/* $NetBSD: clock.c,v 1.6 1994/10/26 02:02:51 cgd Exp $ */ /* * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: clock.c 1.18 91/01/21$ * * @(#)clock.c 7.6 (Berkeley) 5/7/91 */ #include #include #include #include #include #include #include #include #include #include #if defined(PROF) && defined(PROFTIMER) #include #endif /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz. We're using a 100 Hz clock. */ #define CLK_INTERVAL amiga_clk_interval int amiga_clk_interval; int eclockfreq; /* * Machine-dependent clock routines. * * Startrtclock restarts the real-time clock, which provides * hardclock interrupts to kern_clock.c. * * Inittodr initializes the time of day hardware which provides * date functions. * * Resettodr restores the time of day hardware after a time change. * * A note on the real-time clock: * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL. * This is because the counter decrements to zero after N+1 enabled clock * periods where N is the value loaded into the counter. */ int clockmatch __P((struct device *, struct cfdata *, void *)); void clockattach __P((struct device *, struct device *, void *)); struct cfdriver clockcd = { NULL, "clock", clockmatch, clockattach, DV_DULL, sizeof(struct device), NULL, 0 }; int clockmatch(pdp, cfp, auxp) struct device *pdp; struct cfdata *cfp; void *auxp; { if (matchname("clock", auxp)) return(1); return(0); } /* * Start the real-time clock. */ void clockattach(pdp, dp, auxp) struct device *pdp, *dp; void *auxp; { unsigned short interval; if (eclockfreq == 0) eclockfreq = 715909; /* guess NTSC */ CLK_INTERVAL = (eclockfreq / 100); printf(": system hz %d hardware hz %d\n", hz, eclockfreq); /* * stop timer A */ ciab.cra = ciab.cra & 0xc0; ciab.icr = 1 << 0; /* disable timer A interrupt */ interval = ciab.icr; /* and make sure it's clear */ /* * load interval into registers. * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz * supprort for PAL WHEN?!?! XXX */ interval = CLK_INTERVAL - 1; /* * order of setting is important ! */ ciab.talo = interval & 0xff; ciab.tahi = interval >> 8; } void cpu_initclocks() { /* * enable interrupts for timer A */ ciab.icr = (1<<7) | (1<<0); /* * start timer A in continuous shot mode */ ciab.cra = (ciab.cra & 0xc0) | 1; /* * and globally enable interrupts for ciab */ custom.intena = INTF_SETCLR | INTF_EXTER; } setstatclockrate(hz) int hz; { } /* * Returns number of usec since last recorded clock "tick" * (i.e. clock interrupt). */ clkread() { u_char hi, hi2, lo; u_int interval; hi = ciab.tahi; lo = ciab.talo; hi2 = ciab.tahi; if (hi != hi2) { lo = ciab.talo; hi = hi2; } interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo); /* * should read ICR and if there's an int pending, adjust interval. * However, * since reading ICR clears the interrupt, we'd lose a * hardclock int, and * this is not tolerable. */ return((interval * tick) / CLK_INTERVAL); } u_int micspertick; /* * we set up as much of the CIAa as possible * as all access to chip memory are very slow. */ void setmicspertick() { micspertick = (1000000ULL << 20) / 715909; /* * disable interrupts (just in case.) */ ciaa.icr = 0x3; /* * stop both timers if not already */ ciaa.cra &= ~1; ciaa.crb &= ~1; /* * set timer B in "count timer A underflows" mode * set tiemr A in one-shot mode */ ciaa.crb = (ciaa.crb & 0x80) | 0x48; ciaa.cra = (ciaa.cra & 0xc0) | 0x08; } /* * this function assumes that on any entry beyond the first * the following condintions exist: * Interrupts for Timers A and B are disabled. * Timers A and B