/* $NetBSD: if_bnx.c,v 1.28 2009/09/05 14:09:55 tsutsui Exp $ */ /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */ /*- * Copyright (c) 2006 Broadcom Corporation * David Christensen . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Broadcom Corporation nor the name of its contributors * may be used to endorse or promote products derived from this software * without specific prior written consent. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #if 0 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $"); #endif __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.28 2009/09/05 14:09:55 tsutsui Exp $"); /* * The following controllers are supported by this driver: * BCM5706C A2, A3 * BCM5708C B1, B2 * * The following controllers are not supported by this driver: * (These are not "Production" versions of the controller.) * * BCM5706C A0, A1 * BCM5706S A0, A1, A2, A3 * BCM5708C A0, B0 * BCM5708S A0, B0, B1 */ #include #include #include /****************************************************************************/ /* BNX Driver Version */ /****************************************************************************/ const char bnx_driver_version[] = "v0.9.6"; /****************************************************************************/ /* BNX Debug Options */ /****************************************************************************/ #ifdef BNX_DEBUG u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND; /* 0 = Never */ /* 1 = 1 in 2,147,483,648 */ /* 256 = 1 in 8,388,608 */ /* 2048 = 1 in 1,048,576 */ /* 65536 = 1 in 32,768 */ /* 1048576 = 1 in 2,048 */ /* 268435456 = 1 in 8 */ /* 536870912 = 1 in 4 */ /* 1073741824 = 1 in 2 */ /* Controls how often the l2_fhdr frame error check will fail. */ int bnx_debug_l2fhdr_status_check = 0; /* Controls how often the unexpected attention check will fail. */ int bnx_debug_unexpected_attention = 0; /* Controls how often to simulate an mbuf allocation failure. */ int bnx_debug_mbuf_allocation_failure = 0; /* Controls how often to simulate a DMA mapping failure. */ int bnx_debug_dma_map_addr_failure = 0; /* Controls how often to simulate a bootcode failure. */ int bnx_debug_bootcode_running_failure = 0; #endif /****************************************************************************/ /* PCI Device ID Table */ /* */ /* Used by bnx_probe() to identify the devices supported by this driver. */ /****************************************************************************/ static const struct bnx_product { pci_vendor_id_t bp_vendor; pci_product_id_t bp_product; pci_vendor_id_t bp_subvendor; pci_product_id_t bp_subproduct; const char *bp_name; } bnx_devices[] = { #ifdef PCI_SUBPRODUCT_HP_NC370T { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T, "HP NC370T Multifunction Gigabit Server Adapter" }, #endif #ifdef PCI_SUBPRODUCT_HP_NC370i { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i, "HP NC370i Multifunction Gigabit Server Adapter" }, #endif { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 0, 0, "Broadcom NetXtreme II BCM5706 1000Base-T" }, #ifdef PCI_SUBPRODUCT_HP_NC370F { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S, PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F, "HP NC370F Multifunction Gigabit Server Adapter" }, #endif { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S, 0, 0, "Broadcom NetXtreme II BCM5706 1000Base-SX" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708, 0, 0, "Broadcom NetXtreme II BCM5708 1000Base-T" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S, 0, 0, "Broadcom NetXtreme II BCM5708 1000Base-SX" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709, 0, 0, "Broadcom NetXtreme II BCM5709 1000Base-SX" }, }; /****************************************************************************/ /* Supported Flash NVRAM device data. */ /****************************************************************************/ static struct flash_spec flash_table[] = { /* Slow EEPROM */ {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - slow"}, /* Expansion entry 0001 */ {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0001"}, /* Saifun SA25F010 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, "Non-buffered flash (128kB)"}, /* Saifun SA25F020 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, "Non-buffered flash (256kB)"}, /* Expansion entry 0100 */ {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0100"}, /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, /* Entry 0110: ST M45PE20 (non-buffered flash)*/ {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, /* Saifun SA25F005 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, "Non-buffered flash (64kB)"}, /* Fast EEPROM */ {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - fast"}, /* Expansion entry 1001 */ {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1001"}, /* Expansion entry 1010 */ {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1010"}, /* ATMEL AT45DB011B (buffered flash) */ {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, "Buffered flash (128kB)"}, /* Expansion entry 1100 */ {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1100"}, /* Expansion entry 1101 */ {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1101"}, /* Ateml Expansion entry 1110 */ {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, 0, "Entry 1110 (Atmel)"}, /* ATMEL AT45DB021B (buffered flash) */ {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, "Buffered flash (256kB)"}, }; /****************************************************************************/ /* OpenBSD device entry points. */ /****************************************************************************/ static int bnx_probe(device_t, cfdata_t, void *); void bnx_attach(device_t, device_t, void *); int bnx_detach(device_t, int); /****************************************************************************/ /* BNX Debug Data Structure Dump Routines */ /****************************************************************************/ #ifdef BNX_DEBUG void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *); void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int); void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int); void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *); void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *); void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *); void bnx_dump_tx_chain(struct bnx_softc *, int, int); void bnx_dump_rx_chain(struct bnx_softc *, int, int); void bnx_dump_status_block(struct bnx_softc *); void bnx_dump_stats_block(struct bnx_softc *); void bnx_dump_driver_state(struct bnx_softc *); void bnx_dump_hw_state(struct bnx_softc *); void bnx_breakpoint(struct bnx_softc *); #endif /****************************************************************************/ /* BNX Register/Memory Access Routines */ /****************************************************************************/ u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t); void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t); void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t); int bnx_miibus_read_reg(device_t, int, int); void bnx_miibus_write_reg(device_t, int, int, int); void bnx_miibus_statchg(device_t); /****************************************************************************/ /* BNX NVRAM Access Routines */ /****************************************************************************/ int bnx_acquire_nvram_lock(struct bnx_softc *); int bnx_release_nvram_lock(struct bnx_softc *); void bnx_enable_nvram_access(struct bnx_softc *); void bnx_disable_nvram_access(struct bnx_softc *); int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *, u_int32_t); int bnx_init_nvram(struct bnx_softc *); int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int); int bnx_nvram_test(struct bnx_softc *); #ifdef BNX_NVRAM_WRITE_SUPPORT int bnx_enable_nvram_write(struct bnx_softc *); void bnx_disable_nvram_write(struct bnx_softc *); int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t); int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *, u_int32_t); int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int); #endif /****************************************************************************/ /* */ /****************************************************************************/ int bnx_dma_alloc(struct bnx_softc *); void bnx_dma_free(struct bnx_softc *); void bnx_release_resources(struct bnx_softc *); /****************************************************************************/ /* BNX Firmware Synchronization and Load */ /****************************************************************************/ int bnx_fw_sync(struct bnx_softc *, u_int32_t); void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t, u_int32_t); void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *, struct fw_info *); void bnx_init_cpus(struct bnx_softc *); void bnx_stop(struct ifnet *, int); int bnx_reset(struct bnx_softc *, u_int32_t); int bnx_chipinit(struct bnx_softc *); int bnx_blockinit(struct bnx_softc *); static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *, u_int16_t *, u_int32_t *); int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *); int bnx_init_tx_chain(struct bnx_softc *); int bnx_init_rx_chain(struct bnx_softc *); void bnx_free_rx_chain(struct bnx_softc *); void bnx_free_tx_chain(struct bnx_softc *); int bnx_tx_encap(struct bnx_softc *, struct mbuf **); void bnx_start(struct ifnet *); int bnx_ioctl(struct ifnet *, u_long, void *); void bnx_watchdog(struct ifnet *); int bnx_init(struct ifnet *); void bnx_init_context(struct bnx_softc *); void bnx_get_mac_addr(struct bnx_softc *); void bnx_set_mac_addr(struct bnx_softc *); void bnx_phy_intr(struct bnx_softc *); void bnx_rx_intr(struct bnx_softc *); void bnx_tx_intr(struct bnx_softc *); void bnx_disable_intr(struct bnx_softc *); void bnx_enable_intr(struct bnx_softc *); int bnx_intr(void *); void bnx_set_rx_mode(struct bnx_softc *); void bnx_stats_update(struct bnx_softc *); void bnx_tick(void *); /****************************************************************************/ /* OpenBSD device dispatch table. */ /****************************************************************************/ CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc), bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); /****************************************************************************/ /* Device probe function. */ /* */ /* Compares the device to the driver's list of supported devices and */ /* reports back to the OS whether this is the right driver for the device. */ /* */ /* Returns: */ /* BUS_PROBE_DEFAULT on success, positive value on failure. */ /****************************************************************************/ static const struct bnx_product * bnx_lookup(const struct pci_attach_args *pa) { int i; pcireg_t subid; for (i = 0; i < __arraycount(bnx_devices); i++) { if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor || PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product) continue; if (!bnx_devices[i].bp_subvendor) return &bnx_devices[i]; subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor && PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct) return &bnx_devices[i]; } return NULL; } static int bnx_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (bnx_lookup(pa) != NULL) return (1); return (0); } /****************************************************************************/ /* Device attach function. */ /* */ /* Allocates device resources, performs secondary chip identification, */ /* resets and initializes the hardware, and initializes driver instance */ /* variables. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ void bnx_attach(device_t parent, device_t self, void *aux) { const struct bnx_product *bp; struct bnx_softc *sc = device_private(self); struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; u_int32_t command; struct ifnet *ifp; u_int32_t val; int mii_flags = MIIF_FORCEANEG; pcireg_t memtype; bp = bnx_lookup(pa); if (bp == NULL) panic("unknown device"); sc->bnx_dev = self; aprint_naive("\n"); aprint_normal(": %s\n", bp->bp_name); sc->bnx_pa = *pa; /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(command & PCI_COMMAND_MEM_ENABLE)) { aprint_error_dev(sc->bnx_dev, "failed to enable memory mapping!\n"); return; } memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle, NULL, &sc->bnx_size) == 0) break; default: aprint_error_dev(sc->bnx_dev, "can't find mem space\n"); return; } if (pci_intr_map(pa, &ih)) { aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n"); goto bnx_attach_fail; } intrstr = pci_intr_string(pc, ih); /* * Configure byte swap and enable indirect register access. * Rely on CPU to do target byte swapping on big endian systems. * Access to registers outside of PCI configurtion space are not * valid until this is done. */ pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); /* Save ASIC revsion info. */ sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID); /* Weed out any non-production controller revisions. */ switch(BNX_CHIP_ID(sc)) { case BNX_CHIP_ID_5706_A0: case BNX_CHIP_ID_5706_A1: case BNX_CHIP_ID_5708_A0: case BNX_CHIP_ID_5708_B0: aprint_error_dev(sc->bnx_dev, "unsupported controller revision (%c%d)!\n", ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A', PCI_REVISION(pa->pa_class) & 0x0f); goto bnx_attach_fail; } /* * Find the base address for shared memory access. * Newer versions of bootcode use a signature and offset * while older versions use a fixed address. */ val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE); if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG) sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0); else sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE; DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); /* Set initial device and PHY flags */ sc->bnx_flags = 0; sc->bnx_phy_flags = 0; /* Get PCI bus information (speed and type). */ val = REG_RD(sc, BNX_PCICFG_MISC_STATUS); if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) { u_int32_t clkreg; sc->bnx_flags |= BNX_PCIX_FLAG; clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS); clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; switch (clkreg) { case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: sc->bus_speed_mhz = 133; break; case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: sc->bus_speed_mhz = 100; break; case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: sc->bus_speed_mhz = 66; break; case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: sc->bus_speed_mhz = 50; break; case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: sc->bus_speed_mhz = 33; break; } } else if (val & BNX_PCICFG_MISC_STATUS_M66EN) sc->bus_speed_mhz = 66; else sc->bus_speed_mhz = 33; if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET) sc->bnx_flags |= BNX_PCI_32BIT_FLAG; /* Reset the controller. */ if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) goto bnx_attach_fail; /* Initialize the controller. */ if (bnx_chipinit(sc)) { aprint_error_dev(sc->bnx_dev, "Controller initialization failed!\n"); goto bnx_attach_fail; } /* Perform NVRAM test. */ if (bnx_nvram_test(sc)) { aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n"); goto bnx_attach_fail; } /* Fetch the permanent Ethernet MAC address. */ bnx_get_mac_addr(sc); aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n", ether_sprintf(sc->eaddr)); /* * Trip points control how many BDs * should be ready before generating an * interrupt while ticks control how long * a BD can sit in the chain before * generating an interrupt. Set the default * values for the RX and TX rings. */ #ifdef BNX_DEBUG /* Force more frequent interrupts. */ sc->bnx_tx_quick_cons_trip_int = 1; sc->bnx_tx_quick_cons_trip = 1; sc->bnx_tx_ticks_int = 0; sc->bnx_tx_ticks = 0; sc->bnx_rx_quick_cons_trip_int = 1; sc->bnx_rx_quick_cons_trip = 1; sc->bnx_rx_ticks_int = 0; sc->bnx_rx_ticks = 0; #else sc->bnx_tx_quick_cons_trip_int = 20; sc->bnx_tx_quick_cons_trip = 20; sc->bnx_tx_ticks_int = 80; sc->bnx_tx_ticks = 80; sc->bnx_rx_quick_cons_trip_int = 6; sc->bnx_rx_quick_cons_trip = 6; sc->bnx_rx_ticks_int = 18; sc->bnx_rx_ticks = 18; #endif /* Update statistics once every second. */ sc->bnx_stats_ticks = 1000000 & 0xffff00; /* * The copper based NetXtreme II controllers * that support 2.5Gb operation (currently * 5708S) use a PHY at address 2, otherwise * the PHY is present at address 1. */ sc->bnx_phy_addr = 1; if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) { sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; sc->bnx_flags |= BNX_NO_WOL_FLAG; if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { sc->bnx_phy_addr = 2; val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG); if (val & BNX_SHARED_HW_CFG_PHY_2_5G) sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG; } } /* Allocate DMA memory resources. */ sc->bnx_dmatag = pa->pa_dmat; if (bnx_dma_alloc(sc)) { aprint_error_dev(sc->bnx_dev, "DMA resource allocation failed!