgoing interface must be in the zone of source and * destination addresses. We should use ia_ifp to support the * case of sending packets to an address of our own. */ if (ia != NULL && ia->ia_ifp) origifp = ia->ia_ifp; else origifp = ifp; src0 = ip6->ip6_src; if (in6_setscope(&src0, origifp, &zone)) goto badscope; sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) goto badscope; dst0 = ip6->ip6_dst; if (in6_setscope(&dst0, origifp, &zone)) goto badscope; /* re-initialize to be sure */ sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) goto badscope; /* scope check is done. */ if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (dst == NULL) dst = satocsin6(rtcache_getdst(ro)); KASSERT(dst != NULL); } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { /* * The nexthop is explicitly specified by the * application. We assume the next hop is an IPv6 * address. */ dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; } else if ((rt->rt_flags & RTF_GATEWAY)) dst = (struct sockaddr_in6 *)rt->rt_gateway; else if (dst == NULL) dst = satocsin6(rtcache_getdst(ro)); /* * XXXXXX: original code follows: */ if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ else { struct in6_multi *in6m; m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; in6_ifstat_inc(ifp, ifs6_out_mcast); /* * Confirm that the outgoing interface supports multicast. */ if (!(ifp->if_flags & IFF_MULTICAST)) { IP6_STATINC(IP6_STAT_NOROUTE); in6_ifstat_inc(ifp, ifs6_out_discard); error = ENETUNREACH; goto bad; } IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); if (in6m != NULL && (im6o == NULL || im6o->im6o_multicast_loop)) { /* * If we belong to the destination multicast group * on the outgoing interface, and the caller did not * forbid loopback, loop back a copy. */ KASSERT(dst != NULL); ip6_mloopback(ifp, m, dst); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IPV6_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip6_mloopback(), * above, will be forwarded by the ip6_input() routine, * if necessary. */ if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { if (ip6_mforward(ip6, ifp, m) != 0) { m_freem(m); goto done; } } } /* * Multicasts with a hoplimit of zero may be looped back, * above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip6_mloopback() will * loop back a copy if this host actually belongs to the * destination group on the loopback interface. */ if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { m_freem(m); goto done; } } /* * Fill the outgoing inteface to tell the upper layer * to increment per-interface statistics. */ if (ifpp) *ifpp = ifp; /* Determine path MTU. */ if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, &alwaysfrag)) != 0) goto bad; /* * The caller of this function may specify to use the minimum MTU * in some cases. * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU * setting. The logic is a bit complicated; by default, unicast * packets will follow path MTU while multicast packets will be sent at * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets * including unicast ones will be sent at the minimum MTU. Multicast * packets will always be sent at the minimum MTU unless * IP6PO_MINMTU_DISABLE is explicitly specified. * See RFC 3542 for more details. */ if (mtu > IPV6_MMTU) { if ((flags & IPV6_MINMTU)) mtu = IPV6_MMTU; else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) mtu = IPV6_MMTU; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { mtu = IPV6_MMTU; } } /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); /* * If the outgoing packet contains a hop-by-hop options header, * it must be examined and processed even by the source node. * (RFC 2460, section 4.) */ if (ip6->ip6_nxt == IPV6_HOPOPTS) { u_int32_t dummy1; /* XXX unused */ u_int32_t dummy2; /* XXX unused */ int hoff = sizeof(struct ip6_hdr); if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { /* m was already freed at this point */ error = EINVAL;/* better error? */ goto done; } ip6 = mtod(m, struct ip6_hdr *); } /* * Run through list of hooks for output packets. */ if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) goto done; if (m == NULL) goto done; ip6 = mtod(m, struct ip6_hdr *); /* * Send the packet to the outgoing interface. * If necessary, do IPv6 fragmentation before sending. * * the logic here is rather complex: * 1: normal case (dontfrag == 0, alwaysfrag == 0) * 1-a: send as is if tlen <= path mtu * 1-b: fragment if tlen > path mtu * * 2: if user asks us not to fragment (dontfrag == 1) * 2-a: send as is if tlen <= interface mtu * 2-b: error if tlen > interface mtu * * 3: if we always need to attach fragment header (alwaysfrag == 1) * always fragment * * 4: if dontfrag == 1 && alwaysfrag == 1 * error, as we cannot handle this conflicting request */ tlen = m->m_pkthdr.len; tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) dontfrag = 1; else dontfrag = 0; if (dontfrag && alwaysfrag) { /* case 4 */ /* conflicting request - can't transmit */ error = EMSGSIZE; goto bad; } if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ /* * Even if the DONTFRAG option is specified, we cannot send the * packet when the data length is larger than the MTU of the * outgoing interface. * Notify the error by sending IPV6_PATHMTU ancillary data as * well as returning an error code (the latter is not described * in the API spec.) */ u_int32_t mtu32; struct ip6ctlparam ip6cp; mtu32 = (u_int32_t)mtu; memset(&ip6cp, 0, sizeof(ip6cp)); ip6cp.ip6c_cmdarg = (void *)&mtu32; pfctlinput2(PRC_MSGSIZE, rtcache_getdst(ro_pmtu), &ip6cp); error = EMSGSIZE; goto bad; } /* * transmit packet without fragmentation */ if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { /* case 1-a and 2-a */ struct in6_ifaddr *ia6; int sw_csum; ip6 = mtod(m, struct ip6_hdr *); ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); if (ia6) { /* Record statistics for this interface address. */ ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; } sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { if (IN6_NEED_CHECKSUM(ifp, sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { in6_delayed_cksum(m); } m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); } KASSERT(dst != NULL); if (__predict_true(!tso || (ifp->if_capenable & IFCAP_TSOv6) != 0)) { error = nd6_output(ifp, origifp, m, dst, rt); } else { error = ip6_tso_output(ifp, origifp, m, dst, rt); } goto done; } if (tso) { error = EINVAL; /* XXX */ goto bad; } /* * try to fragment the packet. case 1-b and 3 */ if (mtu < IPV6_MMTU) { /* path MTU cannot be less than