/* $NetBSD: ip_input.c,v 1.154 2002/06/30 22:40:34 thorpej Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Public Access Networks Corporation ("Panix"). It was developed under * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.154 2002/06/30 22:40:34 thorpej Exp $"); #include "opt_gateway.h" #include "opt_pfil_hooks.h" #include "opt_ipsec.h" #include "opt_mrouting.h" #include "opt_inet_csum.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* just for gif_ttl */ #include #include "gif.h" #include #include "gre.h" #ifdef MROUTING #include #endif #ifdef IPSEC #include #include #endif #ifndef IPFORWARDING #ifdef GATEWAY #define IPFORWARDING 1 /* forward IP packets not for us */ #else /* GATEWAY */ #define IPFORWARDING 0 /* don't forward IP packets not for us */ #endif /* GATEWAY */ #endif /* IPFORWARDING */ #ifndef IPSENDREDIRECTS #define IPSENDREDIRECTS 1 #endif #ifndef IPFORWSRCRT #define IPFORWSRCRT 1 /* forward source-routed packets */ #endif #ifndef IPALLOWSRCRT #define IPALLOWSRCRT 1 /* allow source-routed packets */ #endif #ifndef IPMTUDISC #define IPMTUDISC 1 #endif #ifndef IPMTUDISCTIMEOUT #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */ #endif /* * Note: DIRECTED_BROADCAST is handled this way so that previous * configuration using this option will Just Work. */ #ifndef IPDIRECTEDBCAST #ifdef DIRECTED_BROADCAST #define IPDIRECTEDBCAST 1 #else #define IPDIRECTEDBCAST 0 #endif /* DIRECTED_BROADCAST */ #endif /* IPDIRECTEDBCAST */ int ipforwarding = IPFORWARDING; int ipsendredirects = IPSENDREDIRECTS; int ip_defttl = IPDEFTTL; int ip_forwsrcrt = IPFORWSRCRT; int ip_directedbcast = IPDIRECTEDBCAST; int ip_allowsrcrt = IPALLOWSRCRT; int ip_mtudisc = IPMTUDISC; u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT; #ifdef DIAGNOSTIC int ipprintfs = 0; #endif struct rttimer_queue *ip_mtudisc_timeout_q = NULL; extern struct domain inetdomain; int ipqmaxlen = IFQ_MAXLEN; u_long in_ifaddrhash; /* size of hash table - 1 */ int in_ifaddrentries; /* total number of addrs */ struct in_ifaddrhead in_ifaddr; struct in_ifaddrhashhead *in_ifaddrhashtbl; struct ifqueue ipintrq; struct ipstat ipstat; u_int16_t ip_id; #ifdef PFIL_HOOKS struct pfil_head inet_pfil_hook; #endif struct ipqhead ipq; int ipq_locked; int ip_nfragpackets = 0; int ip_maxfragpackets = 200; static __inline int ipq_lock_try __P((void)); static __inline void ipq_unlock __P((void)); static __inline int ipq_lock_try() { int s; /* * Use splvm() -- we're blocking things that would cause * mbuf allocation. */ s = splvm(); if (ipq_locked) { splx(s); return (0); } ipq_locked = 1; splx(s); return (1); } static __inline void ipq_unlock() { int s; s = splvm(); ipq_locked = 0; splx(s); } #ifdef DIAGNOSTIC #define IPQ_LOCK() \ do { \ if (ipq_lock_try() == 0) { \ printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \ panic("ipq_lock"); \ } \ } while (0) #define IPQ_LOCK_CHECK() \ do { \ if (ipq_locked == 0) { \ printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \ panic("ipq lock check"); \ } \ } while (0) #else #define IPQ_LOCK() (void) ipq_lock_try() #define IPQ_LOCK_CHECK() /* nothing */ #endif #define IPQ_UNLOCK() ipq_unlock() struct pool ipqent_pool; #ifdef INET_CSUM_COUNTERS #include struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "inet", "hwcsum bad"); struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "inet", "hwcsum ok"); struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "inet", "swcsum"); #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ #else #define INET_CSUM_COUNTER_INCR(ev) /* nothing */ #endif /* INET_CSUM_COUNTERS */ /* * We need to save the IP options in case a protocol wants to respond * to an incoming packet over the same route if the packet got here * using IP source routing. This allows connection establishment and * maintenance when the remote end is on a network that is not known * to us. */ int ip_nhops = 0; static struct ip_srcrt { struct in_addr dst; /* final destination */ char nop; /* one NOP to align */ char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; } ip_srcrt; static void save_rte __P((u_char *, struct in_addr)); /* * IP initialization: fill in IP protocol switch table. * All protocols not implemented in kernel go to raw IP protocol handler. */ void ip_init() { struct protosw *pr; int i; pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL); pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == 0) panic("ip_init"); for (i = 0; i < IPPROTO_MAX; i++) ip_protox[i] = pr - inetsw; for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) ip_protox[pr->pr_protocol] = pr - inetsw; LIST_INIT(&ipq); ip_id = time.tv_sec & 0xffff; ipintrq.ifq_maxlen = ipqmaxlen; TAILQ_INIT(&in_ifaddr); in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR, M_WAITOK, &in_ifaddrhash); if (ip_mtudisc != 0) ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout); #ifdef GATEWAY ipflow_init(); #endif #ifdef PFIL_HOOKS /* Register our Packet Filter hook. */ inet_pfil_hook.ph_type = PFIL_TYPE_AF; inet_pfil_hook.ph_af = AF_INET; i = pfil_head_register(&inet_pfil_hook); if (i != 0) printf("ip_init: WARNING: unable to register pfil hook, " "error %d\n", i); #endif /* PFIL_HOOKS */ #ifdef INET_CSUM_COUNTERS evcnt_attach_static(&ip_hwcsum_bad); evcnt_attach_static(&ip_hwcsum_ok); evcnt_attach_static(&ip_swcsum); #endif /* INET_CSUM_COUNTERS */ } struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; struct route ipforward_rt; /* * IP software interrupt routine */ void ipintr() { int s; struct mbuf *m; while (1) { s = splnet(); IF_DEQUEUE(&ipintrq, m); splx(s); if (m == 0) return; ip_input(m); } } /* * Ip input routine. Checksum and byte swap header. If fragmented * try to reassemble. Process options. Pass to next level. */ void ip_input(struct mbuf *m) { struct ip *ip = NULL; struct ipq *fp; struct in_ifaddr *ia; struct ifaddr *ifa; struct ipqent *ipqe; int hlen = 0, mff, len; int downmatch; #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) panic("ipintr no HDR"); #endif #ifdef IPSEC /* * should the inner packet be considered authentic? * see comment in ah4_input(). */ if (m) { m->m_flags &= ~M_AUTHIPHDR; m->m_flags &= ~M_AUTHIPDGM; } #endif /* * If no IP addresses have been set yet but the interfaces * are receiving, can't do anything with incoming packets yet. */ if (TAILQ_FIRST(&in_ifaddr) == 0) goto bad; ipstat.ips_total++; /* * If the IP header is not aligned, slurp it up into a new * mbuf with space for link headers, in the event we forward * it. Otherwise, if it is aligned, make sure the entire * base IP header is in the first mbuf of the chain. */ if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { if ((m = m_copyup(m, sizeof(struct ip), (max_linkhdr + 3) & ~3)) == NULL) { /* XXXJRT new stat, please */ ipstat.ips_toosmall++; return; } } else if (__predict_false(m->m_len < sizeof (struct ip))) { if ((m = m_pullup(m, sizeof (struct ip))) == NULL) { ipstat.ips_toosmall++; return; } } ip = mtod(m, struct ip *); if (ip->ip_v != IPVERSION) { ipstat.ips_badvers++; goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ ipstat.ips_badhlen++; goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == 0) { ipstat.ips_badhlen++; return; } ip = mtod(m, struct ip *); } /* * RFC1122: packets with a multicast source address are * not allowed. */ if (IN_MULTICAST(ip->ip_src.s_addr)) { ipstat.ips_badaddr++; goto bad; } /* 127/8 must not appear on wire - RFC1122 */ if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { ipstat.ips_badaddr++; goto bad; } } switch (m->m_pkthdr.csum_flags & ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) | M_CSUM_IPv4_BAD)) { case M_CSUM_IPv4|M_CSUM_IPv4_BAD: INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad); goto badcsum; case M_CSUM_IPv4: /* Checksum was okay. */ INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok); break; default: /* Must compute it ourselves. */ INET_CSUM_COUNTER_INCR(&ip_swcsum); if (in_cksum(m, hlen) != 0) goto bad; break; } /* Retrieve the packet length. */ len = ntohs(ip->ip_len); /* * Check for additional length bogosity */ if (len < hlen) { ipstat.ips_badlen++; goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < len) { ipstat.ips_tooshort++; goto bad; } if (m->m_pkthdr.len > len) { if (m->m_len == m->m_pkthdr.len) { m->m_len = len; m->m_pkthdr.len = len; } else m_adj(m, len - m->m_pkthdr.len); } #ifdef IPSEC /* ipflow (IP fast forwarding) is not compatible with IPsec. */ m->m_flags &= ~M_CANFASTFWD; #else /* * Assume that we can create a fast-forward IP flow entry * based on this packet. */ m->m_flags |= M_CANFASTFWD; #endif #ifdef PFIL_HOOKS /* * Run through list of hooks for input packets. If there are any * filters which require that additional packets in the flow are * not fast-forwarded, they must clear the M_CANFASTFWD flag. * Note that filters must _never_ set this flag, as another filter * in the list may have previously cleared it. */ /* * let ipfilter look at packet on the wire, * not the decapsulated packet. */ #ifdef IPSEC if (!ipsec_getnhist(m)) #else if (1) #endif { if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN) != 0) return; if (m == NULL) return; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; } #endif /* PFIL_HOOKS */ #ifdef ALTQ /* XXX Temporary until ALTQ is changed to use a pfil hook */ if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) { /* packet dropped by traffic conditioner */ return; } #endif /* * Convert fields to host representation. */ NTOHS(ip->ip_len); NTOHS(ip->ip_off); /* * Process options and, if not destined for us, * ship it on. ip_dooptions returns 1 when an * error was detected (causing an icmp message * to be sent and the original packet to be freed). */ ip_nhops = 0; /* for source routed packets */ if (hlen > sizeof (struct ip) && ip_dooptions(m)) return; /* * Check our list of addresses, to see if the packet is for us. * * Traditional 4.4BSD did not consult IFF_UP at all. * The behavior here is to treat addresses on !IFF_UP interface * as not mine. */ downmatch = 0; LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) { if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) { if ((ia->ia_ifp->if_flags & IFF_UP) != 0) break; else downmatch++; } } if (ia != NULL) goto ours; if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) || in_hosteq(ip->ip_dst, ia->ia_netbroadcast) || /* * Look for all-0's host part (old broadcast addr), * either for subnet or net. */ ip->ip_dst.s_addr == ia->ia_subnet || ip->ip_dst.s_addr == ia->ia_net) goto ours; /* * An interface with IP address zero accepts * all packets that arrive on that interface. */ if (in_nullhost(ia->ia_addr.sin_addr)) goto ours; } } if (IN_MULTICAST(ip->ip_dst.s_addr)) { struct in_multi *inm; #ifdef MROUTING extern struct socket *ip_mrouter; if (M_READONLY(m)) { if ((m = m_pullup(m, hlen)) == 0) { ipstat.ips_toosmall++; return; } ip = mtod(m, struct ip *); } if (ip_mrouter) { /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. * * (The IP ident field is put in the same byte order * as expected when ip_mforward() is called from * ip_output().) */ if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) { ipstat.ips_cantforward++; m_freem(m); return; } /* * The process-level routing demon needs to receive * all multicast IGMP packets, whether or not this * host belongs to their destination groups. */ if (ip->ip_p == IPPROTO_IGMP) goto ours; ipstat.ips_forward++; } #endif /* * See if we belong to the destination multicast group on the * arrival interface. */ IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); if (inm == NULL) { ipstat.ips_cantforward++; m_freem(m); return; } goto ours; } if (ip->ip_dst.s_addr == INADDR_BROADCAST || in_nullhost(ip->ip_dst)) goto ours; /* * Not for us; forward if possible and desirable. */ if (ipforwarding == 0) { ipstat.ips_cantforward++; m_freem(m); } else { /* * If ip_dst matched any of my address on !IFF_UP interface, * and there's no IFF_UP interface that matches ip_dst, * send icmp unreach. Forwarding it will result in in-kernel * forwarding loop till TTL goes to 0. */ if (downmatch) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); ipstat.ips_cantforward++; return; } #ifdef IPSEC if (ipsec4_in_reject(m, NULL)) { ipsecstat.in_polvio++; goto bad; } #endif ip_forward(m, 0); } return; ours: /* * If offset or IP_MF are set, must reassemble. * Otherwise, nothing need be done. * (We could look in the reassembly queue to see * if the packet was previously fragmented, * but it's not worth the time; just let them time out.) */ if (ip->ip_off & ~(IP_DF|IP_RF)) { /* * Look for queue of fragments * of this datagram. */ IPQ_LOCK(); LIST_FOREACH(fp, &ipq, ipq_q) if (ip->ip_id == fp->ipq_id && in_hosteq(ip->ip_src, fp->ipq_src) && in_hosteq(ip->ip_dst, fp->ipq_dst) && ip->ip_p == fp->ipq_p) goto found; fp = 0; found: /* * Adjust ip_len to not reflect header, * set ipqe_mff if more fragments are expected, * convert offset of this to bytes. */ ip->ip_len -= hlen; mff = (ip->ip_off & IP_MF) != 0; if (mff) { /* * Make sure that fragments have a data length * that's a non-zero multiple of 8 bytes. */ if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { ipstat.ips_badfrags++; IPQ_UNLOCK(); goto bad; } } ip->ip_off <<= 3; /* * If datagram marked as having more fragments * or if this is not the first fragment, * attempt reassembly; if it succeeds, proceed. */ if (mff || ip->ip_off) { ipstat.ips_fragments++; ipqe = pool_get(&ipqent_pool, PR_NOWAIT); if (ipqe == NULL) { ipstat.ips_rcvmemdrop++; IPQ_UNLOCK(); goto bad; } ipqe->ipqe_mff = mff; ipqe->ipqe_m = m; ipqe->ipqe_ip = ip; m = ip_reass(ipqe, fp); if (m == 0) { IPQ_UNLOCK(); return; } ipstat.ips_reassembled++; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip->ip_len += hlen; } else if (fp) ip_freef(fp); IPQ_UNLOCK(); } #ifdef IPSEC /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && ipsec4_in_reject(m, NULL)) { ipsecstat.in_polvio++; goto bad; } #endif /* * Switch out to protocol's input routine. */ #if IFA_STATS if (ia && ip) ia->ia_ifa.ifa_data.ifad_inbytes += ip->ip_len; #endif ipstat.ips_delivered++; { int off = hlen, nh = ip->ip_p; (*inetsw[ip_protox[nh]].pr_input)(m, off, nh); return; } bad: m_freem(m); return; badcsum: ipstat.ips_badsum++; m_freem(m); } /* * Take incoming datagram fragment and try to * reassemble it into whole datagram. If a chain for * reassembly of this datagram already exists, then it * is given as fp; otherwise have to make a chain. */ struct mbuf * ip_reass(ipqe, fp) struct ipqent *ipqe; struct ipq *fp; { struct mbuf *m = ipqe->ipqe_m; struct ipqent *nq, *p, *q; struct ip *ip; struct mbuf *t; int hlen = ipqe->ipqe_ip->ip_hl << 2; int i, next; IPQ_LOCK_CHECK(); /* * Presence of header sizes in mbufs * would confuse code below. */ m->m_data += hlen; m->m_len -= hlen; /* * If first fragment to arrive, create a reassembly queue. */ if (fp == 0) { /* * Enforce upper bound on number of fragmented packets * for which we attempt reassembly; * If maxfrag is 0, never accept fragments. * If maxfrag is -1, accept all fragments without limitation. */ if (ip_maxfragpackets < 0) ; else if (ip_nfragpackets >= ip_maxfragpackets) goto dropfrag; ip_nfragpackets++; MALLOC(fp, struct ipq *, sizeof (struct ipq), M_FTABLE, M_NOWAIT); if (fp == NULL) goto dropfrag; LIST_INSERT_HEAD(&ipq, fp, ipq_q); fp->ipq_ttl = IPFRAGTTL; fp->ipq_p = ipqe->ipqe_ip->ip_p; fp->ipq_id = ipqe->ipqe_ip->ip_id; TAILQ_INIT(&fp->ipq_fragq); fp->ipq_src = ipqe->ipqe_ip->ip_src; fp->ipq_dst = ipqe->ipqe_ip->ip_dst; p = NULL; goto insert; } /* * Find a segment which begins after this one does. */ for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; p = q, q = TAILQ_NEXT(q, ipqe_q)) if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off) break; /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us. */ if (p != NULL) { i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len - ipqe->ipqe_ip->ip_off; if (i > 0) { if (i >= ipqe->ipqe_ip->ip_len) goto dropfrag; m_adj(ipqe->ipqe_m, i); ipqe->ipqe_ip->ip_off += i; ipqe->ipqe_ip->ip_len -= i; } } /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len > q->ipqe_ip->ip_off; q = nq) { i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) - q->ipqe_ip->ip_off; if (i < q->ipqe_ip->ip_len) { q->ipqe_ip->ip_len -= i; q->ipqe_ip->ip_off += i; m_adj(q->ipqe_m, i); break; } nq = TAILQ_NEXT(q, ipqe_q); m_freem(q->ipqe_m); TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q); pool_put(&ipqent_pool, q); } insert: /* * Stick new segment in its place; * check for complete reassembly. */ if (p == NULL) { TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q); } else { TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q); } next = 0; for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; p = q, q = TAILQ_NEXT(q, ipqe_q)) { if (q->ipqe_ip->ip_off != next) return (0); next += q->ipqe_ip->ip_len; } if (p->ipqe_mff) return (0); /* * Reassembly is complete. Check for a bogus message size and * concatenate fragments. */ q = TAILQ_FIRST(&fp->ipq_fragq); ip = q->ipqe_ip; if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) { ipstat.ips_toolong++; ip_freef(fp); return (0); } m = q->ipqe_m; t = m->m_next; m->m_next = 0; m_cat(m, t); nq = TAILQ_NEXT(q, ipqe_q); pool_put(&ipqent_pool, q); for (q = nq; q != NULL; q = nq) { t = q->ipqe_m; nq = TAILQ_NEXT(q, ipqe_q); pool_put(&ipqent_pool, q); m_cat(m, t); } /* * Create header for new ip packet by * modifying header of first packet; * dequeue and discard fragment reassembly header. * Make header visible. */ ip->ip_len = next; ip->ip_src = fp->ipq_src; ip->ip_dst = fp->ipq_dst; LIST_REMOVE(fp, ipq_q); FREE(fp, M_FTABLE); ip_nfragpackets--; m->m_len += (ip->ip_hl << 2); m->m_data -= (ip->ip_hl << 2); /* some debugging cruft by sklower, below, will go away soon */ if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ int plen = 0; for (t = m; t; t = t->m_next) plen += t->m_len; m->m_pkthdr.len = plen; } return (m); dropfrag: ipstat.ips_fragdropped++; m_freem(m); pool_put(&ipqent_pool, ipqe); return (0); } /* * Free a fragment reassembly header and all * associated datagrams. */ void ip_freef(fp) struct ipq *fp; { struct ipqent *q, *p; IPQ_LOCK_CHECK(); for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) { p = TAILQ_NEXT(q, ipqe_q); m_freem(q->ipqe_m); TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q); pool_put(&ipqent_pool, q); } LIST_REMOVE(fp, ipq_q); FREE(fp, M_FTABLE); ip_nfragpackets--; } /* * IP timer processing; * if a timer expires on a reassembly * queue, discard it. */ void ip_slowtimo() { struct ipq *fp, *nfp; int s = splsoftnet(); IPQ_LOCK(); for (fp = LIST_FIRST(&ipq); fp != NULL; fp = nfp) { nfp = LIST_NEXT(fp, ipq_q); if (--fp->ipq_ttl == 0) { ipstat.ips_fragtimeout++; ip_freef(fp); } } /* * If we are over the maximum number