\n"); goto bnx_attach_fail; } /* Initialize the ifnet interface. */ ifp = &sc->bnx_ec.ec_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bnx_ioctl; ifp->if_stop = bnx_stop; ifp->if_start = bnx_start; ifp->if_init = bnx_init; ifp->if_timer = 0; ifp->if_watchdog = bnx_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1); IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; /* Hookup IRQ last. */ sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc); if (sc->bnx_intrhand == NULL) { aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); goto bnx_attach_fail; } sc->bnx_mii.mii_ifp = ifp; sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; sc->bnx_mii.mii_statchg = bnx_miibus_statchg; sc->bnx_ec.ec_mii = &sc->bnx_mii; ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange, ether_mediastatus); if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) mii_flags |= MIIF_HAVEFIBER; mii_attach(self, &sc->bnx_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, mii_flags); if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) { aprint_error_dev(self, "no PHY found!\n"); ifmedia_add(&sc->bnx_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else { ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER|IFM_AUTO); } /* Attach to the Ethernet interface list. */ if_attach(ifp); ether_ifattach(ifp,sc->eaddr); callout_init(&sc->bnx_timeout, 0); if (pmf_device_register(self, NULL, NULL)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); /* Print some important debugging info. */ DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); goto bnx_attach_exit; bnx_attach_fail: bnx_release_resources(sc); bnx_attach_exit: DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); } /****************************************************************************/ /* Device detach function. */ /* */ /* Stops the controller, resets the controller, and releases resources. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_detach(device_t dev, int flags) { int s; struct bnx_softc *sc; struct ifnet *ifp; sc = device_private(dev); ifp = &sc->bnx_ec.ec_if; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Stop and reset the controller. */ s = splnet(); if (ifp->if_flags & IFF_RUNNING) bnx_stop(ifp, 1); splx(s); pmf_device_deregister(dev); callout_destroy(&sc->bnx_timeout); ether_ifdetach(ifp); if_detach(ifp); mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY); /* Release all remaining resources. */ bnx_release_resources(sc); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return(0); } /****************************************************************************/ /* Indirect register read. */ /* */ /* Reads NetXtreme II registers using an index/data register pair in PCI */ /* configuration space. Using this mechanism avoids issues with posted */ /* reads but is much slower than memory-mapped I/O. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ u_int32_t bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset) { struct pci_attach_args *pa = &(sc->bnx_pa); pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, offset); #ifdef BNX_DEBUG { u_int32_t val; val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, " "val = 0x%08X\n", __func__, offset, val); return (val); } #else return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); #endif } /****************************************************************************/ /* Indirect register write. */ /* */ /* Writes NetXtreme II registers using an index/data register pair in PCI */ /* configuration space. Using this mechanism avoids issues with posted */ /* writes but is muchh slower than memory-mapped I/O. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val) { struct pci_attach_args *pa = &(sc->bnx_pa); DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", __func__, offset, val); pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, offset); pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val); } /****************************************************************************/ /* Context memory write. */ /* */ /* The NetXtreme II controller uses context memory to track connection */ /* information for L2 and higher network protocols. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset, u_int32_t val) { DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " "val = 0x%08X\n", __func__, cid_addr, offset, val); offset += cid_addr; REG_WR(sc, BNX_CTX_DATA_ADR, offset); REG_WR(sc, BNX_CTX_DATA, val); } /****************************************************************************/ /* PHY register read. */ /* */ /* Implements register reads on the MII bus. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ int bnx_miibus_read_reg(device_t dev, int phy, int reg) { struct bnx_softc *sc = device_private(dev); u_int32_t val; int i; /* Make sure we are accessing the correct PHY address. */ if (phy != sc->bnx_phy_addr) { DBPRINT(sc, BNX_VERBOSE, "Invalid PHY address %d for PHY read!\n", phy); return(0); } if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { val = REG_RD(sc, BNX_EMAC_MDIO_MODE); val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BNX_EMAC_MDIO_MODE, val); REG_RD(sc, BNX_EMAC_MDIO_MODE); DELAY(40); } val = BNX_MIPHY(phy) | BNX_MIREG(reg) | BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT | BNX_EMAC_MDIO_COMM_START_BUSY; REG_WR(sc, BNX_EMAC_MDIO_COMM, val); for (i = 0; i < BNX_PHY_TIMEOUT; i++) { DELAY(10); val = REG_RD(sc, BNX_EMAC_MDIO_COMM); if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); val = REG_RD(sc, BNX_EMAC_MDIO_COMM); val &= BNX_EMAC_MDIO_COMM_DATA; break; } } if (val & BNX_EMAC_MDIO_COMM_START_BUSY) { BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, " "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); val = 0x0; } else val = REG_RD(sc, BNX_EMAC_MDIO_COMM); DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { val = REG_RD(sc, BNX_EMAC_MDIO_MODE); val |= BNX_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BNX_EMAC_MDIO_MODE, val); REG_RD(sc, BNX_EMAC_MDIO_MODE); DELAY(40); } return (val & 0xffff); } /****************************************************************************/ /* PHY register write. */ /* */ /* Implements register writes on the MII bus. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ void bnx_miibus_write_reg(device_t dev, int phy, int reg, int val) { struct bnx_softc *sc = device_private(dev); u_int32_t val1; int i; /* Make sure we are accessing the correct PHY address. */ if (phy != sc->bnx_phy_addr) { DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n", phy); return; } DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, " "val = 0x%04X\n", __func__, phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); REG_RD(sc, BNX_EMAC_MDIO_MODE); DELAY(40); } val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val | BNX_EMAC_MDIO_COMM_COMMAND_WRITE | BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT; REG_WR(sc, BNX_EMAC_MDIO_COMM, val1); for (i = 0; i < BNX_PHY_TIMEOUT; i++) { DELAY(10); val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM); if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) { BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__, __LINE__); } if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); REG_RD(sc, BNX_EMAC_MDIO_MODE); DELAY(40); } } /****************************************************************************/ /* MII bus status change. */ /* */ /* Called by the MII bus driver when the PHY establishes link to set the */ /* MAC interface registers. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_miibus_statchg(device_t dev) { struct bnx_softc *sc = device_private(dev); struct mii_data *mii = &sc->bnx_mii; int val; val = REG_RD(sc, BNX_EMAC_MODE); val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX | BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK | BNX_EMAC_MODE_25G); /* Set MII or GMII interface based on the speed * negotiated by the PHY. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n"); val |= BNX_EMAC_MODE_PORT_MII_10; break; } /* FALLTHROUGH */ case IFM_100_TX: DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n"); val |= BNX_EMAC_MODE_PORT_MII; break; case IFM_2500_SX: DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n"); val |= BNX_EMAC_MODE_25G; /* FALLTHROUGH */ case IFM_1000_T: case IFM_1000_SX: DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n"); val |= BNX_EMAC_MODE_PORT_GMII; break; default: val |= BNX_EMAC_MODE_PORT_GMII; break; } /* Set half or full duplex based on the duplicity * negotiated by the PHY. */ if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); val |= BNX_EMAC_MODE_HALF_DUPLEX; } else { DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); } REG_WR(sc, BNX_EMAC_MODE, val); } /****************************************************************************/ /* Acquire NVRAM lock. */ /* */ /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ /* for use by the driver. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_acquire_nvram_lock(struct bnx_softc *sc) { u_int32_t val; int j; DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); /* Request access to the flash interface. */ REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(sc, BNX_NVM_SW_ARB); if (val & BNX_NVM_SW_ARB_ARB_ARB2) break; DELAY(5); } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); return (EBUSY); } return (0); } /****************************************************************************/ /* Release NVRAM lock. */ /* */ /* When the caller is finished accessing NVRAM the lock must be released. */ /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ /* for use by the driver. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_release_nvram_lock(struct bnx_softc *sc) { int j; u_int32_t val; DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); /* Relinquish nvram interface. */ REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(sc, BNX_NVM_SW_ARB); if (!(val & BNX_NVM_SW_ARB_ARB_ARB2)) break; DELAY(5); } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n"); return (EBUSY); } return (0); } #ifdef BNX_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Enable NVRAM write access. */ /* */ /* Before writing to NVRAM the caller must enable NVRAM writes. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_enable_nvram_write(struct bnx_softc *sc) { u_int32_t val; DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); val = REG_RD(sc, BNX_MISC_CFG); REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI); if (!sc->bnx_flash_info->buffered) { int j; REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { DELAY(5); val = REG_RD(sc, BNX_NVM_COMMAND); if (val & BNX_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); return (EBUSY); } } return (0); } /****************************************************************************/ /* Disable NVRAM write access. */ /* */ /* When the caller is finished writing to NVRAM write access must be */ /* disabled. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_disable_nvram_write(struct bnx_softc *sc) { u_int32_t val; DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); val = REG_RD(sc, BNX_MISC_CFG); REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN); } #endif /****************************************************************************/ /* Enable NVRAM access. */ /* */ /* Before accessing NVRAM for read or write operations the caller must */ /* enabled NVRAM access. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_enable_nvram_access(struct bnx_softc *sc) { u_int32_t val; DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); /* Enable both bits, even on read. */ REG_WR(sc, BNX_NVM_ACCESS_ENABLE, val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN); } /****************************************************************************/ /* Disable NVRAM access. */ /* */ /* When the caller is finished accessing NVRAM access must be disabled. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_disable_nvram_access(struct bnx_softc *sc) { u_int32_t val; DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); /* Disable both bits, even after read. */ REG_WR(sc, BNX_NVM_ACCESS_ENABLE, val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN)); } #ifdef BNX_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Erase NVRAM page before writing. */ /* */ /* Non-buffered flash parts require that a page be erased before it is */ /* written. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset) { u_int32_t cmd; int j; /* Buffered flash doesn't require an erase. */ if (sc->bnx_flash_info->buffered) return (0); DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); /* Build an erase command. */ cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR | BNX_NVM_COMMAND_DOIT; /* * Clear the DONE bit separately, set the NVRAM adress to erase, * and issue the erase command. */ REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BNX_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { u_int32_t val; DELAY(5); val = REG_RD(sc, BNX_NVM_COMMAND); if (val & BNX_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); return (EBUSY); } return (0); } #endif /* BNX_NVRAM_WRITE_SUPPORT */ /****************************************************************************/ /* Read a dword (32 bits) from NVRAM. */ /* */ /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ /* */ /* Returns: */ /* 0 on success and the 32 bit value read, positive value on failure. */ /****************************************************************************/ int bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_val, u_int32_t cmd_flags) { u_int32_t cmd; int i, rc = 0; /* Build the command word. */ cmd = BNX_NVM_COMMAND_DOIT | cmd_flags; /* Calculate the offset for buffered flash. */ if (sc->bnx_flash_info->buffered) offset = ((offset / sc->bnx_flash_info->page_size) << sc->bnx_flash_info->page_bits) + (offset % sc->bnx_flash_info->page_size); /* * Clear the DONE bit separately, set the address to read, * and issue the read. */ REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BNX_NVM_COMMAND, cmd); /* Wait for completion. */ for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { u_int32_t val; DELAY(5); val = REG_RD(sc, BNX_NVM_COMMAND); if (val & BNX_NVM_COMMAND_DONE) { val = REG_RD(sc, BNX_NVM_READ); val = bnx_be32toh(val); memcpy(ret_val, &val, 4); break; } } /* Check for errors. */ if (i >= NVRAM_TIMEOUT_COUNT) { BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at " "offset 0x%08X!\n", __FILE__, __LINE__, offset); rc = EBUSY; } return(rc); } #ifdef BNX_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Write a dword (32 bits) to NVRAM. */ /* */ /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ /* enabled NVRAM write access. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val, u_int32_t cmd_flags) { u_int32_t cmd, val32; int j; /* Build the command word. */ cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags; /* Calculate the offset for buffered flash. */ if (sc->bnx_flash_info->buffered) offset = ((offset / sc->bnx_flash_info->page_size) << sc->bnx_flash_info->page_bits) + (offset % sc->bnx_flash_info->page_size); /* * Clear the DONE bit separately, convert NVRAM data to big-endian, * set the NVRAM address to write, and issue the write command */ REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); memcpy(&val32, val, 4); val32 = htobe32(val32); REG_WR(sc, BNX_NVM_WRITE, val32); REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BNX_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { DELAY(5); if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) { BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at " "offset 0x%08X\n", __FILE__, __LINE__, offset); return (EBUSY); } return (0); } #endif /* BNX_NVRAM_WRITE_SUPPORT */ /****************************************************************************/ /* Initialize NVRAM access. */ /* */ /* Identify the NVRAM device in use and prepare the NVRAM interface to */ /* access that device. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_init_nvram(struct bnx_softc *sc) { u_int32_t val; int j, entry_count, rc; struct flash_spec *flash; DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Determine the selected interface. */ val = REG_RD(sc, BNX_NVM_CFG1); entry_count = sizeof(flash_table) / sizeof(struct flash_spec); rc = 0; /* * Flash reconfiguration is required to support additional * NVRAM devices not directly supported in hardware. * Check if the flash interface was reconfigured * by the bootcode. */ if (val & 0x40000000) { /* Flash interface reconfigured by bootcode. */ DBPRINT(sc,BNX_INFO_LOAD, "bnx_init_nvram(): Flash WAS reconfigured.\n"); for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { if ((val & FLASH_BACKUP_STRAP_MASK) == (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { sc->bnx_flash_info = flash; break; } } } else { /* Flash interface not yet reconfigured. */ u_int32_t mask; DBPRINT(sc,BNX_INFO_LOAD, "bnx_init_nvram(): Flash was NOT reconfigured.