IPV6_MMTU */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else { struct mbuf **mnext, *m_frgpart; struct ip6_frag *ip6f; u_int32_t id = htonl(ip6_randomid()); u_char nextproto; #if 0 /* see below */ struct ip6ctlparam ip6cp; u_int32_t mtu32; #endif /* * Too large for the destination or interface; * fragment if possible. * Must be able to put at least 8 bytes per fragment. */ hlen = unfragpartlen; if (mtu > IPV6_MAXPACKET) mtu = IPV6_MAXPACKET; #if 0 /* * It is believed this code is a leftover from the * development of the IPV6_RECVPATHMTU sockopt and * associated work to implement RFC3542. * It's not entirely clear what the intent of the API * is at this point, so disable this code for now. * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG * will send notifications if the application requests. */ /* Notify a proper path MTU to applications. */ mtu32 = (u_int32_t)mtu; memset(&ip6cp, 0, sizeof(ip6cp)); ip6cp.ip6c_cmdarg = (void *)&mtu32; pfctlinput2(PRC_MSGSIZE, rtcache_getdst(ro_pmtu), &ip6cp); #endif len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; if (len < 8) { error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } mnext = &m->m_nextpkt; /* * Change the next header field of the last header in the * unfragmentable part. */ if (exthdrs.ip6e_rthdr) { nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_dest1) { nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_hbh) { nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; } else { nextproto = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_FRAGMENT; } if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { if (IN6_NEED_CHECKSUM(ifp, m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { in6_delayed_cksum(m); } m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); } /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto * chain. */ m0 = m; for (off = hlen; off < tlen; off += len) { struct mbuf *mlast; MGETHDR(m, M_DONTWAIT, MT_HEADER); if (!m) { error = ENOBUFS; IP6_STATINC(IP6_STAT_ODROPPED); goto sendorfree; } m->m_pkthdr.rcvif = NULL; m->m_flags = m0->m_flags & M_COPYFLAGS; *mnext = m; mnext = &m->m_nextpkt; m->m_data += max_linkhdr; mhip6 = mtod(m, struct ip6_hdr *); *mhip6 = *ip6; m->m_len = sizeof(*mhip6); /* * ip6f must be valid if error is 0. But how * can a compiler be expected to infer this? */ ip6f = NULL; error = ip6_insertfraghdr(m0, m, hlen, &ip6f); if (error) { IP6_STATINC(IP6_STAT_ODROPPED); goto sendorfree; } ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); if (off + len >= tlen) len = tlen - off; else ip6f->ip6f_offlg |= IP6F_MORE_FRAG; mhip6->ip6_plen = htons((u_int16_t)(len + hlen + sizeof(*ip6f) - sizeof(struct ip6_hdr))); if ((m_frgpart = m_copy(m0, off, len)) == 0) { error = ENOBUFS; IP6_STATINC(IP6_STAT_ODROPPED); goto sendorfree; } for (mlast = m; mlast->m_next; mlast = mlast->m_next) ; mlast->m_next = m_frgpart; m->m_pkthdr.len = len + hlen + sizeof(*ip6f); m->m_pkthdr.rcvif = NULL; ip6f->ip6f_reserved = 0; ip6f->ip6f_ident = id; ip6f->ip6f_nxt = nextproto; IP6_STATINC(IP6_STAT_OFRAGMENTS); in6_ifstat_inc(ifp, ifs6_out_fragcreat); } in6_ifstat_inc(ifp, ifs6_out_fragok); } /* * Remove leading garbages. */ sendorfree: m = m0->m_nextpkt; m0->m_nextpkt = 0; m_freem(m0); for (m0 = m; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { struct in6_ifaddr *ia6; ip6 = mtod(m, struct ip6_hdr *); ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); if (ia6) { /* * Record statistics for this interface * address. */ ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; } KASSERT(dst != NULL); error = nd6_output(ifp, origifp, m, dst, rt); } else m_freem(m); } if (error == 0) IP6_STATINC(IP6_STAT_FRAGMENTED); done: rtcache_free(&ip6route); #ifdef IPSEC if (sp != NULL) KEY_FREESP(&sp); #endif /* IPSEC */ return (error); freehdrs: m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ m_freem(exthdrs.ip6e_dest1); m_freem(exthdrs.ip6e_rthdr); m_freem(exthdrs.ip6e_dest2); /* FALLTHROUGH */ bad: m_freem(m); goto done; badscope: IP6_STATINC(IP6_STAT_BADSCOPE); in6_ifstat_inc(origifp, ifs6_out_discard); if (error == 0) error = EHOSTUNREACH; /* XXX */ goto bad; } static int ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) { struct mbuf *m; if (hlen > MCLBYTES) return (ENOBUFS); /* XXX */ MGET(m, M_DONTWAIT, MT_DATA); if (!m) return (ENOBUFS); if (hlen > MLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return (ENOBUFS); } } m->m_len = hlen; if (hdr) bcopy(hdr, mtod(m, void *), hlen); *mp = m; return (0); } /* * Process a delayed payload checksum calculation. */ void in6_delayed_cksum(struct mbuf *m) { uint16_t csum, offset; KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { csum = 0xffff; } offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); if ((offset + sizeof(csum)) > m->m_len) { m_copyback(m, offset, sizeof(csum), &csum); } else { *(uint16_t *)(mtod(m, char *) + offset) = csum; } } /* * Insert jumbo payload option. */ static int ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) { struct mbuf *mopt; u_int8_t *optbuf; u_int32_t v; #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ /* * If there is no hop-by-hop options header, allocate new one. * If there is one but it doesn't have enough space to store the * jumbo payload option, allocate a cluster to store the whole options. * Otherwise, use it to store the options. */ if (exthdrs->ip6e_hbh == 0) { MGET(mopt, M_DONTWAIT, MT_DATA); if (mopt == 0) return (ENOBUFS); mopt->m_len = JUMBOOPTLEN; optbuf = mtod(mopt, u_int8_t *); optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ exthdrs->ip6e_hbh = mopt; } else { struct ip6_hbh *hbh; mopt = exthdrs->ip6e_hbh; if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { /* * XXX assumption: * - exthdrs->ip6e_hbh is not referenced from places * other than exthdrs. * - exthdrs->ip6e_hbh is not an mbuf chain. */ int oldoptlen = mopt->m_len; struct mbuf *n; /* * XXX: give up if the whole (new) hbh header does * not fit even in an mbuf cluster. */ if (oldoptlen + JUMBOOPTLEN > MCLBYTES) return (ENOBUFS); /* * As a consequence, we must always prepare a cluster * at this point. */ MGET(n, M_DONTWAIT, MT_DATA); if (n) { MCLGET(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) return (ENOBUFS); n->m_len = oldoptlen + JUMBOOPTLEN; bcopy(mtod(mopt, void *), mtod(n, void *), oldoptlen); optbuf = mtod(n, u_int8_t *) + oldoptlen; m_freem(mopt); mopt = exthdrs->ip6e_hbh = n; } else { optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; mopt->m_len += JUMBOOPTLEN; } optbuf[0] = IP6OPT_PADN; optbuf[1] = 