are stoped. * Timers A and B are in one-shot mode with B counting timer A underflows * */ void delay(mic) int mic; { u_int temp; int s; if (micspertick == 0) setmicspertick(); if (mic <= 1) return; /* * basically this is going to do an integer * usec / (1000000 / 715909) with no loss of * precision */ temp = mic >> 12; asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20), "d" (micspertick)); if ((temp & 0xffff0000) > 0x10000) { mic = (temp >> 16) - 1; temp &= 0xffff; /* * set timer A in continous mode */ ciaa.cra = (ciaa.cra & 0xc0) | 0x00; /* * latch/load/start "counts of timer A underflows" in B */ ciaa.tblo = mic & 0xff; ciaa.tbhi = mic >> 8; /* * timer A latches 0xffff * and start it. */ ciaa.talo = 0xff; ciaa.tahi = 0xff; ciaa.cra |= 1; while (ciaa.crb & 1) ; /* * stop timer A */ ciaa.cra &= ~1; /* * set timer A in one shot mode */ ciaa.cra = (ciaa.cra & 0xc0) | 0x08; } else if ((temp & 0xffff0000) == 0x10000) { temp &= 0xffff; /* * timer A is in one shot latch/load/start 1 full turn */ ciaa.talo = 0xff; ciaa.tahi = 0xff; while (ciaa.cra & 1) ; } if (temp < 1) return; /* * temp is now residual ammount, latch/load/start it. */ ciaa.talo = temp & 0xff; ciaa.tahi = temp >> 8; while (ciaa.cra & 1) ; } /* * Needs to be calibrated for use, its way off most of the time */ void DELAY(mic) int mic; { u_long n; short hpos; /* * this function uses HSync pulses as base units. The custom chips * display only deals with 31.6kHz/2 refresh, this gives us a * resolution of 1/15800 s, which is ~63us (add some fuzz so we really * wait awhile, even if using small timeouts) */ n = mic/63 + 2; do { hpos = custom.vhposr & 0xff00; while (hpos == (custom.vhposr & 0xff00)) ; } while (n--); } #if notyet /* implement this later. I'd suggest using both timers in CIA-A, they're not yet used. */ #include "clock.h" #if NCLOCK > 0 /* * /dev/clock: mappable high resolution timer. * * This code implements a 32-bit recycling counter (with a 4 usec period) * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped * RO into a user's address space to achieve low overhead (no system calls), * high-precision timing. * * Note that timer 3 is also used for the high precision profiling timer * (PROFTIMER code above). Care should be taken when both uses are * configured as only a token effort is made to avoid conflicting use. */ #include #include #include #include #include #include #include #include #include int clockon = 0; /* non-zero if high-res timer enabled */ #ifdef PROFTIMER int profprocs = 0; /* # of procs using profiling timer */ #endif #ifdef DEBUG int clockdebug = 0; #endif /*ARGSUSED*/ clockopen(dev, flags) dev_t dev; { #ifdef PROFTIMER #ifdef PROF /* * Kernel profiling enabled, give up. */ if (profiling) return(EBUSY); #endif /* * If any user processes are profiling, give up. */ if (profprocs) return(EBUSY); #endif if (!clockon) { startclock(); clockon++; } return(0); } /*ARGSUSED*/ clockclose(dev, flags) dev_t dev; { (void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */ stopclock(); clockon = 0; return(0); } /*ARGSUSED*/ clockioctl(dev, cmd, data, flag, p) dev_t dev; caddr_t data; struct proc *p; { int error = 0; switch (cmd) { case CLOCKMAP: error = clockmmap(dev, (caddr_t *)data, p); break; case CLOCKUNMAP: error = clockunmmap(dev, *(caddr_t *)data, p); break; case CLOCKGETRES: *(int *)data = CLK_RESOLUTION; break; default: error = EINVAL; break; } return(error); } /*ARGSUSED*/ clockmap(dev, off, prot) dev_t dev; { return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT); } clockmmap(dev, addrp, p) dev_t