/* $NetBSD: sd.c,v 1.241 2005/10/15 17:29:25 yamt Exp $ */ /*- * Copyright (c) 1998, 2003, 2004 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Originally written by Julian Elischer (julian@dialix.oz.au) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@dialix.oz.au) Sept 1992 */ #include __KERNEL_RCSID(0, "$NetBSD: sd.c,v 1.241 2005/10/15 17:29:25 yamt Exp $"); #include "opt_scsi.h" #include "rnd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include #include #include #include #include #include #include #define SDUNIT(dev) DISKUNIT(dev) #define SDPART(dev) DISKPART(dev) #define SDMINOR(unit, part) DISKMINOR(unit, part) #define MAKESDDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part) #define SDLABELDEV(dev) (MAKESDDEV(major(dev), SDUNIT(dev), RAW_PART)) static void sdminphys(struct buf *); static void sdgetdefaultlabel(struct sd_softc *, struct disklabel *); static void sdgetdisklabel(struct sd_softc *); static void sdstart(struct scsipi_periph *); static void sdrestart(void *); static void sddone(struct scsipi_xfer *, int); static void sd_shutdown(void *); static int sd_interpret_sense(struct scsipi_xfer *); static int sd_mode_sense(struct sd_softc *, u_int8_t, void *, size_t, int, int, int *); static int sd_mode_select(struct sd_softc *, u_int8_t, void *, size_t, int, int); static int sd_get_simplifiedparms(struct sd_softc *, struct disk_parms *, int); static int sd_get_capacity(struct sd_softc *, struct disk_parms *, int); static int sd_get_parms(struct sd_softc *, struct disk_parms *, int); static int sd_get_parms_page4(struct sd_softc *, struct disk_parms *, int); static int sd_get_parms_page5(struct sd_softc *, struct disk_parms *, int); static int sd_flush(struct sd_softc *, int); static int sd_getcache(struct sd_softc *, int *); static int sd_setcache(struct sd_softc *, int); static int sdmatch(struct device *, struct cfdata *, void *); static void sdattach(struct device *, struct device *, void *); static int sdactivate(struct device *, enum devact); static int sddetach(struct device *, int); CFATTACH_DECL(sd, sizeof(struct sd_softc), sdmatch, sdattach, sddetach, sdactivate); extern struct cfdriver sd_cd; static const struct scsipi_inquiry_pattern sd_patterns[] = { {T_DIRECT, T_FIXED, "", "", ""}, {T_DIRECT, T_REMOV, "", "", ""}, {T_OPTICAL, T_FIXED, "", "", ""}, {T_OPTICAL, T_REMOV, "", "", ""}, {T_SIMPLE_DIRECT, T_FIXED, "", "", ""}, {T_SIMPLE_DIRECT, T_REMOV, "", "", ""}, }; static dev_type_open(sdopen); static dev_type_close(sdclose); static dev_type_read(sdread); static dev_type_write(sdwrite); static dev_type_ioctl(sdioctl); static dev_type_strategy(sdstrategy); static dev_type_dump(sddump); static dev_type_size(sdsize); const struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, sddump, sdsize, D_DISK }; const struct cdevsw sd_cdevsw = { sdopen, sdclose, sdread, sdwrite, sdioctl, nostop, notty, nopoll, nommap, nokqfilter, D_DISK }; static struct dkdriver sddkdriver = { sdstrategy, sdminphys }; static const struct scsipi_periphsw sd_switch = { sd_interpret_sense, /* check our error handler first */ sdstart, /* have a queue, served by this */ NULL, /* have no async handler */ sddone, /* deal with stats at interrupt time */ }; struct sd_mode_sense_data { /* * XXX * We are not going to parse this as-is -- it just has to be large * enough. */ union { struct scsi_mode_parameter_header_6 small; struct scsi_mode_parameter_header_10 big; } header; struct scsi_general_block_descriptor blk_desc; union scsi_disk_pages pages; }; /* * The routine called by the low level scsi routine