0; /* * Adjust the header length according to the pad and * the jumbo payload option. */ hbh = mtod(mopt, struct ip6_hbh *); hbh->ip6h_len += (JUMBOOPTLEN >> 3); } /* fill in the option. */ optbuf[2] = IP6OPT_JUMBO; optbuf[3] = 4; v = (u_int32_t)htonl(plen + JUMBOOPTLEN); bcopy(&v, &optbuf[4], sizeof(u_int32_t)); /* finally, adjust the packet header length */ exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; return (0); #undef JUMBOOPTLEN } /* * Insert fragment header and copy unfragmentable header portions. * * *frghdrp will not be read, and it is guaranteed that either an * error is returned or that *frghdrp will point to space allocated * for the fragment header. */ static int ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, struct ip6_frag **frghdrp) { struct mbuf *n, *mlast; if (hlen > sizeof(struct ip6_hdr)) { n = m_copym(m0, sizeof(struct ip6_hdr), hlen - sizeof(struct ip6_hdr), M_DONTWAIT); if (n == 0) return (ENOBUFS); m->m_next = n; } else n = m; /* Search for the last mbuf of unfragmentable part. */ for (mlast = n; mlast->m_next; mlast = mlast->m_next) ; if ((mlast->m_flags & M_EXT) == 0 && M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { /* use the trailing space of the last mbuf for the fragment hdr */ *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + mlast->m_len); mlast->m_len += sizeof(struct ip6_frag); m->m_pkthdr.len += sizeof(struct ip6_frag); } else { /* allocate a new mbuf for the fragment header */ struct mbuf *mfrg; MGET(mfrg, M_DONTWAIT, MT_DATA); if (mfrg == 0) return (ENOBUFS); mfrg->m_len = sizeof(struct ip6_frag); *frghdrp = mtod(mfrg, struct ip6_frag *); mlast->m_next = mfrg; } return (0); } static int ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) { struct rtentry *rt; u_int32_t mtu = 0; int alwaysfrag = 0; int error = 0; if (ro_pmtu != ro) { union { struct sockaddr dst; struct sockaddr_in6 dst6; } u; /* The first hop and the final destination may differ. */ sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); rt = rtcache_lookup(ro_pmtu, &u.dst); } else rt = rtcache_validate(ro_pmtu); if (rt != NULL) { u_int32_t ifmtu; if (ifp == NULL) ifp = rt->rt_ifp; ifmtu = IN6_LINKMTU(ifp); mtu = rt->rt_rmx.rmx_mtu; if (mtu == 0) mtu = ifmtu; else if (mtu < IPV6_MMTU) { /* * RFC2460 section 5, last paragraph: * if we record ICMPv6 too big message with * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU * or smaller, with fragment header attached. * (fragment header is needed regardless from the * packet size, for translators to identify packets) */ alwaysfrag = 1; mtu = IPV6_MMTU; } else if (mtu > ifmtu) { /* * The MTU on the route is larger than the MTU on * the interface! This shouldn't happen, unless the * MTU of the interface has been changed after the * interface was brought up. Change the MTU in the * route to match the interface MTU (as long as the * field isn't locked). */ mtu = ifmtu; if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) rt->rt_rmx.rmx_mtu = mtu; } } else if (ifp) { mtu = IN6_LINKMTU(ifp); } else error = EHOSTUNREACH; /* XXX */ *mtup = mtu; if (alwaysfragp) *alwaysfragp = alwaysfrag; return (error); } /* * IP6 socket option processing. */ int ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) { int optdatalen, uproto; void *optdata; struct in6pcb *in6p = sotoin6pcb(so); int error, optval; int level, optname; KASSERT(sopt != NULL); level = sopt->sopt_level; optname = sopt->sopt_name; error = optval = 0; uproto = (int)so->so_proto->pr_protocol; if (level != IPPROTO_IPV6) { return ENOPROTOOPT; } switch (op) { case PRCO_SETOPT: switch (optname) { #ifdef RFC2292 case IPV6_2292PKTOPTIONS: error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); break; #endif /* * Use of some Hop-by-Hop options or some * Destination options, might require special * privilege. That is, normal applications * (without special privilege) might be forbidden * from setting certain options in outgoing packets, * and might never see certain options in received * packets. [RFC 2292 Section 6] * KAME specific note: * KAME prevents non-privileged users from sending or * receiving ANY hbh/dst options in order to avoid * overhead of parsing options in the kernel. */ case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: error = kauth_authorize_network(kauth_cred_get(), KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); if (error) break; /* FALLTHROUGH */ case IPV6_UNICAST_HOPS: case IPV6_HOPLIMIT: case IPV6_FAITH: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_RECVTCLASS: case IPV6_V6ONLY: error = sockopt_getint(sopt, &optval); if (error) break; switch (optname) { case IPV6_UNICAST_HOPS: if (optval < -1 || optval >= 256) error = EINVAL; else { /* -1 = kernel default */ in6p->in6p_hops = optval; } break; #define OPTSET(bit) \ do { \ if (optval) \ in6p->in6p_flags |= (bit); \ else \ in6p->in6p_flags &= ~(bit); \ } while (/*CONSTCOND*/ 0) #ifdef RFC2292 #define OPTSET2292(bit) \ do { \ in6p->in6p_flags |= IN6P_RFC2292; \ if (optval) \ in6p->in6p_flags |= (bit); \ else \ in6p->in6p_flags &= ~(bit); \ } while (/*CONSTCOND*/ 0) #endif #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) case IPV6_RECVPKTINFO: #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_PKTINFO); break; case IPV6_HOPLIMIT: { struct ip6_pktopts **optp; #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif optp = &in6p->in6p_outputopts; error = ip6_pcbopt(IPV6_HOPLIMIT, (u_char *)&optval, sizeof(optval), optp, kauth_cred_get(), uproto); break; } case IPV6_RECVHOPLIMIT: #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_HOPLIMIT); break; case IPV6_RECVHOPOPTS: #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_RTHDRDSTOPTS); break; case IPV6_RECVRTHDR: #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_RTHDR); break; case IPV6_FAITH: OPTSET(IN6P_FAITH); break; case IPV6_RECVPATHMTU: /* * We ignore this option for TCP * sockets. * (RFC3542 leaves this case * unspecified.) */ if (uproto != IPPROTO_TCP) OPTSET(IN6P_MTU); break; case IPV6_V6ONLY: /* * make setsockopt(IPV6_V6ONLY) * available only prior to bind(2). * see ipng mailing list, Jun 22 2001. */ if (in6p->in6p_lport || !