\n"); if (val & (1 << 23)) mask = FLASH_BACKUP_STRAP_MASK; else mask = FLASH_STRAP_MASK; /* Look for the matching NVRAM device configuration data. */ for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { /* Check if the dev matches any of the known devices. */ if ((val & mask) == (flash->strapping & mask)) { /* Found a device match. */ sc->bnx_flash_info = flash; /* Request access to the flash interface. */ if ((rc = bnx_acquire_nvram_lock(sc)) != 0) return (rc); /* Reconfigure the flash interface. */ bnx_enable_nvram_access(sc); REG_WR(sc, BNX_NVM_CFG1, flash->config1); REG_WR(sc, BNX_NVM_CFG2, flash->config2); REG_WR(sc, BNX_NVM_CFG3, flash->config3); REG_WR(sc, BNX_NVM_WRITE1, flash->write1); bnx_disable_nvram_access(sc); bnx_release_nvram_lock(sc); break; } } } /* Check if a matching device was found. */ if (j == entry_count) { sc->bnx_flash_info = NULL; BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n", __FILE__, __LINE__); rc = ENODEV; } /* Write the flash config data to the shared memory interface. */ val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2); val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK; if (val) sc->bnx_flash_size = val; else sc->bnx_flash_size = sc->bnx_flash_info->total_size; DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = " "0x%08X\n", sc->bnx_flash_info->total_size); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return (rc); } /****************************************************************************/ /* Read an arbitrary range of data from NVRAM. */ /* */ /* Prepares the NVRAM interface for access and reads the requested data */ /* into the supplied buffer. */ /* */ /* Returns: */ /* 0 on success and the data read, positive value on failure. */ /****************************************************************************/ int bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf, int buf_size) { int rc = 0; u_int32_t cmd_flags, offset32, len32, extra; if (buf_size == 0) return (0); /* Request access to the flash interface. */ if ((rc = bnx_acquire_nvram_lock(sc)) != 0) return (rc); /* Enable access to flash interface */ bnx_enable_nvram_access(sc); len32 = buf_size; offset32 = offset; extra = 0; cmd_flags = 0; if (offset32 & 3) { u_int8_t buf[4]; u_int32_t pre_len; offset32 &= ~3; pre_len = 4 - (offset & 3); if (pre_len >= len32) { pre_len = len32; cmd_flags = BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; } else cmd_flags = BNX_NVM_COMMAND_FIRST; rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); if (rc) return (rc); memcpy(ret_buf, buf + (offset & 3), pre_len); offset32 += 4; ret_buf += pre_len; len32 -= pre_len; } if (len32 & 3) { extra = 4 - (len32 & 3); len32 = (len32 + 4) & ~3; } if (len32 == 4) { u_int8_t buf[4]; if (cmd_flags) cmd_flags = BNX_NVM_COMMAND_LAST; else cmd_flags = BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } else if (len32 > 0) { u_int8_t buf[4]; /* Read the first word. */ if (cmd_flags) cmd_flags = 0; else cmd_flags = BNX_NVM_COMMAND_FIRST; rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; while (len32 > 4 && rc == 0) { rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; } if (rc) return (rc); cmd_flags = BNX_NVM_COMMAND_LAST; rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } /* Disable access to flash interface and release the lock. */ bnx_disable_nvram_access(sc); bnx_release_nvram_lock(sc); return (rc); } #ifdef BNX_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Write an arbitrary range of data from NVRAM. */ /* */ /* Prepares the NVRAM interface for write access and writes the requested */ /* data from the supplied buffer. The caller is responsible for */ /* calculating any appropriate CRCs. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf, int buf_size) { u_int32_t written, offset32, len32; u_int8_t *buf, start[4], end[4]; int rc = 0; int align_start, align_end; buf = data_buf; offset32 = offset; len32 = buf_size; align_start = align_end = 0; if ((align_start = (offset32 & 3))) { offset32 &= ~3; len32 += align_start; if ((rc = bnx_nvram_read(sc, offset32, start, 4))) return (rc); } if (len32 & 3) { if ((len32 > 4) || !align_start) { align_end = 4 - (len32 & 3); len32 += align_end; if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4, end, 4))) { return (rc); } } } if (align_start || align_end) { buf = malloc(len32, M_DEVBUF, M_NOWAIT); if (buf == 0) return (ENOMEM); if (align_start) memcpy(buf, start, 4); if (align_end) memcpy(buf + len32 - 4, end, 4); memcpy(buf + align_start, data_buf, buf_size); } written = 0; while ((written < len32) && (rc == 0)) { u_int32_t page_start, page_end, data_start, data_end; u_int32_t addr, cmd_flags; int i; u_int8_t flash_buffer[264]; /* Find the page_start addr */ page_start = offset32 + written; page_start -= (page_start % sc->bnx_flash_info->page_size); /* Find the page_end addr */ page_end = page_start + sc->bnx_flash_info->page_size; /* Find the data_start addr */ data_start = (written == 0) ? offset32 : page_start; /* Find the data_end addr */ data_end = (page_end > offset32 + len32) ? (offset32 + len32) : page_end; /* Request access to the flash interface. */ if ((rc = bnx_acquire_nvram_lock(sc)) != 0) goto nvram_write_end; /* Enable access to flash interface */ bnx_enable_nvram_access(sc); cmd_flags = BNX_NVM_COMMAND_FIRST; if (sc->bnx_flash_info->buffered == 0) { int j; /* Read the whole page into the buffer * (non-buffer flash only) */ for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) { if (j == (sc->bnx_flash_info->page_size - 4)) cmd_flags |= BNX_NVM_COMMAND_LAST; rc = bnx_nvram_read_dword(sc, page_start + j, &flash_buffer[j], cmd_flags); if (rc) goto nvram_write_end; cmd_flags = 0; } } /* Enable writes to flash interface (unlock write-protect) */ if ((rc = bnx_enable_nvram_write(sc)) != 0) goto nvram_write_end; /* Erase the page */ if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0) goto nvram_write_end; /* Re-enable the write again for the actual write */ bnx_enable_nvram_write(sc); /* Loop to write back the buffer data from page_start to * data_start */ i = 0; if (sc->bnx_flash_info->buffered == 0) { for (addr = page_start; addr < data_start; addr += 4, i += 4) { rc = bnx_nvram_write_dword(sc, addr, &flash_buffer[i], cmd_flags); if (rc != 0) goto nvram_write_end; cmd_flags = 0; } } /* Loop to write the new data from data_start to data_end */ for (addr = data_start; addr < data_end; addr += 4, i++) { if ((addr == page_end - 4) || ((sc->bnx_flash_info->buffered) && (addr == data_end - 4))) { cmd_flags |= BNX_NVM_COMMAND_LAST; } rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags); if (rc != 0) goto nvram_write_end; cmd_flags = 0; buf += 4; } /* Loop to write back the buffer data from data_end * to page_end */ if (sc->bnx_flash_info->buffered == 0) { for (addr = data_end; addr < page_end; addr += 4, i += 4) { if (addr == page_end-4) cmd_flags = BNX_NVM_COMMAND_LAST; rc = bnx_nvram_write_dword(sc, addr, &flash_buffer[i], cmd_flags); if (rc != 0) goto nvram_write_end; cmd_flags = 0; } } /* Disable writes to flash interface (lock write-protect) */ bnx_disable_nvram_write(sc); /* Disable access to flash interface */ bnx_disable_nvram_access(sc); bnx_release_nvram_lock(sc); /* Increment written */ written += data_end - data_start; } nvram_write_end: if (align_start || align_end) free(buf, M_DEVBUF); return (rc); } #endif /* BNX_NVRAM_WRITE_SUPPORT */ /****************************************************************************/ /* Verifies that NVRAM is accessible and contains valid data. */ /* */ /* Reads the configuration data from NVRAM and verifies that the CRC is */ /* correct. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ int bnx_nvram_test(struct bnx_softc *sc) { u_int32_t buf[BNX_NVRAM_SIZE / 4]; u_int8_t *data = (u_int8_t *) buf; int rc = 0; u_int32_t magic, csum; /* * Check that the device NVRAM is valid by reading * the magic value at offset 0. */ if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0) goto bnx_nvram_test_done; magic = bnx_be32toh(buf[0]); if (magic != BNX_NVRAM_MAGIC) { rc = ENODEV; BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! " "Expected: 0x%08X, Found: 0x%08X\n", __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic); goto bnx_nvram_test_done; } /* * Verify that the device NVRAM includes valid * configuration data. */ if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0) goto bnx_nvram_test_done; csum = ether_crc32_le(data, 0x100); if (csum != BNX_CRC32_RESIDUAL) { rc = ENODEV; BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information " "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); goto bnx_nvram_test_done; } csum = ether_crc32_le(data + 0x100, 0x100); if (csum != BNX_CRC32_RESIDUAL) { BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration " "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); rc = ENODEV; } bnx_nvram_test_done: return (rc); } /****************************************************************************/ /* Free any DMA memory owned by the driver. */ /* */ /* Scans through each data structre that requires DMA memory and frees */ /* the memory if allocated. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_dma_free(struct bnx_softc *sc) { int i; DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Destroy the status block. */ if (sc->status_block != NULL && sc->status_map != NULL) { bus_dmamap_unload(sc->bnx_dmatag, sc->status_map); bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block, BNX_STATUS_BLK_SZ); bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg); bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map); sc->status_block = NULL; sc->status_map = NULL; } /* Destroy the statistics block. */ if (sc->stats_block != NULL && sc->stats_map != NULL) { bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map); bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block, BNX_STATS_BLK_SZ); bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg); bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map); sc->stats_block = NULL; sc->stats_map = NULL; } /* Free, unmap and destroy all TX buffer descriptor chain pages. */ for (i = 0; i < TX_PAGES; i++ ) { if (sc->tx_bd_chain[i] != NULL && sc->tx_bd_chain_map[i] != NULL) { bus_dmamap_unload(sc->bnx_dmatag, sc->tx_bd_chain_map[i]); bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], sc->tx_bd_chain_rseg[i]); bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_bd_chain_map[i]); sc->tx_bd_chain[i] = NULL; sc->tx_bd_chain_map[i] = NULL; } } /* Unload and destroy the TX mbuf maps. */ for (i = 0; i < TOTAL_TX_BD; i++) { if (sc->tx_mbuf_map[i] != NULL) { bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]); bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]); } } /* Free, unmap and destroy all RX buffer descriptor chain pages. */ for (i = 0; i < RX_PAGES; i++ ) { if (sc->rx_bd_chain[i] != NULL && sc->rx_bd_chain_map[i] != NULL) { bus_dmamap_unload(sc->bnx_dmatag, sc->rx_bd_chain_map[i]); bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], sc->rx_bd_chain_rseg[i]); bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_bd_chain_map[i]); sc->rx_bd_chain[i] = NULL; sc->rx_bd_chain_map[i] = NULL; } } /* Unload and destroy the RX mbuf maps. */ for (i = 0; i < TOTAL_RX_BD; i++) { if (sc->rx_mbuf_map[i] != NULL) { bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]); bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]); } } DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); } /****************************************************************************/ /* Allocate any DMA memory needed by the driver. */ /* */ /* Allocates DMA memory needed for the various global structures needed by */ /* hardware. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_dma_alloc(struct bnx_softc *sc) { int i, rc = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* * Allocate DMA memory for the status block, map the memory into DMA * space, and fetch the physical address of the block. */ if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1, BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) { aprint_error_dev(sc->bnx_dev, "Could not create status block DMA map!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1, &sc->status_rseg, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not allocate status block DMA memory!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg, BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not map status block DMA memory!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map, sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not load status block DMA memory!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr; memset(sc->status_block, 0, BNX_STATUS_BLK_SZ); /* DRC - Fix for 64 bit addresses. */ DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n", (u_int32_t) sc->status_block_paddr); /* * Allocate DMA memory for the statistics block, map the memory into * DMA space, and fetch the physical address of the block. */ if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1, BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) { aprint_error_dev(sc->bnx_dev, "Could not create stats block DMA map!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ, BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1, &sc->stats_rseg, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not allocate stats block DMA memory!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg, BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not map stats block DMA memory!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map, sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not load status block DMA memory!\n"); rc = ENOMEM; goto bnx_dma_alloc_exit; } sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr; memset(sc->stats_block, 0, BNX_STATS_BLK_SZ); /* DRC - Fix for 64 bit address. */ DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n", (u_int32_t) sc->stats_block_paddr); /* * Allocate DMA memory for the TX buffer descriptor chain, * and fetch the physical address of the block. */ for (i = 0; i < TX_PAGES; i++) { if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1, BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, &sc->tx_bd_chain_map[i])) { aprint_error_dev(sc->bnx_dev, "Could not create Tx desc %d DMA map!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1, &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not allocate TX desc %d DMA memory!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ, (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not map TX desc %d DMA memory!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i], (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not load TX desc %d DMA memory!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } sc->tx_bd_chain_paddr[i] = sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr; /* DRC - Fix for 64 bit systems. */ DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", i, (u_int32_t) sc->tx_bd_chain_paddr[i]); } /* * Create DMA maps for the TX buffer mbufs. */ for (i = 0; i < TOTAL_TX_BD; i++) { if (bus_dmamap_create(sc->bnx_dmatag, MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD - BNX_TX_SLACK_SPACE, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->tx_mbuf_map[i])) { aprint_error_dev(sc->bnx_dev, "Could not create Tx mbuf %d DMA map!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } } /* * Allocate DMA memory for the Rx buffer descriptor chain, * and fetch the physical address of the block. */ for (i = 0; i < RX_PAGES; i++) { if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1, BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, &sc->rx_bd_chain_map[i])) { aprint_error_dev(sc->bnx_dev, "Could not create Rx desc %d DMA map!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1, &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not allocate Rx desc %d DMA memory!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ, (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not map Rx desc %d DMA memory!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i], (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL, BUS_DMA_NOWAIT)) { aprint_error_dev(sc->bnx_dev, "Could not load Rx desc %d DMA memory!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ); sc->rx_bd_chain_paddr[i] = sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr; /* DRC - Fix for 64 bit systems. */ DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", i, (u_int32_t) sc->rx_bd_chain_paddr[i]); bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, BNX_RX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* * Create DMA maps for the Rx buffer mbufs. */ for (i = 0; i < TOTAL_RX_BD; i++) { if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU, BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT, &sc->rx_mbuf_map[i])) { aprint_error_dev(sc->bnx_dev, "Could not create Rx mbuf %d DMA map!\n", i); rc = ENOMEM; goto bnx_dma_alloc_exit; } } bnx_dma_alloc_exit: DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return(rc); } /****************************************************************************/ /* Release all resources used by the driver. */ /* */ /* Releases all resources acquired by the driver including interrupts, */ /* interrupt handler, interfaces, mutexes, and DMA memory. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_release_resources(struct bnx_softc *sc) { struct pci_attach_args *pa = &(sc->bnx_pa); DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); bnx_dma_free(sc); if (sc->bnx_intrhand != NULL) pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand); if (sc->bnx_size) bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); } /****************************************************************************/ /* Firmware synchronization. */ /* */ /* Before performing certain events such as a chip reset, synchronize with */ /* the firmware first. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data) { int i, rc = 0; u_int32_t val; /* Don't waste any time if we've timed out before. */ if (sc->bnx_fw_timed_out) { rc = EBUSY; goto bnx_fw_sync_exit; } /* Increment the message sequence number. */ sc->bnx_fw_wr_seq++; msg_data |= sc->bnx_fw_wr_seq; DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n", msg_data); /* Send the message to the bootcode driver mailbox. */ REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); /* Wait for the bootcode to acknowledge the message. */ for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { /* Check for a response in the bootcode firmware mailbox. */ val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB); if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ)) break; DELAY(1000); } /* If we've timed out, tell the bootcode that we've stopped waiting. */ if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) && ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) { BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! " "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); msg_data &= ~BNX_DRV_MSG_CODE; msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT; REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); sc->bnx_fw_timed_out = 1; rc = EBUSY; } bnx_fw_sync_exit: return (rc); } /****************************************************************************/ /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code, u_int32_t rv2p_code_len, u_int32_t rv2p_proc) { int i; u_int32_t val; for (i = 0; i < rv2p_code_len; i += 8) { REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code); rv2p_code++; REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code); rv2p_code++; if (rv2p_proc == RV2P_PROC1) { val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR; REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val); } else { val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR; REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val); } } /* Reset the processor, un-stall is done later. */ if (rv2p_proc == RV2P_PROC1) REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET); else REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET); } /****************************************************************************/ /* Load RISC processor firmware. */ /* */ /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */ /* associated with a particular processor. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg, struct fw_info *fw) { u_int32_t offset; u_int32_t val; /* Halt the CPU. */ val = REG_RD_IND(sc, cpu_reg->mode); val |= cpu_reg->mode_value_halt; REG_WR_IND(sc, cpu_reg->mode, val); REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); /* Load the Text area. */ offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); if (fw->text) { int j; for (j = 0; j < (fw->text_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->text[j]); } /* Load the Data area. */ offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); if (fw->data) { int j; for (j = 0; j < (fw->data_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->data[j]); } /* Load the SBSS area. */ offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); if (fw->sbss) { int j; for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->sbss[j]); } /* Load the BSS area. */ offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); if (fw->bss) { int j; for (j = 0; j < (fw->bss_len/4); j++, offset += 4) REG_WR_IND(sc, offset, fw->bss[j]); } /* Load the Read-Only area. */ offset = cpu_reg->spad_base + (fw->rodata_addr - cpu_reg->mips_view_base); if (fw->rodata) { int j; for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->rodata[j]); } /* Clear the pre-fetch instruction. */ REG_WR_IND(sc, cpu_reg->inst, 0); REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); /* Start the CPU. */ val = REG_RD_IND(sc, cpu_reg->mode); val &= ~cpu_reg->mode_value_halt; REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); REG_WR_IND(sc, cpu_reg->mode, val); } /****************************************************************************/ /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ /* */ /* Loads the firmware for each CPU and starts the CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_init_cpus(struct bnx_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; /* Initialize the RV2P processor. */ bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1), RV2P_PROC1); bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2), RV2P_PROC2); /* Initialize the RX Processor. */ cpu_reg.mode = BNX_RXP_CPU_MODE; cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA; cpu_reg.state = BNX_RXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE; cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK; cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION; cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX_RXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx_RXP_b06FwReleaseMajor; fw.ver_minor = bnx_RXP_b06FwReleaseMinor; fw.ver_fix = bnx_RXP_b06FwReleaseFix; fw.start_addr = bnx_RXP_b06FwStartAddr; fw.text_addr = bnx_RXP_b06FwTextAddr; fw.text_len = bnx_RXP_b06FwTextLen; fw.text_index = 0; fw.text = bnx_RXP_b06FwText; fw.data_addr = bnx_RXP_b06FwDataAddr; fw.data_len = bnx_RXP_b06FwDataLen; fw.data_index = 0; fw.data = bnx_RXP_b06FwData; fw.sbss_addr = bnx_RXP_b06FwSbssAddr; fw.sbss_len = bnx_RXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx_RXP_b06FwSbss; fw.bss_addr = bnx_RXP_b06FwBssAddr; fw.bss_len = bnx_RXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx_RXP_b06FwBss; fw.rodata_addr = bnx_RXP_b06FwRodataAddr; fw.rodata_len = bnx_RXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx_RXP_b06FwRodata; DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); bnx_load_cpu_fw(sc, &cpu_reg, &fw); /* Initialize the TX Processor. */ cpu_reg.mode = BNX_TXP_CPU_MODE; cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA; cpu_reg.state = BNX_TXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE; cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK; cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION; cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX_TXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx_TXP_b06FwReleaseMajor; fw.ver_minor = bnx_TXP_b06FwReleaseMinor; fw.ver_fix = bnx_TXP_b06FwReleaseFix; fw.start_addr = bnx_TXP_b06FwStartAddr; fw.text_addr = bnx_TXP_b06FwTextAddr; fw.text_len = bnx_TXP_b06FwTextLen; fw.text_index = 0; fw.text = bnx_TXP_b06FwText; fw.data_addr = bnx_TXP_b06FwDataAddr; fw.data_len = bnx_TXP_b06FwDataLen; fw.data_index = 0; fw.data = bnx_TXP_b06FwData; fw.sbss_addr = bnx_TXP_b06FwSbssAddr; fw.sbss_len = bnx_TXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx_TXP_b06FwSbss; fw.bss_addr = bnx_TXP_b06FwBssAddr; fw.bss_len = bnx_TXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx_TXP_b06FwBss; fw.rodata_addr = bnx_TXP_b06FwRodataAddr; fw.rodata_len = bnx_TXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx_TXP_b06FwRodata; DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); bnx_load_cpu_fw(sc, &cpu_reg, &fw); /* Initialize the TX Patch-up Processor. */ cpu_reg.mode = BNX_TPAT_CPU_MODE; cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA; cpu_reg.state = BNX_TPAT_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE; cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK; cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION; cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX_TPAT_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx_TPAT_b06FwReleaseMajor; fw.ver_minor = bnx_TPAT_b06FwReleaseMinor; fw.ver_fix = bnx_TPAT_b06FwReleaseFix; fw.start_addr = bnx_TPAT_b06FwStartAddr; fw.text_addr = bnx_TPAT_b06FwTextAddr; fw.text_len = bnx_TPAT_b06FwTextLen; fw.text_index = 0; fw.text = bnx_TPAT_b06FwText; fw.data_addr = bnx_TPAT_b06FwDataAddr; fw.data_len = bnx_TPAT_b06FwDataLen; fw.data_index = 0; fw.data = bnx_TPAT_b06FwData; fw.sbss_addr = bnx_TPAT_b06FwSbssAddr; fw.sbss_len = bnx_TPAT_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx_TPAT_b06FwSbss; fw.bss_addr = bnx_TPAT_b06FwBssAddr; fw.bss_len = bnx_TPAT_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx_TPAT_b06FwBss; fw.rodata_addr = bnx_TPAT_b06FwRodataAddr; fw.rodata_len = bnx_TPAT_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx_TPAT_b06FwRodata; DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); bnx_load_cpu_fw(sc, &cpu_reg, &fw); /* Initialize the Completion Processor. */ cpu_reg.mode = BNX_COM_CPU_MODE; cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA; cpu_reg.state = BNX_COM_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE; cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK; cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX_COM_CPU_INSTRUCTION; cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX_COM_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx_COM_b06FwReleaseMajor; fw.ver_minor = bnx_COM_b06FwReleaseMinor; fw.ver_fix = bnx_COM_b06FwReleaseFix; fw.start_addr = bnx_COM_b06FwStartAddr; fw.text_addr = bnx_COM_b06FwTextAddr; fw.text_len = bnx_COM_b06FwTextLen; fw.text_index = 0; fw.text = bnx_COM_b06FwText; fw.data_addr = bnx_COM_b06FwDataAddr; fw.data_len = bnx_COM_b06FwDataLen; fw.data_index = 0; fw.data = bnx_COM_b06FwData; fw.sbss_addr = bnx_COM_b06FwSbssAddr; fw.sbss_len = bnx_COM_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx_COM_b06FwSbss; fw.bss_addr = bnx_COM_b06FwBssAddr; fw.bss_len = bnx_COM_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx_COM_b06FwBss; fw.rodata_addr = bnx_COM_b06FwRodataAddr; fw.rodata_len = bnx_COM_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx_COM_b06FwRodata; DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); bnx_load_cpu_fw(sc, &cpu_reg, &fw); } /****************************************************************************/ /* Initialize context memory. */ /* */ /* Clears the memory associated with each Context ID (CID). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_init_context(struct bnx_softc *sc) { u_int32_t vcid; vcid = 96; while (vcid) { u_int32_t vcid_addr, pcid_addr, offset; vcid--; vcid_addr = GET_CID_ADDR(vcid); pcid_addr = vcid_addr; REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00); REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr); /* Zero out the context. */ for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) CTX_WR(sc, 0x00, offset, 0); REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr); REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr); } } /****************************************************************************/ /* Fetch the permanent MAC address of the controller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_get_mac_addr(struct bnx_softc *sc) { u_int32_t mac_lo = 0, mac_hi = 0; /* * The NetXtreme II bootcode populates various NIC * power-on and runtime configuration items in a * shared memory area. The factory configured MAC * address is available from both NVRAM and the * shared memory area so we'll read the value from * shared memory for speed. */ mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER); mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER); if ((mac_lo == 0) && (mac_hi == 0)) { BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n", __FILE__, __LINE__); } else { sc->eaddr[0] = (u_char)(mac_hi >> 8); sc->eaddr[1] = (u_char)(mac_hi >> 0); sc->eaddr[2] = (u_char)(mac_lo >> 24); sc->eaddr[3] = (u_char)(mac_lo >> 16); sc->eaddr[4] = (u_char)(mac_lo >> 8); sc->eaddr[5] = (u_char)(mac_lo >> 0); } DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = " "%s\n", ether_sprintf(sc->eaddr)); } /****************************************************************************/ /* Program the MAC address. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_set_mac_addr(struct bnx_softc *sc) { u_int32_t val; const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl); DBPRINT(sc, BNX_INFO, "Setting Ethernet address = " "%s\n", ether_sprintf(sc->eaddr)); val = (mac_addr[0] << 8) | mac_addr[1]; REG_WR(sc, BNX_EMAC_MAC_MATCH0, val); val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; REG_WR(sc, BNX_EMAC_MAC_MATCH1, val); } /****************************************************************************/ /* Stop the controller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_stop(struct ifnet *ifp, int disable) { struct bnx_softc *sc = ifp->if_softc; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); if ((ifp->if_flags & IFF_RUNNING) == 0) return; callout_stop(&sc->bnx_timeout); mii_down(&sc->bnx_mii); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* Disable the transmit/receive blocks. */ REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); DELAY(20); bnx_disable_intr(sc); /* Tell firmware that the driver is going away. */ if (disable) bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); else bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL); /* Free the RX lists. */ bnx_free_rx_chain(sc); /* Free TX buffers. */ bnx_free_tx_chain(sc); ifp->if_timer = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); } int bnx_reset(struct bnx_softc *sc, u_int32_t reset_code) { u_int32_t val; int i, rc = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Wait for pending PCI transactions to complete. */ REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); DELAY(5); /* Assume bootcode is running. */ sc->bnx_fw_timed_out = 0; /* Give the firmware a chance to prepare for the reset. */ rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code); if (rc) goto bnx_reset_exit; /* Set a firmware reminder that this is a soft reset. */ REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE, BNX_DRV_RESET_SIGNATURE_MAGIC); /* Dummy read to force the chip to complete all current transactions. */ val = REG_RD(sc, BNX_MISC_ID); /* Chip reset. */ val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val); /* Allow up to 30us for reset to complete. */ for (i = 0; i < 10; i++) { val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG); if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) break; DELAY(10); } /* Check that reset completed successfully. */ if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__); rc = EBUSY; goto bnx_reset_exit; } /* Make sure byte swapping is properly configured. */ val = REG_RD(sc, BNX_PCI_SWAP_DIAG0); if (val != 0x01020304) { BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n", __FILE__, __LINE__); rc = ENODEV; goto bnx_reset_exit; } /* Just completed a reset, assume that firmware is running again. */ sc->bnx_fw_timed_out = 0; /* Wait for the firmware to finish its initialization. */ rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code); if (rc) BNX_PRINTF(sc, "%s(%d): Firmware did not complete " "initialization!\n", __FILE__, __LINE__); bnx_reset_exit: DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return (rc); } int bnx_chipinit(struct bnx_softc *sc) { struct pci_attach_args *pa = &(sc->bnx_pa); u_int32_t val; int rc = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Make sure the interrupt is not active. */ REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); /* Initialize DMA byte/word swapping, configure the number of DMA */ /* channels and PCI clock compensation delay. */ val = BNX_DMA_CONFIG_DATA_BYTE_SWAP | BNX_DMA_CONFIG_DATA_WORD_SWAP | #if BYTE_ORDER == BIG_ENDIAN BNX_DMA_CONFIG_CNTL_BYTE_SWAP | #endif BNX_DMA_CONFIG_CNTL_WORD_SWAP | DMA_READ_CHANS << 12 | DMA_WRITE_CHANS << 16; val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY; if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP; /* * This setting resolves a problem observed on certain Intel PCI * chipsets that cannot handle multiple outstanding DMA operations. * See errata E9_5706A1_65. */ if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) && !