dev; caddr_t *addrp; struct proc *p; { int error; struct vnode vn; struct specinfo si; int flags; flags = MAP_FILE|MAP_SHARED; if (*addrp) flags |= MAP_FIXED; else *addrp = (caddr_t)0x1000000; /* XXX */ vn.v_type = VCHR; /* XXX */ vn.v_specinfo = &si; /* XXX */ vn.v_rdev = dev; /* XXX */ error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp, PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0); return(error); } clockunmmap(dev, addr, p) dev_t dev; caddr_t addr; struct proc *p; { int rv; if (addr == 0) return(EINVAL); /* XXX: how do we deal with this? */ rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE); return(rv == KERN_SUCCESS ? 0 : EINVAL); } startclock() { register struct clkreg *clk = (struct clkreg *)clkstd[0]; clk->clk_msb2 = -1; clk->clk_lsb2 = -1; clk->clk_msb3 = -1; clk->clk_lsb3 = -1; clk->clk_cr2 = CLK_CR3; clk->clk_cr3 = CLK_OENAB|CLK_8BIT; clk->clk_cr2 = CLK_CR1; clk->clk_cr1 = CLK_IENAB; } stopclock() { register struct clkreg *clk = (struct clkreg *)clkstd[0]; clk->clk_cr2 = CLK_CR3; clk->clk_cr3 = 0; clk->clk_cr2 = CLK_CR1; clk->clk_cr1 = CLK_IENAB; } #endif #endif #ifdef PROFTIMER /* * This code allows the amiga kernel to use one of the extra timers on * the clock chip for profiling, instead of the regular system timer. * The advantage of this is that the profiling timer can be turned up to * a higher interrupt rate, giving finer resolution timing. The profclock * routine is called from the lev6intr in locore, and is a specialized * routine that calls addupc. The overhead then is far less than if * hardclock/softclock was called. Further, the context switch code in * locore has been changed to turn the profile clock on/off when switching * into/out of a process that is profiling (startprofclock/stopprofclock). * This reduces the impact of the profiling clock on other users, and might * possibly increase the accuracy of the profiling. */ int profint = PRF_INTERVAL; /* Clock ticks between interrupts */ int profscale = 0; /* Scale factor from sys clock to prof clock */ char profon = 0; /* Is profiling clock on? */ /* profon values - do not change, locore.s assumes these values */ #define PRF_NONE 0x00 #define PRF_USER 0x01 #define PRF_KERNEL 0x80 initprofclock() { #if NCLOCK > 0 struct proc *p = curproc; /* XXX */ /* * If the high-res timer is running, force profiling off. * Unfortunately, this gets reflected back to the user not as * an error but as a lack of results. */ if (clockon) { p->p_stats->p_prof.pr_scale = 0; return; } /* * Keep track of the number of user processes that are profiling * by checking the scale value. * * XXX: this all assumes that the profiling code is well behaved; * i.e. profil() is called once per process with pcscale non-zero * to turn it on, and once with pcscale zero to turn it off. * Also assumes you don't do any forks or execs. Oh well, there * is always adb... */ if (p->p_stats->p_prof.pr_scale) profprocs++; else profprocs--; #endif /* * The profile interrupt interval must be an even divisor * of the CLK_INTERVAL so that scaling from a system clock * tick to a profile clock tick is possible using integer math. */ if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0) profint = CLK_INTERVAL; profscale = CLK_INTERVAL / profint; } startprofclock() { unsigned short interval; /* stop timer B */ ciab.crb = ciab.crb & 0xc0; /* load interval into registers. the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */ interval = profint - 1; /* order of setting is important ! */ ciab.tblo = interval & 0xff; ciab.tbhi = interval >> 8; /* enable interrupts for timer B */ ciab.icr = (1<<7) | (1<<1); /* start timer B in continuous shot mode */ ciab.crb = (ciab.crb & 0xc0) | 1; } stopprofclock() { /* stop timer B */ ciab.crb = ciab.crb & 0xc0; } #ifdef PROF /* * profclock() is expanded in line in lev6intr() unless profiling kernel. * Assumes it is called with clock interrupts blocked. */ profclock(pc, ps) caddr_t pc; int ps; { /* * Came from user mode. * If this process is being profiled record the tick. */ if (USERMODE(ps)) { if (p->p_stats.p_prof.pr_scale) addupc(pc, &curproc->p_stats.p_prof, 1); } /* * Came from kernel (supervisor) mode. * If we are profiling the kernel, record the tick. */ else if (profiling < 2) { register int s = pc - s_lowpc; if (s < s_textsize) kcount[s / (HISTFRACTION * sizeof (*kcount))]++; } /* * Kernel profiling was on but has been disabled. * Mark as no longer profiling kernel and if all profiling done, * disable the clock. */ if (profiling && (profon & PRF_KERNEL)) { profon &= ~PRF_KERNEL; if (profon == PRF_NONE) stopprofclock(); } } #endif #endif /* this is a hook set by a clock driver for the configured realtime clock, returning plain current unix-time */ long (*gettod) __P((void)); int (*settod) __P((long)); void *clockaddr; long a3gettod __P((void)); long a2gettod __P((void)); int a3settod __P((long)); int a2settod __P((long)); int rtcinit __P((void)); /* * Initialize the time of day register, based on the time base which is, e.g. * from a filesystem. */ inittodr(base) time_t base; { u_long timbuf = base; /* assume no battery clock exists */ if (gettod == NULL && rtcinit() == 0) printf("WARNING: no battery clock\n"); else timbuf = gettod(); if (timbuf < base) { printf("WARNING: bad date in battery clock\n"); timbuf = base; } /* Battery clock does not store usec's, so forget about it. */ time.tv_sec = timbuf; } resettodr() { if (settod && settod(time.tv_sec) == 1) return; printf("Cannot set battery backed clock\n"); } int rtcinit() { clockaddr = (void *)ztwomap(0xdc0000); if (is_a3000() || is_a4000()) { if (a3gettod() == 0) return(0); gettod = a3gettod; settod = a3settod; } else { if (a2gettod() == 0) return(0); gettod = a2gettod; settod = a2settod; } return(1); } static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; long a3gettod() { struct rtclock3000 *rt; int i, year, month, day, hour, min, sec; u_long tmp; rt = clockaddr; /* hold clock */ rt->control1 = A3CONTROL1_HOLD_CLOCK; /* read it */ sec = rt->second1 * 10 + rt->second2; min = rt->minute1 * 10 + rt->minute2; hour = rt->hour1 * 10 + rt->hour2; day = rt->day1 * 10 + rt->day2; month = rt->month1 * 10 + rt->month2; year = rt->year1 * 10 + rt->year2 + 1900; /* let it run again.. */ rt->control1 = A3CONTROL1_FREE_CLOCK; if (range_test(hour, 0, 23)) return(0); if (range_test(day, 1, 31)) return(0); if (range_test(month, 1, 12)) return(0); if (range_test(year, STARTOFTIME, 2000)) return(0); tmp = 0; for (i = STARTOFTIME; i < year; i++) tmp += days_in_year(i); if (leapyear(year) && month > FEBRUARY) tmp++; for (i = 1; i < month; i++) tmp += days_in_month(i); tmp += (day - 1); tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec; return(tmp); } int a3settod(tim) long tim; { register int i; register long hms, day; u_char sec1, sec2; u_char min1, min2; u_char hour1, hour2; u_char day1, day2; u_char mon1, mon2; u_char year1, year2; struct rtclock3000 *rt; rt = clockaddr; /* * there seem to be problems with the bitfield addressing * currently used.. */ return(0); #if