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { error = EINVAL; break; } #ifdef INET6_BINDV6ONLY if (!optval) error = EINVAL; #else OPTSET(IN6P_IPV6_V6ONLY); #endif break; case IPV6_RECVTCLASS: #ifdef RFC2292 /* cannot mix with RFC2292 XXX */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif OPTSET(IN6P_TCLASS); break; } break; case IPV6_OTCLASS: { struct ip6_pktopts **optp; u_int8_t tclass; error = sockopt_get(sopt, &tclass, sizeof(tclass)); if (error) break; optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, (u_char *)&tclass, sizeof(tclass), optp, kauth_cred_get(), uproto); break; } case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: error = sockopt_getint(sopt, &optval); if (error) break; { struct ip6_pktopts **optp; optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, (u_char *)&optval, sizeof(optval), optp, kauth_cred_get(), uproto); break; } #ifdef RFC2292 case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: /* RFC 2292 */ error = sockopt_getint(sopt, &optval); if (error) break; switch (optname) { case IPV6_2292PKTINFO: OPTSET2292(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: OPTSET2292(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: /* * Check super-user privilege. * See comments for IPV6_RECVHOPOPTS. */ error = kauth_authorize_network(kauth_cred_get(), KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); if (error) return (error); OPTSET2292(IN6P_HOPOPTS); break; case IPV6_2292DSTOPTS: error = kauth_authorize_network(kauth_cred_get(), KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); if (error) return (error); OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ break; case IPV6_2292RTHDR: OPTSET2292(IN6P_RTHDR); break; } break; #endif case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: { /* new advanced API (RFC3542) */ void *optbuf; int optbuflen; struct ip6_pktopts **optp; #ifdef RFC2292 /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } #endif optbuflen = sopt->sopt_size; optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); if (optbuf == NULL) { error = ENOBUFS; break; } error = sockopt_get(sopt, optbuf, optbuflen); if (error) { free(optbuf, M_IP6OPT); break; } optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, optbuf, optbuflen, optp, kauth_cred_get(), uproto); break; } #undef OPTSET case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: error = ip6_setmoptions(sopt, &in6p->in6p_moptions); break; case IPV6_PORTRANGE: error = sockopt_getint(sopt, &optval); if (error) break; switch (optval) { case IPV6_PORTRANGE_DEFAULT: in6p->in6p_flags &= ~(IN6P_LOWPORT); in6p->in6p_flags &= ~(IN6P_HIGHPORT); break; case IPV6_PORTRANGE_HIGH: in6p->in6p_flags &= ~(IN6P_LOWPORT); in6p->in6p_flags |= IN6P_HIGHPORT; break; case IPV6_PORTRANGE_LOW: in6p->in6p_flags &= ~(IN6P_HIGHPORT); in6p->in6p_flags |= IN6P_LOWPORT; break; default: error = EINVAL; break; } break; case IPV6_PORTALGO: error = sockopt_getint(sopt, &optval); if (error) break; error = portalgo_algo_index_select( (struct inpcb_hdr *)in6p, optval); break; #if defined(IPSEC) case IPV6_IPSEC_POLICY: error = ipsec6_set_policy(in6p, optname, sopt->sopt_data, sopt->sopt_size, kauth_cred_get()); break; #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case PRCO_GETOPT: switch (optname) { #ifdef RFC2292 case IPV6_2292PKTOPTIONS: /* * RFC3542 (effectively) deprecated the * semantics of the 2292-style pktoptions. * Since it was not reliable in nature (i.e., * applications had to expect the lack of some * information after all), it would make sense * to simplify this part by always returning * empty data. */ break; #endif case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: case IPV6_UNICAST_HOPS: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_FAITH: case IPV6_V6ONLY: case IPV6_PORTRANGE: case IPV6_RECVTCLASS: switch (optname) { case IPV6_RECVHOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: optval = OPTBIT(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: optval = OPTBIT(IN6P_RTHDRDSTOPTS); break; case IPV6_UNICAST_HOPS: optval = in6p->in6p_hops; break; case IPV6_RECVPKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_RECVHOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_RECVRTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: optval = OPTBIT(IN6P_MTU); break; case IPV6_FAITH: optval = OPTBIT(IN6P_FAITH); break; case IPV6_V6ONLY: optval = OPTBIT(IN6P_IPV6_V6ONLY); break; case IPV6_PORTRANGE: { int flags; flags = in6p->in6p_flags; if (flags & IN6P_HIGHPORT) optval = IPV6_PORTRANGE_HIGH; else if (flags & IN6P_LOWPORT) optval = IPV6_PORTRANGE_LOW; else optval = 0; break; } case IPV6_RECVTCLASS: optval = OPTBIT(IN6P_TCLASS); break; } if (error) break; error = sockopt_setint(sopt, optval); break; case IPV6_PATHMTU: { u_long pmtu = 0; struct ip6_mtuinfo mtuinfo; struct route *ro = &in6p->in6p_route; if (!(so->so_state & SS_ISCONNECTED)) return (ENOTCONN); /* * XXX: we dot not consider the case of source * routing, or optional information to specify * the outgoing interface. */ error = ip6_getpmtu(ro, NULL, NULL, &in6p->in6p_faddr, &pmtu, NULL); if (error) break; if (pmtu > IPV6_MAXPACKET) pmtu = IPV6_MAXPACKET; memset(&mtuinfo, 0, sizeof(mtuinfo)); mtuinfo.ip6m_mtu = (u_int32_t)pmtu; optdata = (void *)&mtuinfo; optdatalen = sizeof(mtuinfo); if (optdatalen > MCLBYTES) return (EMSGSIZE); /* XXX */ error = sockopt_set(sopt, optdata, optdatalen); break; } #ifdef RFC2292 case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292RTHDR: case IPV6_2292DSTOPTS: switch (optname) { case IPV6_2292PKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_2292RTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_2292DSTOPTS: optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); break; } error = sockopt_setint(sopt, optval); break; #endif case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: case IPV6_OTCLASS: case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: error = ip6_getpcbopt(in6p->in6p_outputopts, optname, sopt); break; case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: error = ip6_getmoptions(sopt, in6p->in6p_moptions); break; case IPV6_PORTALGO: optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; error = sockopt_setint(sopt, optval); break; #if defined(IPSEC) case IPV6_IPSEC_POLICY: { struct mbuf *m = NULL; /* XXX this will return EINVAL as sopt is empty */ error = ipsec6_get_policy(in6p, sopt->sopt_data, sopt->sopt_size, &m); if (!error) error = sockopt_setmbuf(sopt, m); break; } #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } return (error); } int ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) { int error = 0, optval; const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); struct in6pcb *in6p = sotoin6pcb(so); int level, optname; KASSERT(sopt != NULL); level = sopt->sopt_level; optname = sopt->sopt_name; if (level != IPPROTO_IPV6) { return ENOPROTOOPT; } switch (optname) { case