(sc->bnx_flags & BNX_PCIX_FLAG)) val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA; REG_WR(sc, BNX_DMA_CONFIG, val); /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ if (sc->bnx_flags & BNX_PCIX_FLAG) { u_int16_t nval; nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD); pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD, nval & ~0x20000); } /* Enable the RX_V2P and Context state machines before access. */ REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); /* Initialize context mapping and zero out the quick contexts. */ bnx_init_context(sc); /* Initialize the on-boards CPUs */ bnx_init_cpus(sc); /* Prepare NVRAM for access. */ if (bnx_init_nvram(sc)) { rc = ENODEV; goto bnx_chipinit_exit; } /* Set the kernel bypass block size */ val = REG_RD(sc, BNX_MQ_CONFIG); val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE; val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; REG_WR(sc, BNX_MQ_CONFIG, val); val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val); REG_WR(sc, BNX_MQ_KNL_WIND_END, val); val = (BCM_PAGE_BITS - 8) << 24; REG_WR(sc, BNX_RV2P_CONFIG, val); /* Configure page size. */ val = REG_RD(sc, BNX_TBDR_CONFIG); val &= ~BNX_TBDR_CONFIG_PAGE_SIZE; val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; REG_WR(sc, BNX_TBDR_CONFIG, val); bnx_chipinit_exit: DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return(rc); } /****************************************************************************/ /* Initialize the controller in preparation to send/receive traffic. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_blockinit(struct bnx_softc *sc) { u_int32_t reg, val; int rc = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Load the hardware default MAC address. */ bnx_set_mac_addr(sc); /* Set the Ethernet backoff seed value */ val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val); sc->last_status_idx = 0; sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE; /* Set up link change interrupt generation. */ REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK); /* Program the physical address of the status block. */ REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr)); REG_WR(sc, BNX_HC_STATUS_ADDR_H, (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32)); /* Program the physical address of the statistics block. */ REG_WR(sc, BNX_HC_STATISTICS_ADDR_L, (u_int32_t)(sc->stats_block_paddr)); REG_WR(sc, BNX_HC_STATISTICS_ADDR_H, (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32)); /* Program various host coalescing parameters. */ REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int << 16) | sc->bnx_tx_quick_cons_trip); REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int << 16) | sc->bnx_rx_quick_cons_trip); REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) | sc->bnx_comp_prod_trip); REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) | sc->bnx_tx_ticks); REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) | sc->bnx_rx_ticks); REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) | sc->bnx_com_ticks); REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) | sc->bnx_cmd_ticks); REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00)); REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ REG_WR(sc, BNX_HC_CONFIG, (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE | BNX_HC_CONFIG_COLLECT_STATS)); /* Clear the internal statistics counters. */ REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW); /* Verify that bootcode is running. */ reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE); DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure), BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n", __FILE__, __LINE__); reg = 0); if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) != BNX_DEV_INFO_SIGNATURE_MAGIC) { BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", __FILE__, __LINE__, (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK), BNX_DEV_INFO_SIGNATURE_MAGIC); rc = ENODEV; goto bnx_blockinit_exit; } /* Check if any management firmware is running. */ reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE); if (reg & (BNX_PORT_FEATURE_ASF_ENABLED | BNX_PORT_FEATURE_IMD_ENABLED)) { DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n"); sc->bnx_flags |= BNX_MFW_ENABLE_FLAG; } sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV); DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver); /* Allow bootcode to apply any additional fixes before enabling MAC. */ rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET); /* Enable link state change interrupt generation. */ REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); /* Enable all remaining blocks in the MAC. */ REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff); REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); DELAY(20); bnx_blockinit_exit: DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return (rc); } static int bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod, u_int16_t *chain_prod, u_int32_t *prod_bseq) { bus_dmamap_t map; struct rx_bd *rxbd; u_int32_t addr; int i; #ifdef BNX_DEBUG u_int16_t debug_chain_prod = *chain_prod; #endif u_int16_t first_chain_prod; m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size; /* Map the mbuf cluster into device memory. */ map = sc->rx_mbuf_map[*chain_prod]; first_chain_prod = *chain_prod; if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) { BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n", __FILE__, __LINE__); m_freem(m_new); DBRUNIF(1, sc->rx_mbuf_alloc--); return ENOBUFS; } bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize, BUS_DMASYNC_PREREAD); /* Watch for overflow. */ DBRUNIF((sc->free_rx_bd > USABLE_RX_BD), aprint_error_dev(sc->bnx_dev, "Too many free rx_bd (0x%04X > 0x%04X)!\n", sc->free_rx_bd, (u_int16_t)USABLE_RX_BD)); DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), sc->rx_low_watermark = sc->free_rx_bd); /* * Setup the rx_bd for the first segment */ rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; addr = (u_int32_t)(map->dm_segs[0].ds_addr); rxbd->rx_bd_haddr_lo = htole32(addr); addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32); rxbd->rx_bd_haddr_hi = htole32(addr); rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len); rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START); *prod_bseq += map->dm_segs[0].ds_len; bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[RX_PAGE(*chain_prod)], sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); for (i = 1; i < map->dm_nsegs; i++) { *prod = NEXT_RX_BD(*prod); *chain_prod = RX_CHAIN_IDX(*prod); rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; addr = (u_int32_t)(map->dm_segs[i].ds_addr); rxbd->rx_bd_haddr_lo = htole32(addr); addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); rxbd->rx_bd_haddr_hi = htole32(addr); rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len); rxbd->rx_bd_flags = 0; *prod_bseq += map->dm_segs[i].ds_len; bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[RX_PAGE(*chain_prod)], sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END); bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[RX_PAGE(*chain_prod)], sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Save the mbuf, ajust the map pointer (swap map for first and * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches) * and update counter. */ sc->rx_mbuf_ptr[*chain_prod] = m_new; sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod]; sc->rx_mbuf_map[*chain_prod] = map; sc->free_rx_bd -= map->dm_nsegs; DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod, map->dm_nsegs)); *prod = NEXT_RX_BD(*prod); *chain_prod = RX_CHAIN_IDX(*prod); return 0; } /****************************************************************************/ /* Encapsulate an mbuf cluster into the rx_bd chain. */ /* */ /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ /* necessary. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod, u_int16_t *chain_prod, u_int32_t *prod_bseq) { struct mbuf *m_new = NULL; int rc = 0; u_int16_t min_free_bd; DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n", __func__); /* Make sure the inputs are valid. */ DBRUNIF((*chain_prod > MAX_RX_BD), aprint_error_dev(sc->bnx_dev, "RX producer out of range: 0x%04X > 0x%04X\n", *chain_prod, (u_int16_t)MAX_RX_BD)); DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = " "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq); /* try to get in as many mbufs as possible */ if (sc->mbuf_alloc_size == MCLBYTES) min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE; else min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE; while (sc->free_rx_bd >= min_free_bd) { DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure), BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n"); sc->mbuf_alloc_failed++; rc = ENOBUFS; goto bnx_get_buf_exit); /* This is a new mbuf allocation. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { DBPRINT(sc, BNX_WARN, "%s(%d): RX mbuf header allocation failed!\n", __FILE__, __LINE__); DBRUNIF(1, sc->mbuf_alloc_failed++); rc = ENOBUFS; goto bnx_get_buf_exit; } DBRUNIF(1, sc->rx_mbuf_alloc++); if (sc->mbuf_alloc_size == MCLBYTES) MCLGET(m_new, M_DONTWAIT); else MEXTMALLOC(m_new, sc->mbuf_alloc_size, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { DBPRINT(sc, BNX_WARN, "%s(%d): RX mbuf chain allocation failed!\n", __FILE__, __LINE__); m_freem(m_new); DBRUNIF(1, sc->rx_mbuf_alloc--); DBRUNIF(1, sc->mbuf_alloc_failed++); rc = ENOBUFS; goto bnx_get_buf_exit; } rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq); if (rc != 0) goto bnx_get_buf_exit; } bnx_get_buf_exit: DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod " "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq); DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n", __func__); return(rc); } /****************************************************************************/ /* Allocate memory and initialize the TX data structures. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_init_tx_chain(struct bnx_softc *sc) { struct tx_bd *txbd; u_int32_t val, addr; int i, rc = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Set the initial TX producer/consumer indices. */ sc->tx_prod = 0; sc->tx_cons = 0; sc->tx_prod_bseq = 0; sc->used_tx_bd = 0; DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); /* * The NetXtreme II supports a linked-list structure called * a Buffer Descriptor Chain (or BD chain). A BD chain * consists of a series of 1 or more chain pages, each of which * consists of a fixed number of BD entries. * The last BD entry on each page is a pointer to the next page * in the chain, and the last pointer in the BD chain * points back to the beginning of the chain. */ /* Set the TX next pointer chain entries. */ for (i = 0; i < TX_PAGES; i++) { int j; txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (TX_PAGES - 1)) j = 0; else j = i + 1; addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]); txbd->tx_bd_haddr_lo = htole32(addr); addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32); txbd->tx_bd_haddr_hi = htole32(addr); bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0, BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE); } /* * Initialize the context ID for an L2 TX chain. */ val = BNX_L2CTX_TYPE_TYPE_L2; val |= BNX_L2CTX_TYPE_SIZE_L2; CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val); val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val); /* Point the hardware to the first page in the chain. */ val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val); val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val); DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD)); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return(rc); } /****************************************************************************/ /* Free memory and clear the TX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_free_tx_chain(struct bnx_softc *sc) { int i; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ for (i = 0; i < TOTAL_TX_BD; i++) { if (sc->tx_mbuf_ptr[i] != NULL) { if (sc->tx_mbuf_map != NULL) bus_dmamap_sync(sc->bnx_dmatag, sc->tx_mbuf_map[i], 0, sc->tx_mbuf_map[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); m_freem(sc->tx_mbuf_ptr[i]); sc->tx_mbuf_ptr[i] = NULL; DBRUNIF(1, sc->tx_mbuf_alloc--); } } /* Clear each TX chain page. */ for (i = 0; i < TX_PAGES; i++) { memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ); bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0, BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE); } /* Check if we lost any mbufs in the process. */ DBRUNIF((sc->tx_mbuf_alloc), aprint_error_dev(sc->bnx_dev, "Memory leak! Lost %d mbufs from tx chain!\n", sc->tx_mbuf_alloc)); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); } /****************************************************************************/ /* Allocate memory and initialize the RX data structures. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_init_rx_chain(struct bnx_softc *sc) { struct rx_bd *rxbd; int i, rc = 0; u_int16_t prod, chain_prod; u_int32_t prod_bseq, val, addr; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Initialize the RX producer and consumer indices. */ sc->rx_prod = 0; sc->rx_cons = 0; sc->rx_prod_bseq = 0; sc->free_rx_bd = BNX_RX_SLACK_SPACE; DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); /* Initialize the RX next pointer chain entries. */ for (i = 0; i < RX_PAGES; i++) { int j; rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (RX_PAGES - 1)) j = 0; else j = i + 1; /* Setup the chain page pointers. */ addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32); rxbd->rx_bd_haddr_hi = htole32(addr); addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]); rxbd->rx_bd_haddr_lo = htole32(addr); bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, BNX_RX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* Initialize the context ID for an L2 RX chain. */ val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; val |= BNX_L2CTX_CTX_TYPE_SIZE_L2; val |= 0x02 << 8; CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val); /* Point the hardware to the first page in the chain. */ val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32); CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val); val = (u_int32_t)(sc->rx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val); /* Allocate mbuf clusters for the rx_bd chain. */ prod = prod_bseq = 0; chain_prod = RX_CHAIN_IDX(prod); if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) { BNX_PRINTF(sc, "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod); } /* Save the RX chain producer index. */ sc->rx_prod = prod; sc->rx_prod_bseq = prod_bseq; for (i = 0; i < RX_PAGES; i++) bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, sc->rx_bd_chain_map[i]->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Tell the chip about the waiting rx_bd's. */ REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD)); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); return(rc); } /****************************************************************************/ /* Free memory and clear the RX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_free_rx_chain(struct bnx_softc *sc) { int i; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); /* Free any mbufs still in the RX mbuf chain. */ for (i = 0; i < TOTAL_RX_BD; i++) { if (sc->rx_mbuf_ptr[i] != NULL) { if (sc->rx_mbuf_map[i] != NULL) bus_dmamap_sync(sc->bnx_dmatag, sc->rx_mbuf_map[i], 0, sc->rx_mbuf_map[i]->dm_mapsize, BUS_DMASYNC_POSTREAD); m_freem(sc->rx_mbuf_ptr[i]); sc->rx_mbuf_ptr[i] = NULL; DBRUNIF(1, sc->rx_mbuf_alloc--); } } /* Clear each RX chain page. */ for (i = 0; i < RX_PAGES; i++) memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ); /* Check if we lost any mbufs in the process. */ DBRUNIF((sc->rx_mbuf_alloc), aprint_error_dev(sc->bnx_dev, "Memory leak! Lost %d mbufs from rx chain!\n", sc->rx_mbuf_alloc)); DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); } /****************************************************************************/ /* Handles PHY generated interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_phy_intr(struct bnx_softc *sc) { u_int32_t new_link_state, old_link_state; bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, BUS_DMASYNC_POSTREAD); new_link_state = sc->status_block->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE; old_link_state = sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE; /* Handle any changes if the link state has changed. */ if (new_link_state != old_link_state) { DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc)); callout_stop(&sc->bnx_timeout); bnx_tick(sc); /* Update the status_attn_bits_ack field in the status block. */ if (new_link_state) { REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD, STATUS_ATTN_BITS_LINK_STATE); DBPRINT(sc, BNX_INFO, "Link is now UP.