of fragments * (due to the limit being lowered), drain off * enough to get down to the new limit. */ if (ip_maxfragpackets < 0) ; else { while (ip_nfragpackets > ip_maxfragpackets && LIST_FIRST(&ipq)) ip_freef(LIST_FIRST(&ipq)); } IPQ_UNLOCK(); #ifdef GATEWAY ipflow_slowtimo(); #endif splx(s); } /* * Drain off all datagram fragments. */ void ip_drain() { /* * We may be called from a device's interrupt context. If * the ipq is already busy, just bail out now. */ if (ipq_lock_try() == 0) return; while (LIST_FIRST(&ipq) != NULL) { ipstat.ips_fragdropped++; ip_freef(LIST_FIRST(&ipq)); } IPQ_UNLOCK(); } /* * Do option processing on a datagram, * possibly discarding it if bad options are encountered, * or forwarding it if source-routed. * Returns 1 if packet has been forwarded/freed, * 0 if the packet should be processed further. */ int ip_dooptions(m) struct mbuf *m; { struct ip *ip = mtod(m, struct ip *); u_char *cp, *cp0; struct ip_timestamp *ipt; struct in_ifaddr *ia; int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; struct in_addr dst; n_time ntime; dst = ip->ip_dst; cp = (u_char *)(ip + 1); cnt = (ip->ip_hl << 2) - sizeof (struct ip); for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[IPOPT_OPTVAL]; if (opt == IPOPT_EOL) break; if (opt == IPOPT_NOP) optlen = 1; else { if (cnt < IPOPT_OLEN + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } optlen = cp[IPOPT_OLEN]; if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } } switch (opt) { default: break; /* * Source routing with record. * Find interface with current destination address. * If none on this machine then drop if strictly routed, * or do nothing if loosely routed. * Record interface address and bring up next address * component. If strictly routed make sure next * address is on directly accessible net. */ case IPOPT_LSRR: case IPOPT_SSRR: if (ip_allowsrcrt == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_NET_PROHIB; goto bad; } if (optlen < IPOPT_OFFSET + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { code = &cp[IPOPT_OFFSET] - (u_char *)ip; goto bad; } ipaddr.sin_addr = ip->ip_dst; ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))); if (ia == 0) { if (opt == IPOPT_SSRR) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } /* * Loose routing, and not at next destination * yet; nothing to do except forward. */ break; } off--; /* 0 origin */ if ((off + sizeof(struct in_addr)) > optlen) { /* * End of source route. Should be for us. */ save_rte(cp, ip->ip_src); break; } /* * locate outgoing interface */ bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr, sizeof(ipaddr.sin_addr)); if (opt == IPOPT_SSRR) ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))); else ia = ip_rtaddr(ipaddr.sin_addr); if (ia == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } ip->ip_dst = ipaddr.sin_addr; bcopy((caddr_t)&ia->ia_addr.sin_addr, (caddr_t)(cp + off), sizeof(struct in_addr)); cp[IPOPT_OFFSET] += sizeof(struct in_addr); /* * Let ip_intr's mcast routing check handle mcast pkts */ forward = !IN_MULTICAST(ip->ip_dst.s_addr); break; case IPOPT_RR: if (optlen < IPOPT_OFFSET + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { code = &cp[IPOPT_OFFSET] - (u_char *)ip; goto bad; } /* * If no space remains, ignore. */ off--; /* 0 origin */ if ((off + sizeof(struct in_addr)) > optlen) break; bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr, sizeof(ipaddr.sin_addr)); /* * locate outgoing interface; if we're the destination, * use the incoming interface (should be same). */ if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))) == NULL && (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) { type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; goto bad; } bcopy((caddr_t)&ia->ia_addr.sin_addr, (caddr_t)(cp + off), sizeof(struct in_addr)); cp[IPOPT_OFFSET] += sizeof(struct in_addr); break; case IPOPT_TS: code = cp - (u_char *)ip; ipt = (struct ip_timestamp *)cp; if (ipt->ipt_len < 4 || ipt->ipt_len > 40) { code = (u_char *)&ipt->ipt_len - (u_char *)ip; goto bad; } if (ipt->ipt_ptr < 5) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) { if (++ipt->ipt_oflw == 0) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } break; } cp0 = (cp + ipt->ipt_ptr - 1); switch (ipt->ipt_flg) { case IPOPT_TS_TSONLY: break; case IPOPT_TS_TSANDADDR: if (ipt->ipt_ptr - 1 + sizeof(n_time) + sizeof(struct in_addr) > ipt->ipt_len) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } ipaddr.sin_addr = dst; ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr), m->m_pkthdr.rcvif)); if (ia == 0) continue; bcopy(&ia->ia_addr.sin_addr, cp0, sizeof(struct in_addr)); ipt->ipt_ptr += sizeof(struct in_addr); break; case IPOPT_TS_PRESPEC: if (ipt->ipt_ptr - 1 + sizeof(n_time) + sizeof(struct in_addr) > ipt->ipt_len) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } bcopy(cp0, &ipaddr.sin_addr, sizeof(struct in_addr)); if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))) == NULL) continue; ipt->ipt_ptr += sizeof(struct in_addr); break; default: /* XXX can't take &ipt->ipt_flg */ code = (u_char *)&ipt->ipt_ptr - (u_char *)ip + 1; goto bad; } ntime = iptime(); cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */ bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1, sizeof(n_time)); ipt->ipt_ptr += sizeof(n_time); } } if (forward) { if (ip_forwsrcrt == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } ip_forward(m, 1); return (1); } return (0); bad: icmp_error(m, type, code, 0, 0); ipstat.ips_badoptions++; return (1); } /* * Given address of next destination (final or next hop), * return internet address info of interface to be used to get there. */ struct in_ifaddr * ip_rtaddr(dst) struct in_addr dst; { struct sockaddr_in *sin; sin = satosin(&ipforward_rt.ro_dst); if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) { if (ipforward_rt.ro_rt) { RTFREE(ipforward_rt.ro_rt); ipforward_rt.ro_rt = 0; } sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = dst; rtalloc(&ipforward_rt); } if (ipforward_rt.ro_rt == 0) return ((struct in_ifaddr *)0); return (ifatoia(ipforward_rt.ro_rt->rt_ifa)); } /* * Save incoming source route for use in replies, * to be picked up later by ip_srcroute if the receiver is interested. */ void save_rte(option, dst) u_char *option; struct in_addr dst; { unsigned olen; olen = option[IPOPT_OLEN]; #ifdef DIAGNOSTIC if (ipprintfs) printf("save_rte: olen %d\n", olen); #endif /* 0 */ if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) return; bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen); ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); ip_srcrt.dst = dst; } /* * Retrieve incoming source route for use in replies, * in the same form used by setsockopt. * The first hop is placed before the options, will be removed later. */ struct mbuf * ip_srcroute() { struct in_addr *p, *q; struct mbuf *m; if (ip_nhops == 0) return ((struct mbuf *)0); m = m_get(M_DONTWAIT, MT_SOOPTS); if (m == 0) return ((struct mbuf *)0); #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + OPTSIZ; #ifdef DIAGNOSTIC if (ipprintfs) printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); #endif /* * First save first hop for return route */ p = &ip_srcrt.route[ip_nhops - 1]; *(mtod(m, struct in_addr *)) = *p--; #ifdef DIAGNOSTIC if (ipprintfs) printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr)); #endif /* * Copy option fields and padding (nop) to mbuf. */ ip_srcrt.nop = IPOPT_NOP; ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; bcopy((caddr_t)&ip_srcrt.nop, mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ); q = (struct in_addr *)(mtod(m, caddr_t) + sizeof(struct in_addr) + OPTSIZ); #undef OPTSIZ /* * Record return path as an IP source route, * reversing the path (pointers are now aligned). */ while (p >= ip_srcrt.route) { #ifdef DIAGNOSTIC if (ipprintfs) printf(" %x", ntohl(q->s_addr)); #endif *q++ = *p--; } /* * Last hop goes to final destination. */ *q = ip_srcrt.dst; #ifdef DIAGNOSTIC if (ipprintfs) printf(" %x\n", ntohl(q->s_addr)); #endif return (m); } /* * Strip out IP options, at higher * level protocol in the kernel. * Second argument is buffer to which options * will be moved, and return value is their length. * XXX should be deleted; last arg currently ignored. */ void ip_stripoptions(m, mopt) struct mbuf *m; struct mbuf *mopt; { int i; struct ip *ip = mtod(m, struct ip *); caddr_t opts; int olen; olen = (ip->ip_hl << 2) - sizeof (struct ip); opts = (caddr_t)(ip + 1); i = m->m_len - (sizeof (struct ip) + olen); bcopy(opts + olen, opts, (unsigned)i); m->m_len -= olen; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len -= olen; ip->ip_len -= olen; ip->ip_hl = sizeof (struct ip) >> 2; } const int inetctlerrmap[PRC_NCMDS] = { 0, 0, 0, 0, 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, EMSGSIZE, EHOSTUNREACH, 0, 0, 0, 0, 0, 0, ENOPROTOOPT }; /* * Forward a packet. If some error occurs return the sender * an icmp packet. Note we can't always generate a meaningful * icmp message because icmp doesn't have a large enough repertoire * of codes and types. * * If not forwarding, just drop the packet. This could be confusing * if ipforwarding was zero but some routing protocol was advancing * us as a gateway to somewhere. However, we must let the routing * protocol deal with that. * * The srcrt parameter indicates whether the packet is being forwarded * via a source route. */ void