IPV6_CHECKSUM: /* * For ICMPv6 sockets, no modification allowed for checksum * offset, permit "no change" values to help existing apps. * * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM * for an ICMPv6 socket will fail." The current * behavior does not meet RFC3542. */ switch (op) { case PRCO_SETOPT: error = sockopt_getint(sopt, &optval); if (error) break; if ((optval % 2) != 0) { /* the API assumes even offset values */ error = EINVAL; } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { if (optval != icmp6off) error = EINVAL; } else in6p->in6p_cksum = optval; break; case PRCO_GETOPT: if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) optval = icmp6off; else optval = in6p->in6p_cksum; error = sockopt_setint(sopt, optval); break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } return (error); } #ifdef RFC2292 /* * Set up IP6 options in pcb for insertion in output packets or * specifying behavior of outgoing packets. */ static int ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, struct sockopt *sopt) { struct ip6_pktopts *opt = *pktopt; struct mbuf *m; int error = 0; /* turn off any old options. */ if (opt) { #ifdef DIAGNOSTIC if (opt->ip6po_pktinfo || opt->ip6po_nexthop || opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || opt->ip6po_rhinfo.ip6po_rhi_rthdr) printf("ip6_pcbopts: all specified options are cleared.\n"); #endif ip6_clearpktopts(opt, -1); } else { opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); if (opt == NULL) return (ENOBUFS); } *pktopt = NULL; if (sopt == NULL || sopt->sopt_size == 0) { /* * Only turning off any previous options, regardless of * whether the opt is just created or given. */ free(opt, M_IP6OPT); return (0); } /* set options specified by user. */ m = sockopt_getmbuf(sopt); if (m == NULL) { free(opt, M_IP6OPT); return (ENOBUFS); } error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), so->so_proto->pr_protocol); m_freem(m); if (error != 0) { ip6_clearpktopts(opt, -1); /* XXX: discard all options */ free(opt, M_IP6OPT); return (error); } *pktopt = opt; return (0); } #endif /* * initialize ip6_pktopts. beware that there are non-zero default values in * the struct. */ void ip6_initpktopts(struct ip6_pktopts *opt) { memset(opt, 0, sizeof(*opt)); opt->ip6po_hlim = -1; /* -1 means default hop limit */ opt->ip6po_tclass = -1; /* -1 means default traffic class */ opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; } #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ static int ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, kauth_cred_t cred, int uproto) { struct ip6_pktopts *opt; if (*pktopt == NULL) { *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, M_NOWAIT); if (*pktopt == NULL) return (ENOBUFS); ip6_initpktopts(*pktopt); } opt = *pktopt; return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); } static int ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) { void *optdata = NULL; int optdatalen = 0; struct ip6_ext *ip6e; int error = 0; struct in6_pktinfo null_pktinfo; int deftclass = 0, on; int defminmtu = IP6PO_MINMTU_MCASTONLY; switch (optname) { case IPV6_PKTINFO: if (pktopt && pktopt->ip6po_pktinfo) optdata = (void *)pktopt->ip6po_pktinfo; else { /* XXX: we don't have to do this every time... */ memset(&null_pktinfo, 0, sizeof(null_pktinfo)); optdata = (void *)&null_pktinfo; } optdatalen = sizeof(struct in6_pktinfo); break; case IPV6_OTCLASS: /* XXX */ return (EINVAL); case IPV6_TCLASS: if (pktopt && pktopt->ip6po_tclass >= 0) optdata = (void *)&pktopt->ip6po_tclass; else optdata = (void *)&deftclass; optdatalen = sizeof(int); break; case IPV6_HOPOPTS: if (pktopt && pktopt->ip6po_hbh) { optdata = (void *)pktopt->ip6po_hbh; ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_RTHDR: if (pktopt && pktopt->ip6po_rthdr) { optdata = (void *)pktopt->ip6po_rthdr; ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_RTHDRDSTOPTS: if (pktopt && pktopt->ip6po_dest1) { optdata = (void *)pktopt->ip6po_dest1; ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_DSTOPTS: if (pktopt && pktopt->ip6po_dest2) { optdata = (void *)pktopt->ip6po_dest2; ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_NEXTHOP: if (pktopt && pktopt->ip6po_nexthop) { optdata = (void *)pktopt->ip6po_nexthop; optdatalen = pktopt->ip6po_nexthop->sa_len; } break; case IPV6_USE_MIN_MTU: if (pktopt) optdata = (void *)&pktopt->ip6po_minmtu; else optdata = (void *)&defminmtu; optdatalen = sizeof(int); break; case IPV6_DONTFRAG: if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) on = 1; else on = 0; optdata = (void *)&on; optdatalen = sizeof(on); break; default: /* should not happen */ #ifdef DIAGNOSTIC panic("ip6_getpcbopt: unexpected option\n"); #endif return (ENOPROTOOPT); } error = sockopt_set(sopt, optdata, optdatalen); return (error); } void ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) { if (optname == -1 || optname == IPV6_PKTINFO) { if (pktopt->ip6po_pktinfo) free(pktopt->ip6po_pktinfo, M_IP6OPT); pktopt->ip6po_pktinfo = NULL; } if (optname == -1 || optname == IPV6_HOPLIMIT) pktopt->ip6po_hlim = -1; if (optname == -1 || optname == IPV6_TCLASS) pktopt->ip6po_tclass = -1; if (optname == -1 || optname == IPV6_NEXTHOP) { rtcache_free(&pktopt->ip6po_nextroute); if (pktopt->ip6po_nexthop) free(pktopt->ip6po_nexthop, M_IP6OPT); pktopt->ip6po_nexthop = NULL; } if (optname == -1 || optname == IPV6_HOPOPTS) { if (pktopt->ip6po_hbh) free(pktopt->ip6po_hbh, M_IP6OPT); pktopt->ip6po_hbh = NULL; } if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { if (pktopt->ip6po_dest1) free(pktopt->ip6po_dest1, M_IP6OPT); pktopt->ip6po_dest1 = NULL; } if (optname == -1 || optname == IPV6_RTHDR) { if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; rtcache_free(&pktopt->ip6po_route); } if (optname == -1 || optname == IPV6_DSTOPTS) { if (pktopt->ip6po_dest2) free(pktopt->ip6po_dest2, M_IP6OPT); pktopt->ip6po_dest2 = NULL; } } #define PKTOPT_EXTHDRCPY(type) \ do { \ if (src->type) { \ int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ dst->type = malloc(hlen, M_IP6OPT, canwait); \ if (dst->type == NULL) \ goto bad; \ memcpy(dst->type, src->type, hlen); \ } \ } while (/*CONSTCOND*/ 0) static int copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) { dst->ip6po_hlim = src->ip6po_hlim; dst->ip6po_tclass = src->ip6po_tclass; dst->ip6po_flags = src->ip6po_flags; if (src->ip6po_pktinfo) { dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), M_IP6OPT, canwait); if (dst->ip6po_pktinfo == NULL) goto bad; *dst->ip6po_pktinfo = *src->ip6po_pktinfo; } if (src->ip6po_nexthop) { dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, M_IP6OPT, canwait); if (dst->ip6po_nexthop == NULL) goto bad; memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, src->ip6po_nexthop->sa_len); } PKTOPT_EXTHDRCPY(ip6po_hbh); PKTOPT_EXTHDRCPY(ip6po_dest1); PKTOPT_EXTHDRCPY(ip6po_dest2); PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ return (0); bad: if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); return (ENOBUFS); } #undef PKTOPT_EXTHDRCPY struct ip6_pktopts * ip6_copypktopts(struct ip6_pktopts *src, int canwait) { int error; struct ip6_pktopts *dst; dst = malloc(sizeof(*dst), M_IP6OPT, canwait); if (dst == NULL) return (NULL); ip6_initpktopts(dst); if ((error = copypktopts(dst, src, canwait)) != 0) { free(dst, M_IP6OPT); return (NULL); } return (dst); } void ip6_freepcbopts(struct ip6_pktopts *pktopt) { if (pktopt == NULL) return; ip6_clearpktopts(pktopt, -1); free(pktopt, M_IP6OPT); } /* * Set the IP6 multicast options in response to user setsockopt(). */ static int ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op) { int error = 0; u_int loop, ifindex; struct ipv6_mreq mreq; struct ifnet *ifp; struct ip6_moptions *im6o = *im6op; struct route ro; struct in6_multi_mship *imm; struct lwp *l = curlwp; /* XXX */ if (im6o == NULL) { /* * No multicast option buffer attached to the pcb; * allocate one and initialize to default values. */ im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); if (im6o == NULL) return (ENOBUFS); *im6op = im6o; im6o->im6o_multicast_ifp = NULL; im6o->im6o_multicast_hlim = ip6_defmcasthlim; im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; LIST_INIT(&im6o->im6o_memberships); } switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: /* * Select the interface for outgoing multicast packets. */ error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); if (error != 0) break; if (ifindex != 0) { if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) { error = ENXIO; /* XXX EINVAL? */ break; } ifp = ifindex2ifnet[ifindex]; if ((ifp->if_flags & IFF_MULTICAST) == 0) { error = EADDRNOTAVAIL; break; } } else ifp = NULL; im6o->im6o_multicast_ifp = ifp; break; case IPV6_MULTICAST_HOPS: { /* * Set the IP6 hoplimit for outgoing multicast packets. */ int optval; error = sockopt_getint(sopt, &optval); if (error != 0) break; if (optval < -1 || optval >= 256) error = EINVAL; else if (optval == -1) im6o->im6o_multicast_hlim = ip6_defmcasthlim; else im6o->im6o_multicast_hlim = optval; break; } case IPV6_MULTICAST_LOOP: /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. */ error = sockopt_get(sopt, &loop, sizeof(loop)); if (error != 0) break; if (loop > 1) { error = EINVAL; break; } im6o->im6o_multicast_loop = loop; break; case IPV6_JOIN_GROUP: /* * Add a multicast group membership. * Group must be a valid IP6 multicast address. */ error = sockopt_get(sopt, &mreq, sizeof(mreq)); if (error != 0) break; if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) { /* * We use the unspecified address to specify to accept * all multicast addresses. Only super user is allowed * to do this. */ if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) { error = EACCES; break; } } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) { error = EINVAL; break; } /* * If no interface was explicitly specified, choose an * appropriate one according to the given multicast address. */ if (mreq.ipv6mr_interface == 0) { struct rtentry *rt; union { struct sockaddr dst; struct sockaddr_in6 dst6; } u; /* * Look up the routing table for the * address, and choose the outgoing interface. * XXX: is it a good approach? */ memset(&ro, 0, sizeof(ro)); sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0, 0, 0); rtcache_setdst(&ro, &u.dst); ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL; rtcache_free(&ro); } else { /* * If the interface is specified, validate it. */ if (if_indexlim <= mreq.ipv6mr_interface || !ifindex2ifnet[mreq.ipv6mr_interface]) { error = ENXIO; /* XXX EINVAL? */ break; } ifp = ifindex2ifnet[mreq.ipv6mr_interface]; } /* * See if we found an interface, and confirm that it * supports multicast */ if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { error = EADDRNOTAVAIL; break; } if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { error = EADDRNOTAVAIL; /* XXX: should not happen */ break; } /* * See if the membership already exists. */ for (imm = im6o->im6o_memberships.lh_first; imm != NULL; imm = imm->i6mm_chain.le_next) if (imm->i6mm_maddr->in6m_ifp == ifp && IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, &mreq.ipv6mr_multiaddr)) break; if (imm != NULL) { error = EADDRINUSE; break; } /* * Everything looks good; add a new record to the multicast * address list for the given interface. */ imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0); if (imm == NULL) break; LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); break; case IPV6_LEAVE_GROUP: /* * Drop a multicast group membership. * Group must be a valid IP6 multicast address. */ error = sockopt_get(sopt, &mreq, sizeof(mreq)); if (error != 0) break; /* * If an interface address was specified, get a pointer * to its ifnet structure. */ if (mreq.ipv6mr_interface != 0) { if (if_indexlim <= mreq.ipv6mr_interface || !ifindex2ifnet[mreq.ipv6mr_interface]) { error = ENXIO; /* XXX EINVAL? */ break; } ifp = ifindex2ifnet[mreq.ipv6mr_interface]; } else ifp = NULL; /* Fill in the scope zone ID */ if (ifp) { if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { /* XXX: should not happen */ error = EADDRNOTAVAIL; break; } } else if (mreq.ipv6mr_interface != 0) { /* * XXX: This case would happens when the (positive) * index is in the valid range, but the corresponding * interface has been detached dynamically. The above * check probably avoids such case to happen here, but * we check it explicitly for safety. */ error = EADDRNOTAVAIL; break; } else { /* ipv6mr_interface == 0 */ struct sockaddr_in6 sa6_mc; /* * The API spec says as follows: * If the interface index is specified as 0, the * system may choose a multicast group membership to * drop by matching the multicast address only. * On the other hand, we cannot disambiguate the scope * zone unless an interface is provided. Thus, we * check if there's ambiguity with the default scope * zone as the last resort. */ sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 0, 0, 0); error = sa6_embedscope(&sa6_mc, ip6_use_defzone); if (error != 0) break; mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; } /* * Find the membership