\n"); } else { REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD, STATUS_ATTN_BITS_LINK_STATE); DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n"); } } /* Acknowledge the link change interrupt. */ REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE); } /****************************************************************************/ /* Handles received frame interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_rx_intr(struct bnx_softc *sc) { struct status_block *sblk = sc->status_block; struct ifnet *ifp = &sc->bnx_ec.ec_if; u_int16_t hw_cons, sw_cons, sw_chain_cons; u_int16_t sw_prod, sw_chain_prod; u_int32_t sw_prod_bseq; struct l2_fhdr *l2fhdr; int i; DBRUNIF(1, sc->rx_interrupts++); bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, BUS_DMASYNC_POSTREAD); /* Prepare the RX chain pages to be accessed by the host CPU. */ for (i = 0; i < RX_PAGES; i++) bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, sc->rx_bd_chain_map[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); /* Get the hardware's view of the RX consumer index. */ hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) hw_cons++; /* Get working copies of the driver's view of the RX indices. */ sw_cons = sc->rx_cons; sw_prod = sc->rx_prod; sw_prod_bseq = sc->rx_prod_bseq; DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", __func__, sw_prod, sw_cons, sw_prod_bseq); /* Prevent speculative reads from getting ahead of the status block. */ bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), sc->rx_low_watermark = sc->free_rx_bd); /* * Scan through the receive chain as long * as there is work to do. */ while (sw_cons != hw_cons) { struct mbuf *m; struct rx_bd *rxbd; unsigned int len; u_int32_t status; /* Convert the producer/consumer indices to an actual * rx_bd index. */ sw_chain_cons = RX_CHAIN_IDX(sw_cons); sw_chain_prod = RX_CHAIN_IDX(sw_prod); /* Get the used rx_bd. */ rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)]; sc->free_rx_bd++; DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__); bnx_dump_rxbd(sc, sw_chain_cons, rxbd)); /* The mbuf is stored with the last rx_bd entry of a packet. */ if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) { #ifdef DIAGNOSTIC /* Validate that this is the last rx_bd. */ if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) { printf("%s: Unexpected mbuf found in " "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev), sw_chain_cons); } #endif /* DRC - ToDo: If the received packet is small, say less * than 128 bytes, allocate a new mbuf here, * copy the data to that mbuf, and recycle * the mapped jumbo frame. */ /* Unmap the mbuf from DMA space. */ #ifdef DIAGNOSTIC if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) { printf("invalid map sw_cons 0x%x " "sw_prod 0x%x " "sw_chain_cons 0x%x " "sw_chain_prod 0x%x " "hw_cons 0x%x " "TOTAL_RX_BD_PER_PAGE 0x%x " "TOTAL_RX_BD 0x%x\n", sw_cons, sw_prod, sw_chain_cons, sw_chain_prod, hw_cons, (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD); } #endif bus_dmamap_sync(sc->bnx_dmatag, sc->rx_mbuf_map[sw_chain_cons], 0, sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[sw_chain_cons]); /* Remove the mbuf from the driver's chain. */ m = sc->rx_mbuf_ptr[sw_chain_cons]; sc->rx_mbuf_ptr[sw_chain_cons] = NULL; /* * Frames received on the NetXteme II are prepended * with the l2_fhdr structure which provides status * information about the received frame (including * VLAN tags and checksum info) and are also * automatically adjusted to align the IP header * (i.e. two null bytes are inserted before the * Ethernet header). */ l2fhdr = mtod(m, struct l2_fhdr *); len = l2fhdr->l2_fhdr_pkt_len; status = l2fhdr->l2_fhdr_status; DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check), aprint_error("Simulating l2_fhdr status error.\n"); status = status | L2_FHDR_ERRORS_PHY_DECODE); /* Watch for unusual sized frames. */ DBRUNIF(((len < BNX_MIN_MTU) || (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)), aprint_error_dev(sc->bnx_dev, "Unusual frame size found. " "Min(%d), Actual(%d), Max(%d)\n", (int)BNX_MIN_MTU, len, (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN); bnx_dump_mbuf(sc, m); bnx_breakpoint(sc)); len -= ETHER_CRC_LEN; /* Check the received frame for errors. */ if ((status & (L2_FHDR_ERRORS_BAD_CRC | L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) || len < (BNX_MIN_MTU - ETHER_CRC_LEN) || len > (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) { ifp->if_ierrors++; DBRUNIF(1, sc->l2fhdr_status_errors++); /* Reuse the mbuf for a new frame. */ if (bnx_add_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) { DBRUNIF(1, bnx_breakpoint(sc)); panic("%s: Can't reuse RX mbuf!\n", device_xname(sc->bnx_dev)); } continue; } /* * Get a new mbuf for the rx_bd. If no new * mbufs are available then reuse the current mbuf, * log an ierror on the interface, and generate * an error in the system log. */ if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) { DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate " "new mbuf, incoming frame dropped!\n")); ifp->if_ierrors++; /* Try and reuse the exisitng mbuf. */ if (bnx_add_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) { DBRUNIF(1, bnx_breakpoint(sc)); panic("%s: Double mbuf allocation " "failure!", device_xname(sc->bnx_dev)); } continue; } /* Skip over the l2_fhdr when passing the data up * the stack. */ m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); /* Adjust the pckt length to match the received data. */ m->m_pkthdr.len = m->m_len = len; /* Send the packet to the appropriate interface. */ m->m_pkthdr.rcvif = ifp; DBRUN(BNX_VERBOSE_RECV, struct ether_header *eh; eh = mtod(m, struct ether_header *); aprint_error("%s: to: %s, from: %s, type: 0x%04X\n", __func__, ether_sprintf(eh->ether_dhost), ether_sprintf(eh->ether_shost), htons(eh->ether_type))); /* Validate the checksum. */ /* Check for an IP datagram. */ if (status & L2_FHDR_STATUS_IP_DATAGRAM) { /* Check if the IP checksum is valid. */ if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) m->m_pkthdr.csum_flags |= M_CSUM_IPv4; #ifdef BNX_DEBUG else DBPRINT(sc, BNX_WARN_SEND, "%s(): Invalid IP checksum " "= 0x%04X!\n", __func__, l2fhdr->l2_fhdr_ip_xsum ); #endif } /* Check for a valid TCP/UDP frame. */ if (status & (L2_FHDR_STATUS_TCP_SEGMENT | L2_FHDR_STATUS_UDP_DATAGRAM)) { /* Check for a good TCP/UDP checksum. */ if ((status & (L2_FHDR_ERRORS_TCP_XSUM | L2_FHDR_ERRORS_UDP_XSUM)) == 0) { m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4; } else { DBPRINT(sc, BNX_WARN_SEND, "%s(): Invalid TCP/UDP " "checksum = 0x%04X!\n", __func__, l2fhdr->l2_fhdr_tcp_udp_xsum); } } /* * If we received a packet with a vlan tag, * attach that information to the packet. */ if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { #if 0 struct ether_vlan_header vh; DBPRINT(sc, BNX_VERBOSE_SEND, "%s(): VLAN tag = 0x%04X\n", __func__, l2fhdr->l2_fhdr_vlan_tag); if (m->m_pkthdr.len < ETHER_HDR_LEN) { m_freem(m); continue; } m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh); vh.evl_proto = vh.evl_encap_proto; vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag; vh.evl_encap_proto = htons(ETHERTYPE_VLAN); m_adj(m, ETHER_HDR_LEN); if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL) continue; m->m_pkthdr.len += sizeof(vh); if (m->m_len < sizeof(vh) && (m = m_pullup(m, sizeof(vh))) == NULL) goto bnx_rx_int_next_rx; m_copyback(m, 0, sizeof(vh), &vh); #else VLAN_INPUT_TAG(ifp, m, l2fhdr->l2_fhdr_vlan_tag, continue); #endif } #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF * user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Pass the mbuf off to the upper layers. */ ifp->if_ipackets++; DBPRINT(sc, BNX_VERBOSE_RECV, "%s(): Passing received frame up.\n", __func__); (*ifp->if_input)(ifp, m); DBRUNIF(1, sc->rx_mbuf_alloc--); } sw_cons = NEXT_RX_BD(sw_cons); /* Refresh hw_cons to see if there's new work */ if (sw_cons == hw_cons) { hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) hw_cons++; } /* Prevent speculative reads from getting ahead of * the status block. */ bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); } for (i = 0; i < RX_PAGES; i++) bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, sc->rx_bd_chain_map[i]->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->rx_cons = sw_cons; sc->rx_prod = sw_prod; sc->rx_prod_bseq = sw_prod_bseq; REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); } /****************************************************************************/ /* Handles transmit completion interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_tx_intr(struct bnx_softc *sc) { struct status_block *sblk = sc->status_block; struct ifnet *ifp = &sc->bnx_ec.ec_if; u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; DBRUNIF(1, sc->tx_interrupts++); bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, BUS_DMASYNC_POSTREAD); /* Get the hardware's view of the TX consumer index. */ hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; /* Skip to the next entry if this is a chain page pointer. */ if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) hw_tx_cons++; sw_tx_cons = sc->tx_cons; /* Prevent speculative reads from getting ahead of the status block. */ bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); /* Cycle through any completed TX chain page entries. */ while (sw_tx_cons != hw_tx_cons) { #ifdef BNX_DEBUG struct tx_bd *txbd = NULL; #endif sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, " "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n", __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), aprint_error_dev(sc->bnx_dev, "TX chain consumer out of range! 0x%04X > 0x%04X\n", sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc)); DBRUNIF(1, txbd = &sc->tx_bd_chain [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]); DBRUNIF((txbd == NULL), aprint_error_dev(sc->bnx_dev, "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons); bnx_breakpoint(sc)); DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__); bnx_dump_txbd(sc, sw_tx_chain_cons, txbd)); /* * Free the associated mbuf. Remember * that only the last tx_bd of a packet * has an mbuf pointer and DMA map. */ if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { /* Validate that this is the last tx_bd. */ DBRUNIF((!(txbd->tx_bd_vlan_tag_flags & TX_BD_FLAGS_END)), aprint_error_dev(sc->bnx_dev, "tx_bd END flag not set but txmbuf == NULL!\n"); bnx_breakpoint(sc)); DBRUN(BNX_INFO_SEND, aprint_debug("%s: Unloading map/freeing mbuf " "from tx_bd[0x%04X]\n", __func__, sw_tx_chain_cons)); /* Unmap the mbuf. */ bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[sw_tx_chain_cons]); /* Free the mbuf. */ m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; DBRUNIF(1, sc->tx_mbuf_alloc--); ifp->if_opackets++; } sc->used_tx_bd--; sw_tx_cons = NEXT_TX_BD(sw_tx_cons); /* Refresh hw_cons to see if there's new work. */ hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) hw_tx_cons++; /* Prevent speculative reads from getting ahead of * the status block. */ bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); } /* Clear the TX timeout timer. */ ifp->if_timer = 0; /* Clear the tx hardware queue full flag. */ if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) { DBRUNIF((ifp->if_flags & IFF_OACTIVE), aprint_debug_dev(sc->bnx_dev, "TX chain is open for business! Used tx_bd = %d\n", sc->used_tx_bd)); ifp->if_flags &= ~IFF_OACTIVE; } sc->tx_cons = sw_tx_cons; } /****************************************************************************/ /* Disables interrupt generation. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_disable_intr(struct bnx_softc *sc) { REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); REG_RD(sc, BNX_PCICFG_INT_ACK_CMD); } /****************************************************************************/ /* Enables interrupt generation. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_enable_intr(struct bnx_softc *sc) { u_int32_t val; REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); val = REG_RD(sc, BNX_HC_COMMAND); REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW); } /****************************************************************************/ /* Handles controller initialization. */ /* */ /****************************************************************************/ int bnx_init(struct ifnet *ifp) { struct bnx_softc *sc = ifp->if_softc; u_int32_t ether_mtu; int s, error = 0; DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); s = splnet(); bnx_stop(ifp, 0); if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) { aprint_error("bnx: Controller reset failed!\n"); goto bnx_init_exit; } if ((error = bnx_chipinit(sc)) != 0) { aprint_error("bnx: Controller initialization failed!\n"); goto bnx_init_exit; } if ((error = bnx_blockinit(sc)) != 0) { aprint_error("bnx: Block initialization failed!\n"); goto bnx_init_exit; } /* Calculate and program the Ethernet MRU size. */ if (ifp->if_mtu <= ETHERMTU) { ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN; sc->mbuf_alloc_size = MCLBYTES; } else { ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN; sc->mbuf_alloc_size = BNX_MAX_MRU; } DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu); /* * Program the MRU and enable Jumbo frame * support. */ REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu | BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA); /* Calculate the RX Ethernet frame size for rx_bd's. */ sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, " "max_frame_size = %d\n", __func__, (int)MCLBYTES, sc->mbuf_alloc_size, sc->max_frame_size); /* Program appropriate promiscuous/multicast filtering. */ bnx_set_rx_mode(sc); /* Init RX buffer descriptor chain. */ bnx_init_rx_chain(sc); /* Init TX buffer descriptor chain. */ bnx_init_tx_chain(sc); /* Enable host interrupts. */ bnx_enable_intr(sc); if ((error = ether_mediachange(ifp)) != 0) goto bnx_init_exit; ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc); bnx_init_exit: DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); splx(s); return(error); } /****************************************************************************/ /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ /* memory visible to the controller. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head) { bus_dmamap_t map; struct tx_bd *txbd = NULL; struct mbuf *m0; u_int16_t vlan_tag = 0, flags = 0; u_int16_t chain_prod, prod; #ifdef BNX_DEBUG u_int16_t debug_prod; #endif u_int32_t addr, prod_bseq; int i, error, rc = 0; struct m_tag *mtag; m0 = *m_head; /* Transfer any checksum offload flags to the bd. */ if (m0->m_pkthdr.csum_flags) { if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) flags |= TX_BD_FLAGS_IP_CKSUM; if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; } /* Transfer any VLAN tags to the bd. */ mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0); if (mtag != NULL) { flags |= TX_BD_FLAGS_VLAN_TAG; vlan_tag = VLAN_TAG_VALUE(mtag); } /* Map the mbuf into DMAable memory. */ prod = sc->tx_prod; chain_prod = TX_CHAIN_IDX(prod); map = sc->tx_mbuf_map[chain_prod]; /* Map the mbuf into our DMA address space. */ error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT); if (error != 0) { aprint_error_dev(sc->bnx_dev, "Error mapping mbuf into TX chain!\n"); m_freem(m0); *m_head = NULL; return (error); } bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * The chip seems to require that at least 16 descriptors be kept * empty at all times. Make sure we honor that. * XXX Would it be faster to assume worst case scenario for * map->dm_nsegs and do this calculation higher up? */ if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) { bus_dmamap_unload(sc->bnx_dmatag, map); return (ENOBUFS); } /* prod points to an empty tx_bd at this point. */ prod_bseq = sc->tx_prod_bseq; #ifdef BNX_DEBUG debug_prod = chain_prod; #endif DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: prod = 0x%04X, chain_prod = %04X, " "prod_bseq = 0x%08X\n", __func__, *prod, chain_prod, prod_bseq); /* * Cycle through each mbuf segment that makes up * the outgoing frame, gathering the mapping info * for that segment and creating a tx_bd for the * mbuf. */ for (i = 0; i < map->dm_nsegs ; i++) { chain_prod = TX_CHAIN_IDX(prod); txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; addr = (u_int32_t)(map->dm_segs[i].ds_addr); txbd->tx_bd_haddr_lo = htole32(addr); addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); txbd->tx_bd_haddr_hi = htole32(addr); txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len); txbd->tx_bd_vlan_tag = htole16(vlan_tag); txbd->tx_bd_flags = htole16(flags); prod_bseq += map->dm_segs[i].ds_len; if (i == 0) txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); prod = NEXT_TX_BD(prod); } /* Set the END flag on the last TX buffer descriptor. */ txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg)); DBPRINT(sc, BNX_INFO_SEND, "%s(): End: prod = 0x%04X, chain_prod = %04X, " "prod_bseq = 0x%08X\n", __func__, prod, chain_prod, prod_bseq); /* * Ensure that the mbuf pointer for this * transmission is placed at the array * index of the last descriptor in this * chain. This is done because a single * map is used for all segments of the mbuf * and we don't want to unload the map before * all of the segments have been freed. */ sc->tx_mbuf_ptr[chain_prod] = m0; sc->used_tx_bd += map->dm_nsegs; DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), sc->tx_hi_watermark = sc->used_tx_bd); DBRUNIF(1, sc->tx_mbuf_alloc++); DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod, map_arg.maxsegs)); /* prod points to the next free tx_bd at this point. */ sc->tx_prod = prod; sc->tx_prod_bseq = prod_bseq; return (rc); } /****************************************************************************/ /* Main transmit routine. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_start(struct ifnet *ifp) { struct bnx_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; int count = 0; u_int16_t tx_prod, tx_chain_prod; /* If there's no link or the transmit queue is empty then just exit. */ if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) { DBPRINT(sc, BNX_INFO_SEND, "%s(): output active or device not running.\n", __func__); goto bnx_start_exit; } /* prod points to the next free tx_bd. */ tx_prod = sc->tx_prod; tx_chain_prod = TX_CHAIN_IDX(tx_prod); DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, " "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); /* * Keep adding entries while there is space in the ring. We keep * BNX_TX_SLACK_SPACE entries unused at all times. */ while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) { /* Check for any frames to send. */ IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag to wait * for the NIC to drain the chain. */ if (bnx_tx_encap(sc, &m_head)) { ifp->if_flags |= IFF_OACTIVE; DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for " "business! Total tx_bd used = %d\n", sc->used_tx_bd); break; } IFQ_DEQUEUE(&ifp->if_snd, m_head); count++; #if NBPFILTER > 0 /* Send a copy of the frame to any BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } if (count == 0) { /* no packets were dequeued */ DBPRINT(sc, BNX_VERBOSE_SEND, "%s(): No packets were dequeued\n", __func__); goto bnx_start_exit; } /* Update the driver's counters. */ tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod); DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod " "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); /* Start the transmit. */ REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod); REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq); /* Set the tx timeout. */ ifp->if_timer = BNX_TX_TIMEOUT; bnx_start_exit: return; } /****************************************************************************/ /* Handles any IOCTL calls from the operating system. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_ioctl(struct ifnet *ifp, u_long command, void *data) { struct bnx_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii = &sc->bnx_mii; int s, error = 0; s = splnet(); switch (command) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, command, data)) != 0) break; /* XXX set an ifflags callback and let ether_ioctl * handle all of this. */ switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { case IFF_UP|IFF_RUNNING: if (((ifp->if_flags ^ sc->bnx_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) bnx_set_rx_mode(sc); break; case IFF_UP: bnx_init(ifp); break; case IFF_RUNNING: bnx_stop(ifp, 1); break; case 0: break; } sc->bnx_if_flags = ifp->if_flags; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n", sc->bnx_phy_flags); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) break; error = 0; if (command != SIOCADDMULTI && command && SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* reload packet filter if running */ bnx_set_rx_mode(sc); } break; } splx(s); return (error); } /****************************************************************************/ /* Transmit timeout handler. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_watchdog(struct ifnet *ifp) { struct bnx_softc *sc = ifp->if_softc; DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc); bnx_dump_status_block(sc)); aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n"); /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */ bnx_init(ifp); ifp->if_oerrors++; } /* * Interrupt handler. */ /****************************************************************************/ /* Main interrupt entry point. Verifies that the controller generated the */ /* interrupt and then calls a separate routine for handle the various */ /* interrupt causes (PHY, TX, RX). */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ int bnx_intr(void *xsc) { struct bnx_softc *sc; struct ifnet *ifp; u_int32_t status_attn_bits; const struct status_block *sblk; sc = xsc; if (!device_is_active(sc->bnx_dev)) return 0; ifp = &sc->bnx_ec.ec_if; DBRUNIF(1, sc->interrupts_generated++); bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); /* * If the hardware status block index * matches the last value read by the * driver and we haven't asserted our * interrupt then there's nothing to do. */ if ((sc->status_block->status_idx == sc->last_status_idx) && (REG_RD(sc, BNX_PCICFG_MISC_STATUS) & BNX_PCICFG_MISC_STATUS_INTA_VALUE)) return (0); /* Ack the interrupt and stop others from occuring. */ REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | BNX_PCICFG_INT_ACK_CMD_MASK_INT); /* Keep processing data as long as there is work to do. */ for (;;) { sblk = sc->status_block; status_attn_bits = sblk->status_attn_bits; DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention), aprint_debug("Simulating unexpected status attention bit set."); status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); /* Was it a link change interrupt? */ if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) bnx_phy_intr(sc); /* If any other attention is asserted then the chip is toast. */ if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE))) { DBRUN(1, sc->unexpected_attentions++); aprint_error_dev(sc->bnx_dev, "Fatal attention detected: 0x%08X\n", sblk->status_attn_bits); DBRUN(BNX_FATAL, if (bnx_debug_unexpected_attention == 0) bnx_breakpoint(sc)); bnx_init(ifp); return (1); } /* Check for any completed RX frames. */ if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons) bnx_rx_intr(sc); /* Check for any completed TX frames. */ if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons) bnx_tx_intr(sc); /* Save the status block index value for use during the * next interrupt. */ sc->last_status_idx = sblk->status_idx; /* Prevent speculative reads from getting ahead of the * status block. */ bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); /* If there's no work left then exit the isr. */ if ((sblk->status_rx_quick_consumer_index0 == sc->hw_rx_cons) && (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons)) break; } bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Re-enable interrupts. */ REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx | BNX_PCICFG_INT_ACK_CMD_MASK_INT); REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); /* Handle any frames that arrived while handling the interrupt. */ if (!IFQ_IS_EMPTY(&ifp->if_snd)) bnx_start(ifp); return (1); } /****************************************************************************/ /* Programs the various packet receive modes (broadcast and multicast). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_set_rx_mode(struct bnx_softc *sc) { struct ethercom *ec = &sc->bnx_ec; struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; struct ether_multistep step; u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; u_int32_t rx_mode, sort_mode; int h, i; /* Initialize receive mode default settings. */ rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS | BNX_EMAC_RX_MODE_KEEP_VLAN_TAG); sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN; /* * ASF/IPMI/UMP firmware requires that VLAN tag stripping * be enbled. */ if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG)) rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG; /* * Check for promiscuous, all multicast, or selected * multicast address filtering. */ if (ifp->if_flags & IFF_PROMISC) { DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n"); /* Enable promiscuous mode. */ rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS; sort_mode |= BNX_RPM_SORT_USER0_PROM_EN; } else if (ifp->if_flags & IFF_ALLMULTI) { allmulti: DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n"); /* Enable all multicast addresses. */ for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); sort_mode |= BNX_RPM_SORT_USER0_MC_EN; } else { /* Accept one or more multicast(s). */ DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n"); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0xFF; hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); ETHER_NEXT_MULTI(step, enm); } for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN; } /* Only make changes if the recive mode has actually changed. */ if (rx_mode != sc->rx_mode) { DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", rx_mode); sc->rx_mode = rx_mode; REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); } /* Disable and clear the exisitng sort before enabling a new sort. */ REG_WR(sc, BNX_RPM_SORT_USER0, 0x0); REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode); REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA); } /****************************************************************************/ /* Called periodically to updates statistics from the controllers */ /* statistics block. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_stats_update(struct bnx_softc *sc) { struct ifnet *ifp = &sc->bnx_ec.ec_if; struct statistics_block *stats; DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__); bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, BUS_DMASYNC_POSTREAD); stats = (struct statistics_block *)sc->stats_block; /* * Update the interface statistics from the * hardware statistics. */ ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions; ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts + (u_long)stats->stat_EtherStatsOverrsizePkts + (u_long)stats->stat_IfInMBUFDiscards + (u_long)stats->stat_Dot3StatsAlignmentErrors + (u_long)stats->stat_Dot3StatsFCSErrors; ifp->if_oerrors = (u_long) stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + (u_long)stats->stat_Dot3StatsExcessiveCollisions + (u_long)stats->stat_Dot3StatsLateCollisions; /* * Certain controllers don't report * carrier sense errors correctly. * See errata E11_5708CA0_1165. */ if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; /* * Update the sysctl statistics from the * hardware statistics. */ sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) + (u_int64_t) stats->stat_IfHCInOctets_lo; sc->stat_IfHCInBadOctets = ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) + (u_int64_t) stats->stat_IfHCInBadOctets_lo; sc->stat_IfHCOutOctets = ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) + (u_int64_t) stats->stat_IfHCOutOctets_lo; sc->stat_IfHCOutBadOctets = ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) + (u_int64_t) stats->stat_IfHCOutBadOctets_lo; sc->stat_IfHCInUcastPkts = ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) + (u_int64_t) stats->stat_IfHCInUcastPkts_lo; sc->stat_IfHCInMulticastPkts = ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) + (u_int64_t) stats->stat_IfHCInMulticastPkts_lo; sc->stat_IfHCInBroadcastPkts = ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) + (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo; sc->stat_IfHCOutUcastPkts = ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) + (u_int64_t) stats->stat_IfHCOutUcastPkts_lo; sc->stat_IfHCOutMulticastPkts = ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) + (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo; sc->stat_IfHCOutBroadcastPkts = ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) + (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo; sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; sc->stat_Dot3StatsCarrierSenseErrors = stats->stat_Dot3StatsCarrierSenseErrors; sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; sc->stat_Dot3StatsAlignmentErrors = stats->stat_Dot3StatsAlignmentErrors; sc->stat_Dot3StatsSingleCollisionFrames = stats->stat_Dot3StatsSingleCollisionFrames; sc->stat_Dot3StatsMultipleCollisionFrames = stats->stat_Dot3StatsMultipleCollisionFrames; sc->stat_Dot3StatsDeferredTransmissions = stats->stat_Dot3StatsDeferredTransmissions; sc->stat_Dot3StatsExcessiveCollisions = stats->stat_Dot3StatsExcessiveCollisions; sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts; sc->stat_EtherStatsPktsRx64Octets = stats->stat_EtherStatsPktsRx64Octets; sc->stat_EtherStatsPktsRx65Octetsto127Octets = stats->stat_EtherStatsPktsRx65Octetsto127Octets; sc->stat_EtherStatsPktsRx128Octetsto255Octets = stats->stat_EtherStatsPktsRx128Octetsto255Octets; sc->stat_EtherStatsPktsRx256Octetsto511Octets = stats->stat_EtherStatsPktsRx256Octetsto511Octets; sc->stat_EtherStatsPktsRx512Octetsto1023Octets = stats->stat_EtherStatsPktsRx512Octetsto1023Octets; sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; sc->stat_EtherStatsPktsTx64Octets = stats->stat_EtherStatsPktsTx64Octets; sc->stat_EtherStatsPktsTx65Octetsto127Octets = stats->stat_EtherStatsPktsTx65Octetsto127Octets; sc->stat_EtherStatsPktsTx128Octetsto255Octets = stats->stat_EtherStatsPktsTx128Octetsto255Octets; sc->stat_EtherStatsPktsTx256Octetsto511Octets = stats->stat_EtherStatsPktsTx256Octetsto511Octets; sc->stat_EtherStatsPktsTx512Octetsto1023Octets = stats->stat_EtherStatsPktsTx512Octetsto1023Octets; sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; sc->stat_OutXonSent = stats->stat_OutXonSent; sc->stat_OutXoffSent = stats->stat_OutXoffSent; sc->stat_FlowControlDone = stats->stat_FlowControlDone; sc->stat_MacControlFramesReceived = stats->stat_MacControlFramesReceived; sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; sc->stat_IfInFramesL2FilterDiscards = stats->stat_IfInFramesL2FilterDiscards; sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; sc->stat_CatchupInRuleCheckerDiscards = stats->stat_CatchupInRuleCheckerDiscards; sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; sc->stat_CatchupInRuleCheckerP4Hit = stats->stat_CatchupInRuleCheckerP4Hit; DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__); } void bnx_tick(void *xsc) { struct bnx_softc *sc = xsc; struct mii_data *mii; u_int32_t msg; u_int16_t prod, chain_prod; u_int32_t prod_bseq; int s = splnet(); /* Tell the firmware that the driver is still running. */ #ifdef BNX_DEBUG msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE; #else msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq; #endif REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg); /* Update the statistics from the hardware statistics block. */ bnx_stats_update(sc); /* Schedule the next tick. */ callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc); mii = &sc->bnx_mii; mii_tick(mii); /* try to get more RX buffers, just in case */ prod = sc->rx_prod; prod_bseq = sc->rx_prod_bseq; chain_prod = RX_CHAIN_IDX(prod); bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq); sc->rx_prod = prod; sc->rx_prod_bseq = prod_bseq; splx(s); return; } /****************************************************************************/ /* BNX Debug Routines */ /****************************************************************************/ #ifdef BNX_DEBUG /****************************************************************************/ /* Prints out information about an mbuf. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m) { struct mbuf *mp = m; if (m == NULL) { /* Index out of range. */ aprint_error("mbuf ptr is null!