ip_forward(m, srcrt) struct mbuf *m; int srcrt; { struct ip *ip = mtod(m, struct ip *); struct sockaddr_in *sin; struct rtentry *rt; int error, type = 0, code = 0; struct mbuf *mcopy; n_long dest; struct ifnet *destifp; #ifdef IPSEC struct ifnet dummyifp; #endif /* * Clear any in-bound checksum flags for this packet. */ m->m_pkthdr.csum_flags = 0; dest = 0; #ifdef DIAGNOSTIC if (ipprintfs) printf("forward: src %2.2x dst %2.2x ttl %x\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ip->ip_ttl); #endif if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { ipstat.ips_cantforward++; m_freem(m); return; } if (ip->ip_ttl <= IPTTLDEC) { icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0); return; } ip->ip_ttl -= IPTTLDEC; sin = satosin(&ipforward_rt.ro_dst); if ((rt = ipforward_rt.ro_rt) == 0 || !in_hosteq(ip->ip_dst, sin->sin_addr)) { if (ipforward_rt.ro_rt) { RTFREE(ipforward_rt.ro_rt); ipforward_rt.ro_rt = 0; } sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr = ip->ip_dst; rtalloc(&ipforward_rt); if (ipforward_rt.ro_rt == 0) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); return; } rt = ipforward_rt.ro_rt; } /* * Save at most 68 bytes of the packet in case * we need to generate an ICMP message to the src. * Pullup to avoid sharing mbuf cluster between m and mcopy. */ mcopy = m_copym(m, 0, imin((int)ip->ip_len, 68), M_DONTWAIT); if (mcopy) mcopy = m_pullup(mcopy, ip->ip_hl << 2); /* * If forwarding packet using same interface that it came in on, * perhaps should send a redirect to sender to shortcut a hop. * Only send redirect if source is sending directly to us, * and if packet was not source routed (or has any options). * Also, don't send redirect if forwarding using a default route * or a route modified by a redirect. */ if (rt->rt_ifp == m->m_pkthdr.rcvif && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && !in_nullhost(satosin(rt_key(rt))->sin_addr) && ipsendredirects && !srcrt) { if (rt->rt_ifa && (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) == ifatoia(rt->rt_ifa)->ia_subnet) { if (rt->rt_flags & RTF_GATEWAY) dest = satosin(rt->rt_gateway)->sin_addr.s_addr; else dest = ip->ip_dst.s_addr; /* * Router requirements says to only send host * redirects. */ type = ICMP_REDIRECT; code = ICMP_REDIRECT_HOST; #ifdef DIAGNOSTIC if (ipprintfs) printf("redirect (%d) to %x\n", code, (u_int32_t)dest); #endif } } #ifdef IPSEC /* Don't lookup socket in forwarding case */ (void)ipsec_setsocket(m, NULL); #endif error = ip_output(m, (struct mbuf *)0, &ipforward_rt, (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0); if (error) ipstat.ips_cantforward++; else { ipstat.ips_forward++; if (type) ipstat.ips_redirectsent++; else { if (mcopy) { #ifdef GATEWAY if (mcopy->m_flags & M_CANFASTFWD) ipflow_create(&ipforward_rt, mcopy); #endif m_freem(mcopy); } return; } } if (mcopy == NULL) return; destifp = NULL; switch (error) { case 0: /* forwarded, but need redirect */ /* type, code set above */ break; case ENETUNREACH: /* shouldn't happen, checked above */ case EHOSTUNREACH: case ENETDOWN: case EHOSTDOWN: default: type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; break; case EMSGSIZE: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; #ifndef IPSEC if (ipforward_rt.ro_rt) destifp = ipforward_rt.ro_rt->rt_ifp; #else /* * If the packet is routed over IPsec tunnel, tell the * originator the tunnel MTU. * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz * XXX quickhack!!! */ if (ipforward_rt.ro_rt) { struct secpolicy *sp; int ipsecerror; size_t ipsechdr; struct route *ro; sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND, IP_FORWARDING, &ipsecerror); if (sp == NULL) destifp = ipforward_rt.ro_rt->rt_ifp; else { /* count IPsec header size */ ipsechdr = ipsec4_hdrsiz(mcopy, IPSEC_DIR_OUTBOUND, NULL); /* * find the correct route for outer IPv4 * header, compute tunnel MTU. * * XXX BUG ALERT * The "dummyifp" code relies upon the fact * that icmp_error() touches only ifp->if_mtu. */ /*XXX*/ destifp = NULL; if (sp->req != NULL && sp->req->sav != NULL && sp->req->sav->sah != NULL) { ro = &sp->req->sav->sah->sa_route; if (ro->ro_rt && ro->ro_rt->rt_ifp) { dummyifp.if_mtu = ro->ro_rt->rt_rmx.rmx_mtu ? ro->ro_rt->rt_rmx.rmx_mtu : ro->ro_rt->rt_ifp->if_mtu; dummyifp.if_mtu -= ipsechdr; destifp = &dummyifp; } } key_freesp(sp); } } #endif /*IPSEC*/ ipstat.ips_cantfrag++; break; case ENOBUFS: #if 1 /* * a router should not generate ICMP_SOURCEQUENCH as * required in RFC1812 Requirements for IP Version 4 Routers. * source quench could be a big problem under DoS attacks, * or if the underlying interface is rate-limited. */ if (mcopy) m_freem(mcopy); return; #else type = ICMP_SOURCEQUENCH; code = 0; break; #endif } icmp_error(mcopy, type, code, dest, destifp); } void ip_savecontrol(inp, mp, ip, m) struct inpcb *inp; struct mbuf **mp; struct ip *ip; struct mbuf *m; { if (inp->inp_socket->so_options & SO_TIMESTAMP) { struct timeval tv; microtime(&tv); *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVDSTADDR) { *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef notyet /* * XXX * Moving these out of udp_input() made them even more broken * than they already were. * - fenner@parc.xerox.com */ /* options were tossed already */ if (inp->inp_flags & INP_RECVOPTS) { *mp = sbcreatecontrol((caddr_t) opts_deleted_above, sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } /* ip_srcroute doesn't do what we want here, need to fix */ if (inp->inp_flags & INP_RECVRETOPTS) { *mp = sbcreatecontrol((caddr_t) ip_srcroute(), sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVIF) { struct sockaddr_dl sdl; sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); sdl.sdl_family = AF_LINK; sdl.sdl_index = m->m_pkthdr.rcvif ? m->m_pkthdr.rcvif->if_index : 0; sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0; *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } } int ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; { extern int subnetsarelocal, hostzeroisbroadcast; int error, old; /* All sysctl names at this level are terminal. */ if (namelen != 1) return (ENOTDIR); switch (name[0]) { case IPCTL_FORWARDING: return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding)); case IPCTL_SENDREDIRECTS: return (sysctl_int(oldp, oldlenp, newp, newlen, &ipsendredirects)); case IPCTL_DEFTTL: return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl)); #ifdef notyet case IPCTL_DEFMTU: return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu)); #endif case IPCTL_FORWSRCRT: /* Don't allow this to change in a secure environment. */ if (securelevel > 0) return (sysctl_rdint(oldp, oldlenp, newp, ip_forwsrcrt)); else return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_forwsrcrt)); case IPCTL_DIRECTEDBCAST: return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_directedbcast)); case IPCTL_ALLOWSRCRT: return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_allowsrcrt)); case IPCTL_SUBNETSARELOCAL: return (sysctl_int(oldp, oldlenp, newp, newlen, &subnetsarelocal)); case IPCTL_MTUDISC: error = sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtudisc); if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) { ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout); } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) { rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE); ip_mtudisc_timeout_q = NULL; } return error; case IPCTL_ANONPORTMIN: old = anonportmin; error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin); if (anonportmin >= anonportmax || anonportmin < 0 || anonportmin > 65535 #ifndef IPNOPRIVPORTS || anonportmin < IPPORT_RESERVED #endif ) { anonportmin = old; return (EINVAL); } return (error); case IPCTL_ANONPORTMAX: old = anonportmax; error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax); if (anonportmin >= anonportmax || anonportmax < 0 || anonportmax > 65535 #ifndef IPNOPRIVPORTS || anonportmax < IPPORT_RESERVED #endif ) { anonportmax = old; return (EINVAL); } return (error); case IPCTL_MTUDISCTIMEOUT: error = sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtudisc_timeout); if (ip_mtudisc_timeout_q != NULL) rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout); return (error); #ifdef GATEWAY case IPCTL_MAXFLOWS: { int s; error = sysctl_int(oldp, oldlenp, newp, newlen, &ip_maxflows); s = splsoftnet(); ipflow_reap(0); splx(s); return (error); } #endif case IPCTL_HOSTZEROBROADCAST: return (sysctl_int(oldp, oldlenp, newp, newlen, &hostzeroisbroadcast)); #if NGIF > 0 case IPCTL_GIF_TTL: return(sysctl_int(oldp, oldlenp, newp, newlen, &ip_gif_ttl)); #endif #if NGRE > 0 case IPCTL_GRE_TTL: return(sysctl_int(oldp, oldlenp, newp, newlen, &ip_gre_ttl)); #endif #ifndef IPNOPRIVPORTS case IPCTL_LOWPORTMIN: old = lowportmin; error = sysctl_int(oldp, oldlenp, newp, newlen, &lowportmin); if (lowportmin >= lowportmax || lowportmin > IPPORT_RESERVEDMAX || lowportmin < IPPORT_RESERVEDMIN ) { lowportmin = old; return (EINVAL); } return (error); case IPCTL_LOWPORTMAX: old = lowportmax; error = sysctl_int(oldp, oldlenp, newp, newlen, &lowportmax); if (lowportmin >= lowportmax || lowportmax > IPPORT_RESERVEDMAX || lowportmax < IPPORT_RESERVEDMIN ) { lowportmax = old; return (EINVAL); } return (error); #endif case IPCTL_MAXFRAGPACKETS: return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_maxfragpackets)); default: return (EOPNOTSUPP); } /* NOTREACHED */ }