when it discovers * A device suitable for this driver */ static int sdmatch(struct device *parent, struct cfdata *match, void *aux) { struct scsipibus_attach_args *sa = aux; int priority; (void)scsipi_inqmatch(&sa->sa_inqbuf, sd_patterns, sizeof(sd_patterns) / sizeof(sd_patterns[0]), sizeof(sd_patterns[0]), &priority); return (priority); } /* * Attach routine common to atapi & scsi. */ static void sdattach(struct device *parent, struct device *self, void *aux) { struct sd_softc *sd = (void *)self; struct scsipibus_attach_args *sa = aux; struct scsipi_periph *periph = sa->sa_periph; int error, result; struct disk_parms *dp = &sd->params; char pbuf[9]; SC_DEBUG(periph, SCSIPI_DB2, ("sdattach: ")); sd->type = (sa->sa_inqbuf.type & SID_TYPE); if (sd->type == T_SIMPLE_DIRECT) periph->periph_quirks |= PQUIRK_ONLYBIG | PQUIRK_NOBIGMODESENSE; if (scsipi_periph_bustype(sa->sa_periph) == SCSIPI_BUSTYPE_SCSI && periph->periph_version == 0) sd->flags |= SDF_ANCIENT; bufq_alloc(&sd->buf_queue, BUFQ_DISK_DEFAULT_STRAT, BUFQ_SORT_RAWBLOCK); callout_init(&sd->sc_callout); /* * Store information needed to contact our base driver */ sd->sc_periph = periph; periph->periph_dev = &sd->sc_dev; periph->periph_switch = &sd_switch; /* * Increase our openings to the maximum-per-periph * supported by the adapter. This will either be * clamped down or grown by the adapter if necessary. */ periph->periph_openings = SCSIPI_CHAN_MAX_PERIPH(periph->periph_channel); periph->periph_flags |= PERIPH_GROW_OPENINGS; /* * Initialize and attach the disk structure. */ sd->sc_dk.dk_driver = &sddkdriver; sd->sc_dk.dk_name = sd->sc_dev.dv_xname; disk_attach(&sd->sc_dk); /* * Use the subdriver to request information regarding the drive. */ aprint_naive("\n"); aprint_normal("\n"); error = scsipi_test_unit_ready(periph, XS_CTL_DISCOVERY | XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE | XS_CTL_SILENT_NODEV); if (error) result = SDGP_RESULT_OFFLINE; else result = sd_get_parms(sd, &sd->params, XS_CTL_DISCOVERY); aprint_normal("%s: ", sd->sc_dev.dv_xname); switch (result) { case SDGP_RESULT_OK: format_bytes(pbuf, sizeof(pbuf), (u_int64_t)dp->disksize * dp->blksize); aprint_normal( "%s, %ld cyl, %ld head, %ld sec, %ld bytes/sect x %llu sectors", pbuf, dp->cyls, dp->heads, dp->sectors, dp->blksize, (unsigned long long)dp->disksize); break; case SDGP_RESULT_OFFLINE: aprint_normal("drive offline"); break; case SDGP_RESULT_UNFORMATTED: aprint_normal("unformatted media"); break; #ifdef DIAGNOSTIC default: panic("sdattach: unknown result from get_parms"); break; #endif } aprint_normal("\n"); /* * Establish a shutdown hook so that we can ensure that * our data has actually made it onto the platter at * shutdown time. Note that this relies on the fact * that the shutdown hook code puts us at the head of * the list (thus guaranteeing that our hook runs before * our ancestors'). */ if ((sd->sc_sdhook = shutdownhook_establish(sd_shutdown, sd)) == NULL) aprint_error("%s: WARNING: unable to establish shutdown hook\n", sd->sc_dev.dv_xname); #if NRND > 0 /* * attach the device into the random source list */ rnd_attach_source(&sd->rnd_source, sd->sc_dev.dv_xname, RND_TYPE_DISK, 0); #endif /* Discover wedges on this disk. */ dkwedge_discover(&sd->sc_dk); } static int sdactivate(struct device *self, enum devact act) { int rv = 0; switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: /* * Nothing to do; we key off the device's DVF_ACTIVE. */ break; } return (rv); } static int sddetach(struct device *self, int flags) { struct sd_softc *sd = (struct sd_softc *) self; int