\n"); return; } while (mp) { aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ", mp, mp->m_len); if (mp->m_flags & M_EXT) aprint_debug("M_EXT "); if (mp->m_flags & M_PKTHDR) aprint_debug("M_PKTHDR "); aprint_debug("\n"); if (mp->m_flags & M_EXT) aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size); mp = mp->m_next; } } /****************************************************************************/ /* Prints out the mbufs in the TX mbuf chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ void bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) { struct mbuf *m; int i; BNX_PRINTF(sc, "----------------------------" " tx mbuf data " "----------------------------\n"); for (i = 0; i < count; i++) { m = sc->tx_mbuf_ptr[chain_prod]; BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod); bnx_dump_mbuf(sc, m); chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); } BNX_PRINTF(sc, "--------------------------------------------" "----------------------------\n"); } /* * This routine prints the RX mbuf chain. */ void bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) { struct mbuf *m; int i; BNX_PRINTF(sc, "----------------------------" " rx mbuf data " "----------------------------\n"); for (i = 0; i < count; i++) { m = sc->rx_mbuf_ptr[chain_prod]; BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod); bnx_dump_mbuf(sc, m); chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); } BNX_PRINTF(sc, "--------------------------------------------" "----------------------------\n"); } void bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd) { if (idx > MAX_TX_BD) /* Index out of range. */ BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) /* TX Chain page pointer. */ BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " "page pointer\n", idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); else /* Normal tx_bd entry. */ BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); } void bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd) { if (idx > MAX_RX_BD) /* Index out of range. */ BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) /* TX Chain page pointer. */ BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " "pointer\n", idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); else /* Normal tx_bd entry. */ BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, rxbd->rx_bd_flags); } void bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr) { BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", idx, l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); } /* * This routine prints the TX chain. */ void bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count) { struct tx_bd *txbd; int i; /* First some info about the tx_bd chain structure. */ BNX_PRINTF(sc, "----------------------------" " tx_bd chain " "----------------------------\n"); BNX_PRINTF(sc, "page size = 0x%08X, tx chain pages = 0x%08X\n", (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES); BNX_PRINTF(sc, "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE); BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD); BNX_PRINTF(sc, "" "-----------------------------" " tx_bd data " "-----------------------------\n"); /* Now print out the tx_bd's themselves. */ for (i = 0; i < count; i++) { txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; bnx_dump_txbd(sc, tx_prod, txbd); tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod)); } BNX_PRINTF(sc, "-----------------------------" "--------------" "-----------------------------\n"); } /* * This routine prints the RX chain. */ void bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count) { struct rx_bd *rxbd; int i; /* First some info about the tx_bd chain structure. */ BNX_PRINTF(sc, "----------------------------" " rx_bd chain " "----------------------------\n"); BNX_PRINTF(sc, "----- RX_BD Chain -----\n"); BNX_PRINTF(sc, "page size = 0x%08X, rx chain pages = 0x%08X\n", (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES); BNX_PRINTF(sc, "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE); BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD); BNX_PRINTF(sc, "----------------------------" " rx_bd data " "----------------------------\n"); /* Now print out the rx_bd's themselves. */ for (i = 0; i < count; i++) { rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; bnx_dump_rxbd(sc, rx_prod, rxbd); rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod)); } BNX_PRINTF(sc, "----------------------------" "--------------" "----------------------------\n"); } /* * This routine prints the status block. */ void bnx_dump_status_block(struct bnx_softc *sc) { struct status_block *sblk; bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, BUS_DMASYNC_POSTREAD); sblk = sc->status_block; BNX_PRINTF(sc, "----------------------------- Status Block " "-----------------------------\n"); BNX_PRINTF(sc, "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n", sblk->status_attn_bits, sblk->status_attn_bits_ack, sblk->status_idx); BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n", sblk->status_rx_quick_consumer_index0, sblk->status_tx_quick_consumer_index0); BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx); /* Theses indices are not used for normal L2 drivers. */ if (sblk->status_rx_quick_consumer_index1 || sblk->status_tx_quick_consumer_index1) BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", sblk->status_rx_quick_consumer_index1, sblk->status_tx_quick_consumer_index1); if (sblk->status_rx_quick_consumer_index2 || sblk->status_tx_quick_consumer_index2) BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", sblk->status_rx_quick_consumer_index2, sblk->status_tx_quick_consumer_index2); if (sblk->status_rx_quick_consumer_index3 || sblk->status_tx_quick_consumer_index3) BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", sblk->status_rx_quick_consumer_index3, sblk->status_tx_quick_consumer_index3); if (sblk->status_rx_quick_consumer_index4 || sblk->status_rx_quick_consumer_index5) BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", sblk->status_rx_quick_consumer_index4, sblk->status_rx_quick_consumer_index5); if (sblk->status_rx_quick_consumer_index6 || sblk->status_rx_quick_consumer_index7) BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", sblk->status_rx_quick_consumer_index6, sblk->status_rx_quick_consumer_index7); if (sblk->status_rx_quick_consumer_index8 || sblk->status_rx_quick_consumer_index9) BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", sblk->status_rx_quick_consumer_index8, sblk->status_rx_quick_consumer_index9); if (sblk->status_rx_quick_consumer_index10 || sblk->status_rx_quick_consumer_index11) BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", sblk->status_rx_quick_consumer_index10, sblk->status_rx_quick_consumer_index11); if (sblk->status_rx_quick_consumer_index12 || sblk->status_rx_quick_consumer_index13) BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", sblk->status_rx_quick_consumer_index12, sblk->status_rx_quick_consumer_index13); if (sblk->status_rx_quick_consumer_index14 || sblk->status_rx_quick_consumer_index15) BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", sblk->status_rx_quick_consumer_index14, sblk->status_rx_quick_consumer_index15); if (sblk->status_completion_producer_index || sblk->status_cmd_consumer_index) BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n", sblk->status_completion_producer_index, sblk->status_cmd_consumer_index); BNX_PRINTF(sc, "-------------------------------------------" "-----------------------------\n"); } /* * This routine prints the statistics block. */ void bnx_dump_stats_block(struct bnx_softc *sc) { struct statistics_block *sblk; bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, BUS_DMASYNC_POSTREAD); sblk = sc->stats_block; BNX_PRINTF(sc, "" "-----------------------------" " Stats Block " "-----------------------------\n"); BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, " "IfHcInBadOctets = 0x%08X:%08X\n", sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo, sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo); BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, " "IfHcOutBadOctets = 0x%08X:%08X\n", sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo, sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo); BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, " "IfHcInMulticastPkts = 0x%08X:%08X\n", sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo, sblk->stat_IfHCInMulticastPkts_hi, sblk->stat_IfHCInMulticastPkts_lo); BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n", sblk->stat_IfHCInBroadcastPkts_hi, sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi, sblk->stat_IfHCOutUcastPkts_lo); BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n", sblk->stat_IfHCOutMulticastPkts_hi, sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi, sblk->stat_IfHCOutBroadcastPkts_lo); if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) BNX_PRINTF(sc, "0x%08X : " "emac_tx_stat_dot3statsinternalmactransmiterrors\n", sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); if (sblk->stat_Dot3StatsCarrierSenseErrors) BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n", sblk->stat_Dot3StatsCarrierSenseErrors); if (sblk->stat_Dot3StatsFCSErrors) BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n", sblk->stat_Dot3StatsFCSErrors); if (sblk->stat_Dot3StatsAlignmentErrors) BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n", sblk->stat_Dot3StatsAlignmentErrors); if (sblk->stat_Dot3StatsSingleCollisionFrames) BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n", sblk->stat_Dot3StatsSingleCollisionFrames); if (sblk->stat_Dot3StatsMultipleCollisionFrames) BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n", sblk->stat_Dot3StatsMultipleCollisionFrames); if (sblk->stat_Dot3StatsDeferredTransmissions) BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n", sblk->stat_Dot3StatsDeferredTransmissions); if (sblk->stat_Dot3StatsExcessiveCollisions) BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n", sblk->stat_Dot3StatsExcessiveCollisions); if (sblk->stat_Dot3StatsLateCollisions) BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n", sblk->stat_Dot3StatsLateCollisions); if (sblk->stat_EtherStatsCollisions) BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n", sblk->stat_EtherStatsCollisions); if (sblk->stat_EtherStatsFragments) BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n", sblk->stat_EtherStatsFragments); if (sblk->stat_EtherStatsJabbers) BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n", sblk->stat_EtherStatsJabbers); if (sblk->stat_EtherStatsUndersizePkts) BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n", sblk->stat_EtherStatsUndersizePkts); if (sblk->stat_EtherStatsOverrsizePkts) BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n", sblk->stat_EtherStatsOverrsizePkts); if (sblk->stat_EtherStatsPktsRx64Octets) BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n", sblk->stat_EtherStatsPktsRx64Octets); if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", sblk->stat_EtherStatsPktsRx65Octetsto127Octets); if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsRx128Octetsto255Octets\n", sblk->stat_EtherStatsPktsRx128Octetsto255Octets); if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsRx256Octetsto511Octets\n", sblk->stat_EtherStatsPktsRx256Octetsto511Octets); if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsRx512Octetsto1023Octets\n", sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsRx1024Octetsto1522Octets\n", sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsRx1523Octetsto9022Octets\n", sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); if (sblk->stat_EtherStatsPktsTx64Octets) BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n", sblk->stat_EtherStatsPktsTx64Octets); if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", sblk->stat_EtherStatsPktsTx65Octetsto127Octets); if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsTx128Octetsto255Octets\n", sblk->stat_EtherStatsPktsTx128Octetsto255Octets); if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsTx256Octetsto511Octets\n", sblk->stat_EtherStatsPktsTx256Octetsto511Octets); if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsTx512Octetsto1023Octets\n", sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsTx1024Octetsto1522Octets\n", sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) BNX_PRINTF(sc, "0x%08X : " "EtherStatsPktsTx1523Octetsto9022Octets\n", sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); if (sblk->stat_XonPauseFramesReceived) BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n", sblk->stat_XonPauseFramesReceived); if (sblk->stat_XoffPauseFramesReceived) BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n", sblk->stat_XoffPauseFramesReceived); if (sblk->stat_OutXonSent) BNX_PRINTF(sc, "0x%08X : OutXonSent\n", sblk->stat_OutXonSent); if (sblk->stat_OutXoffSent) BNX_PRINTF(sc, "0x%08X : OutXoffSent\n", sblk->stat_OutXoffSent); if (sblk->stat_FlowControlDone) BNX_PRINTF(sc, "0x%08X : FlowControlDone\n", sblk->stat_FlowControlDone); if (sblk->stat_MacControlFramesReceived) BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n", sblk->stat_MacControlFramesReceived); if (sblk->stat_XoffStateEntered) BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n", sblk->stat_XoffStateEntered); if (sblk->stat_IfInFramesL2FilterDiscards) BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n", sblk->stat_IfInFramesL2FilterDiscards); if (sblk->stat_IfInRuleCheckerDiscards) BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n", sblk->stat_IfInRuleCheckerDiscards); if (sblk->stat_IfInFTQDiscards) BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n", sblk->stat_IfInFTQDiscards); if (sblk->stat_IfInMBUFDiscards) BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n", sblk->stat_IfInMBUFDiscards); if (sblk->stat_IfInRuleCheckerP4Hit) BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n", sblk->stat_IfInRuleCheckerP4Hit); if (sblk->stat_CatchupInRuleCheckerDiscards) BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n", sblk->stat_CatchupInRuleCheckerDiscards); if (sblk->stat_CatchupInFTQDiscards) BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n", sblk->stat_CatchupInFTQDiscards); if (sblk->stat_CatchupInMBUFDiscards) BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n", sblk->stat_CatchupInMBUFDiscards); if (sblk->stat_CatchupInRuleCheckerP4Hit) BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n", sblk->stat_CatchupInRuleCheckerP4Hit); BNX_PRINTF(sc, "-----------------------------" "--------------" "-----------------------------\n"); } void bnx_dump_driver_state(struct bnx_softc *sc) { BNX_PRINTF(sc, "-----------------------------" " Driver State " "-----------------------------\n"); BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual " "address\n", sc); BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n", sc->status_block); BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual " "address\n", sc->stats_block); BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual " "adddress\n", sc->tx_bd_chain); BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n", sc->rx_bd_chain); BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", sc->tx_mbuf_ptr); BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", sc->rx_mbuf_ptr); BNX_PRINTF(sc, " 0x%08X - (sc->interrupts_generated) h/w intrs\n", sc->interrupts_generated); BNX_PRINTF(sc, " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", sc->rx_interrupts); BNX_PRINTF(sc, " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", sc->tx_interrupts); BNX_PRINTF(sc, " 0x%08X - (sc->last_status_idx) status block index\n", sc->last_status_idx); BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n", sc->tx_prod); BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n", sc->tx_cons); BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", sc->tx_prod_bseq); BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n", sc->rx_prod); BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n", sc->rx_cons); BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", sc->rx_prod_bseq); BNX_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", sc->rx_mbuf_alloc); BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n", sc->free_rx_bd); BNX_PRINTF(sc, "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n", sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD); BNX_PRINTF(sc, " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n", sc->tx_mbuf_alloc); BNX_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", sc->rx_mbuf_alloc); BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n", sc->used_tx_bd); BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD); BNX_PRINTF(sc, " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n", sc->mbuf_alloc_failed); BNX_PRINTF(sc, "-------------------------------------------" "-----------------------------\n"); } void bnx_dump_hw_state(struct bnx_softc *sc) { u_int32_t val1; int i; BNX_PRINTF(sc, "----------------------------" " Hardware State " "----------------------------\n"); BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver); val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS); BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n", val1, BNX_MISC_ENABLE_STATUS_BITS); val1 = REG_RD(sc, BNX_DMA_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS); val1 = REG_RD(sc, BNX_CTX_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS); val1 = REG_RD(sc, BNX_EMAC_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, BNX_EMAC_STATUS); val1 = REG_RD(sc, BNX_RPM_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS); val1 = REG_RD(sc, BNX_TBDR_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, BNX_TBDR_STATUS); val1 = REG_RD(sc, BNX_TDMA_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, BNX_TDMA_STATUS); val1 = REG_RD(sc, BNX_HC_STATUS); BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS); BNX_PRINTF(sc, "----------------------------" "----------------" "----------------------------\n"); BNX_PRINTF(sc, "----------------------------" " Register Dump " "----------------------------\n"); for (i = 0x400; i < 0x8000; i += 0x10) BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, REG_RD(sc, i), REG_RD(sc, i + 0x4), REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); BNX_PRINTF(sc, "----------------------------" "----------------" "----------------------------\n"); } void bnx_breakpoint(struct bnx_softc *sc) { /* Unreachable code to shut the compiler up about unused functions. */ if (0) { bnx_dump_txbd(sc, 0, NULL); bnx_dump_rxbd(sc, 0, NULL); bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); bnx_dump_l2fhdr(sc, 0, NULL); bnx_dump_tx_chain(sc, 0, USABLE_TX_BD); bnx_dump_rx_chain(sc, 0, USABLE_RX_BD); bnx_dump_status_block(sc); bnx_dump_stats_block(sc); bnx_dump_driver_state(sc); bnx_dump_hw_state(sc); } bnx_dump_driver_state(sc); /* Print the important status block fields. */ bnx_dump_status_block(sc); #if 0 /* Call the debugger. */ breakpoint(); #endif return; } #endif