in the membership list. */ for (imm = im6o->im6o_memberships.lh_first; imm != NULL; imm = imm->i6mm_chain.le_next) { if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, &mreq.ipv6mr_multiaddr)) break; } if (imm == NULL) { /* Unable to resolve interface */ error = EADDRNOTAVAIL; break; } /* * Give up the multicast address record to which the * membership points. */ LIST_REMOVE(imm, i6mm_chain); in6_leavegroup(imm); break; default: error = EOPNOTSUPP; break; } /* * If all options have default values, no need to keep the mbuf. */ if (im6o->im6o_multicast_ifp == NULL && im6o->im6o_multicast_hlim == ip6_defmcasthlim && im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && im6o->im6o_memberships.lh_first == NULL) { free(*im6op, M_IPMOPTS); *im6op = NULL; } return (error); } /* * Return the IP6 multicast options in response to user getsockopt(). */ static int ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o) { u_int optval; int error; switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) optval = 0; else optval = im6o->im6o_multicast_ifp->if_index; error = sockopt_set(sopt, &optval, sizeof(optval)); break; case IPV6_MULTICAST_HOPS: if (im6o == NULL) optval = ip6_defmcasthlim; else optval = im6o->im6o_multicast_hlim; error = sockopt_set(sopt, &optval, sizeof(optval)); break; case IPV6_MULTICAST_LOOP: if (im6o == NULL) optval = IPV6_DEFAULT_MULTICAST_LOOP; else optval = im6o->im6o_multicast_loop; error = sockopt_set(sopt, &optval, sizeof(optval)); break; default: error = EOPNOTSUPP; } return (error); } /* * Discard the IP6 multicast options. */ void ip6_freemoptions(struct ip6_moptions *im6o) { struct in6_multi_mship *imm; if (im6o == NULL) return; while ((imm = im6o->im6o_memberships.lh_first) != NULL) { LIST_REMOVE(imm, i6mm_chain); in6_leavegroup(imm); } free(im6o, M_IPMOPTS); } /* * Set IPv6 outgoing packet options based on advanced API. */ int ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) { struct cmsghdr *cm = 0; if (control == NULL || opt == NULL) return (EINVAL); ip6_initpktopts(opt); if (stickyopt) { int error; /* * If stickyopt is provided, make a local copy of the options * for this particular packet, then override them by ancillary * objects. * XXX: copypktopts() does not copy the cached route to a next * hop (if any). This is not very good in terms of efficiency, * but we can allow this since this option should be rarely * used. */ if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) return (error); } /* * XXX: Currently, we assume all the optional information is stored * in a single mbuf. */ if (control->m_next) return (EINVAL); /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { int error; if (control->m_len < CMSG_LEN(0)) return (EINVAL); cm = mtod(control, struct cmsghdr *); if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) return (EINVAL); if (cm->cmsg_level != IPPROTO_IPV6) continue; error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); if (error) return (error); } return (0); } /* * Set a particular packet option, as a sticky option or an ancillary data * item. "len" can be 0 only when it's a sticky option. * We have 4 cases of combination of "sticky" and "cmsg": * "sticky=0, cmsg=0": impossible * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data * "sticky=1, cmsg=0": RFC3542 socket option * "sticky=1, cmsg=1": RFC2292 socket option */ static int ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, kauth_cred_t cred, int sticky, int cmsg, int uproto) { int minmtupolicy; int error; if (!sticky && !cmsg) { #ifdef DIAGNOSTIC printf("ip6_setpktopt: impossible case\n"); #endif return (EINVAL); } /* * IPV6_2292xxx is for backward compatibility to RFC2292, and should * not be specified in the context of RFC3542. Conversely, * RFC3542 types should not be specified in the context of RFC2292. */ if (!cmsg) { switch (optname) { case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292NEXTHOP: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: case IPV6_2292PKTOPTIONS: return (ENOPROTOOPT); } } if (sticky && cmsg) { switch (optname) { case IPV6_PKTINFO: case IPV6_HOPLIMIT: case IPV6_NEXTHOP: case IPV6_HOPOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_USE_MIN_MTU: case IPV6_DONTFRAG: case IPV6_OTCLASS: case IPV6_TCLASS: return (ENOPROTOOPT); } } switch (optname) { #ifdef RFC2292 case IPV6_2292PKTINFO: #endif case IPV6_PKTINFO: { struct ifnet *ifp = NULL; struct in6_pktinfo *pktinfo; if (len != sizeof(struct in6_pktinfo)) return (EINVAL); pktinfo = (struct in6_pktinfo *)buf; /* * An application can clear any sticky IPV6_PKTINFO option by * doing a "regular" setsockopt with ipi6_addr being * in6addr_any and ipi6_ifindex being zero. * [RFC 3542, Section 6] */ if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && pktinfo->ipi6_ifindex == 0 && IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { ip6_clearpktopts(opt, optname); break; } if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { return (EINVAL); } /* validate the interface index if specified. */ if (pktinfo->ipi6_ifindex >= if_indexlim) { return (ENXIO); } if (pktinfo->ipi6_ifindex) { ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; if (ifp == NULL) return (ENXIO); } /* * We store the address anyway, and let in6_selectsrc() * validate the specified address. This is because ipi6_addr * may not have enough information about its scope zone, and * we may need additional information (such as outgoing * interface or the scope zone of a destination address) to * disambiguate the scope. * XXX: the delay of the validation may confuse the * application when it is used as a sticky option. */ if (opt->ip6po_pktinfo == NULL) { opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), M_IP6OPT, M_NOWAIT); if (opt->ip6po_pktinfo == NULL) return (ENOBUFS); } memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); break; } #ifdef RFC2292 case IPV6_2292HOPLIMIT: #endif case IPV6_HOPLIMIT: { int *hlimp; /* * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT * to simplify the ordering among hoplimit options. */ if (optname == IPV6_HOPLIMIT && sticky) return (ENOPROTOOPT); if (len != sizeof(int)) return (EINVAL); hlimp = (int *)buf; if (*hlimp < -1 || *hlimp > 255) return (EINVAL); opt->ip6po_hlim = *hlimp; break; } case IPV6_OTCLASS: if (len != sizeof(u_int8_t)) return (EINVAL); opt->ip6po_tclass = *(u_int8_t *)buf; break; case IPV6_TCLASS: { int tclass; if (len != sizeof(int)) return (EINVAL); tclass = *(int *)buf; if (tclass < -1 || tclass > 255) return (EINVAL); opt->ip6po_tclass = tclass; break; } #ifdef