not_yet if (rt) return 0; /* prepare values to be written to clock */ day = tim / SECDAY; hms = tim % SECDAY; hour2 = hms / 3600; hour1 = hour2 / 10; hour2 %= 10; min2 = (hms % 3600) / 60; min1 = min2 / 10; min2 %= 10; sec2 = (hms % 3600) % 60; sec1 = sec2 / 10; sec2 %= 10; /* Number of years in days */ for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++) day -= days_in_year(i); year1 = i / 10; year2 = i % 10; /* Number of months in days left */ if (leapyear(i)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; mon1 = i / 10; mon2 = i % 10; /* Days are what is left over (+1) from all that. */ day ++; day1 = day / 10; day2 = day % 10; rt->control1 = CONTROL1_HOLD_CLOCK; rt->second1 = sec1; rt->second2 = sec2; rt->minute1 = min1; rt->minute2 = min2; rt->hour1 = hour1; rt->hour2 = hour2; rt->day1 = day1; rt->day2 = day2; rt->month1 = mon1; rt->month2 = mon2; rt->year1 = year1; rt->year2 = year2; rt->control2 = CONTROL1_FREE_CLOCK; return 1; #endif } long a2gettod() { struct rtclock2000 *rt; int i, year, month, day, hour, min, sec; u_long tmp; rt = clockaddr; /* * hold clock */ rt->control1 |= A2CONTROL1_HOLD; while (rt->control1 & A2CONTROL1_BUSY) ; /* * read it */ sec = rt->second1 * 10 + rt->second2; min = rt->minute1 * 10 + rt->minute2; hour = (rt->hour1 & 3) * 10 + rt->hour2; day = rt->day1 * 10 + rt->day2; month = rt->month1 * 10 + rt->month2; year = rt->year1 * 10 + rt->year2 + 1900; if ((rt->control3 & A2CONTROL3_24HMODE) == 0) { if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12) hour = 0; else if ((rt->hour1 & A2HOUR1_PM) && hour != 12) hour += 12; } /* * release the clock */ rt->control1 &= ~A2CONTROL1_HOLD; if (range_test(hour, 0, 23)) return(0); if (range_test(day, 1, 31)) return(0); if (range_test(month, 1, 12)) return(0); if (range_test(year, STARTOFTIME, 2000)) return(0); tmp = 0; for (i = STARTOFTIME; i < year; i++) tmp += days_in_year(i); if (leapyear(year) && month > FEBRUARY) tmp++; for (i = 1; i < month; i++) tmp += days_in_month(i); tmp += (day - 1); tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec; return(tmp); } /* * there is some question as to whether this works * I guess */ int a2settod(tim) long tim; { int i; long hms, day; u_char sec1, sec2; u_char min1, min2; u_char hour1, hour2; u_char day1, day2; u_char mon1, mon2; u_char year1, year2; struct rtclock2000 *rt; rt = clockaddr; /* * there seem to be problems with the bitfield addressing * currently used.. * * XXX Check out the above where we (hour1 & 3) */ return(0); #if not_yet if (! rt) return 0; /* prepare values to be written to clock */ day = tim / SECDAY; hms = tim % SECDAY; hour2 = hms / 3600; hour1 = hour2 / 10; hour2 %= 10; min2 = (hms % 3600) / 60; min1 = min2 / 10; min2 %= 10; sec2 = (hms % 3600) % 60; sec1 = sec2 / 10; sec2 %= 10; /* Number of years in days */ for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++) day -= days_in_year(i); year1 = i / 10; year2 = i % 10; /* Number of months in days left */ if (leapyear(i)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; mon1 = i / 10; mon2 = i % 10; /* Days are what is left over (+1) from all that. */ day ++; day1 = day / 10; day2 = day % 10; /* * XXXX spin wait as with reading??? */ rt->control1 = A2CONTROL1_HOLD_CLOCK; rt->second1 = sec1; rt->second2 = sec2; rt->minute1 = min1; rt->minute2 = min2; rt->hour1 = hour1; rt->hour2 = hour2; rt->day1 = day1; rt->day2 = day2; rt->month1 = mon1; rt->month2 = mon2; rt->year1 = year1; rt->year2 = year2; rt->control2 = CONTROL1_FREE_CLOCK; return 1; #endif }