RFC2292 case IPV6_2292NEXTHOP: #endif case IPV6_NEXTHOP: error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); if (error) return (error); if (len == 0) { /* just remove the option */ ip6_clearpktopts(opt, IPV6_NEXTHOP); break; } /* check if cmsg_len is large enough for sa_len */ if (len < sizeof(struct sockaddr) || len < *buf) return (EINVAL); switch (((struct sockaddr *)buf)->sa_family) { case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; if (sa6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { return (EINVAL); } if ((error = sa6_embedscope(sa6, ip6_use_defzone)) != 0) { return (error); } break; } case AF_LINK: /* eventually be supported? */ default: return (EAFNOSUPPORT); } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_NEXTHOP); opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); if (opt->ip6po_nexthop == NULL) return (ENOBUFS); memcpy(opt->ip6po_nexthop, buf, *buf); break; #ifdef RFC2292 case IPV6_2292HOPOPTS: #endif case IPV6_HOPOPTS: { struct ip6_hbh *hbh; int hbhlen; /* * XXX: We don't allow a non-privileged user to set ANY HbH * options, since per-option restriction has too much * overhead. */ error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); if (error) return (error); if (len == 0) { ip6_clearpktopts(opt, IPV6_HOPOPTS); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_hbh)) return (EINVAL); hbh = (struct ip6_hbh *)buf; hbhlen = (hbh->ip6h_len + 1) << 3; if (len != hbhlen) return (EINVAL); /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_HOPOPTS); opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_hbh == NULL) return (ENOBUFS); memcpy(opt->ip6po_hbh, hbh, hbhlen); break; } #ifdef RFC2292 case IPV6_2292DSTOPTS: #endif case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: { struct ip6_dest *dest, **newdest = NULL; int destlen; /* XXX: see the comment for IPV6_HOPOPTS */ error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); if (error) return (error); if (len == 0) { ip6_clearpktopts(opt, optname); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_dest)) return (EINVAL); dest = (struct ip6_dest *)buf; destlen = (dest->ip6d_len + 1) << 3; if (len != destlen) return (EINVAL); /* * Determine the position that the destination options header * should be inserted; before or after the routing header. */ switch (optname) { case IPV6_2292DSTOPTS: /* * The old advanced API is ambiguous on this point. * Our approach is to determine the position based * according to the existence of a routing header. * Note, however, that this depends on the order of the * extension headers in the ancillary data; the 1st * part of the destination options header must appear * before the routing header in the ancillary data, * too. * RFC3542 solved the ambiguity by introducing * separate ancillary data or option types. */ if (opt->ip6po_rthdr == NULL) newdest = &opt->ip6po_dest1; else newdest = &opt->ip6po_dest2; break; case IPV6_RTHDRDSTOPTS: newdest = &opt->ip6po_dest1; break; case IPV6_DSTOPTS: newdest = &opt->ip6po_dest2; break; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, optname); *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); if (*newdest == NULL) return (ENOBUFS); memcpy(*newdest, dest, destlen); break; } #ifdef RFC2292 case IPV6_2292RTHDR: #endif case IPV6_RTHDR: { struct ip6_rthdr *rth; int rthlen; if (len == 0) { ip6_clearpktopts(opt, IPV6_RTHDR); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_rthdr)) return (EINVAL); rth = (struct ip6_rthdr *)buf; rthlen = (rth->ip6r_len + 1) << 3; if (len != rthlen) return (EINVAL); switch (rth->ip6r_type) { case IPV6_RTHDR_TYPE_0: if (rth->ip6r_len == 0) /* must contain one addr */ return (EINVAL); if (rth->ip6r_len % 2) /* length must be even */ return (EINVAL); if (rth->ip6r_len / 2 != rth->ip6r_segleft) return (EINVAL); break; default: return (EINVAL); /* not supported */ } /* turn off the previous option */ ip6_clearpktopts(opt, IPV6_RTHDR); opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_rthdr == NULL) return (ENOBUFS); memcpy(opt->ip6po_rthdr, rth, rthlen); break; } case IPV6_USE_MIN_MTU: if (len != sizeof(int)) return (EINVAL); minmtupolicy = *(int *)buf; if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && minmtupolicy != IP6PO_MINMTU_DISABLE && minmtupolicy != IP6PO_MINMTU_ALL) { return (EINVAL); } opt->ip6po_minmtu = minmtupolicy; break; case IPV6_DONTFRAG: if (len != sizeof(int)) return (EINVAL); if (uproto == IPPROTO_TCP || *(int *)buf == 0) { /* * we ignore this option for TCP sockets. * (RFC3542 leaves this case unspecified.) */ opt->ip6po_flags &= ~IP6PO_DONTFRAG; } else opt->ip6po_flags |= IP6PO_DONTFRAG; break; default: return (ENOPROTOOPT); } /* end of switch */ return (0); } /* * Routine called from ip6_output() to loop back a copy of an IP6 multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be lo0ifp -- easier than replicating that code here. */ void ip6_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in6 *dst) { struct mbuf *copym; struct ip6_hdr *ip6; copym = m_copy(m, 0, M_COPYALL); if (copym == NULL) return; /* * Make sure to deep-copy IPv6 header portion in case the data * is in an mbuf cluster, so that we can safely override the IPv6 * header portion later. */ if ((copym->m_flags & M_EXT) != 0 || copym->m_len < sizeof(struct ip6_hdr)) { copym = m_pullup(copym, sizeof(struct ip6_hdr)); if (copym == NULL) return; } #ifdef DIAGNOSTIC if (copym->m_len < sizeof(*ip6)) { m_freem(copym); return; } #endif ip6 = mtod(copym, struct ip6_hdr *); /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); } /* * Chop IPv6 header off from the payload. */ static int ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) { struct mbuf *mh; struct ip6_hdr *ip6; ip6 = mtod(m, struct ip6_hdr *); if (m->m_len > sizeof(*ip6)) { MGETHDR(mh, M_DONTWAIT, MT_HEADER); if (mh == 0) { m_freem(m); return ENOBUFS; } M_MOVE_PKTHDR(mh, m); MH_ALIGN(mh, sizeof(*ip6)); m->m_len -= sizeof(*ip6); m->m_data += sizeof(*ip6); mh->m_next = m; m = mh; m->m_len = sizeof(*ip6); bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); } exthdrs->ip6e_ip6 = m; return 0; } /* * Compute IPv6 extension header length. */ int ip6_optlen(struct in6pcb *in6p) { int len; if (!in6p->in6p_outputopts) return 0; len = 0; #define elen(x) \ (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) len += elen(in6p->in6p_outputopts->ip6po_hbh); len += elen(in6p->in6p_outputopts->ip6po_dest1); len += elen(in6p->in6p_outputopts->ip6po_rthdr); len += elen(in6p->in6p_outputopts->ip6po_dest2); return len; #undef elen }