s, bmaj, cmaj, i, mn; /* locate the major number */ bmaj = bdevsw_lookup_major(&sd_bdevsw); cmaj = cdevsw_lookup_major(&sd_cdevsw); /* Nuke the vnodes for any open instances */ for (i = 0; i < MAXPARTITIONS; i++) { mn = SDMINOR(self->dv_unit, i); vdevgone(bmaj, mn, mn, VBLK); vdevgone(cmaj, mn, mn, VCHR); } /* kill any pending restart */ callout_stop(&sd->sc_callout); /* Delete all of our wedges. */ dkwedge_delall(&sd->sc_dk); s = splbio(); /* Kill off any queued buffers. */ bufq_drain(sd->buf_queue); bufq_free(sd->buf_queue); /* Kill off any pending commands. */ scsipi_kill_pending(sd->sc_periph); splx(s); /* Detach from the disk list. */ disk_detach(&sd->sc_dk); /* Get rid of the shutdown hook. */ shutdownhook_disestablish(sd->sc_sdhook); #if NRND > 0 /* Unhook the entropy source. */ rnd_detach_source(&sd->rnd_source); #endif return (0); } /* * open the device. Make sure the partition info is a up-to-date as can be. */ static int sdopen(dev_t dev, int flag, int fmt, struct proc *p) { struct sd_softc *sd; struct scsipi_periph *periph; struct scsipi_adapter *adapt; int unit, part; int error; unit = SDUNIT(dev); if (unit >= sd_cd.cd_ndevs) return (ENXIO); sd = sd_cd.cd_devs[unit]; if (sd == NULL) return (ENXIO); if ((sd->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (ENODEV); part = SDPART(dev); if ((error = lockmgr(&sd->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL)) != 0) return (error); /* * If there are wedges, and this is not RAW_PART, then we * need to fail. */ if (sd->sc_dk.dk_nwedges != 0 && part != RAW_PART) { error = EBUSY; goto bad1; } periph = sd->sc_periph; adapt = periph->periph_channel->chan_adapter; SC_DEBUG(periph, SCSIPI_DB1, ("sdopen: dev=0x%x (unit %d (of %d), partition %d)\n", dev, unit, sd_cd.cd_ndevs, part)); /* * If this is the first open of this device, add a reference * to the adapter. */ if (sd->sc_dk.dk_openmask == 0 && (error = scsipi_adapter_addref(adapt)) != 0) goto bad1; if ((periph->periph_flags & PERIPH_OPEN) != 0) { /* * If any partition is open, but the disk has been invalidated, * disallow further opens of non-raw partition */ if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0 && (part != RAW_PART || fmt != S_IFCHR)) { error = EIO; goto bad2; } } else { int silent; if (part == RAW_PART && fmt == S_IFCHR) silent = XS_CTL_SILENT; else silent = 0; /* Check that it is still responding and ok. */ error = scsipi_test_unit_ready(periph, XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE | silent); /* * Start the pack spinning if necessary. Always allow the * raw parition to be opened, for raw IOCTLs. Data transfers * will check for SDEV_MEDIA_LOADED. */ if (error == EIO) { int error2; error2 = scsipi_start(periph, SSS_START, silent); switch (error2) { case 0: error = 0; break; case EIO: case EINVAL: break; default: error = error2; break; } } if (error) { if (silent) goto out; goto bad2; } periph->periph_flags |= PERIPH_OPEN; if (periph->periph_flags & PERIPH_REMOVABLE) { /* Lock the pack in. */ error = scsipi_prevent(periph, SPAMR_PREVENT_DT, XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE); if (error) goto bad3; } if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) { int param_error; periph->periph_flags |= PERIPH_MEDIA_LOADED; /* * Load the physical device parameters. * * Note that if media is present but unformatted, * we allow the open (so that it can be formatted!). * The drive should refuse real I/O, if the media is * unformatted. */ if ((param_error = sd_get_parms(sd, &sd->params, 0)) == SDGP_RESULT_OFFLINE) { error = ENXIO; periph->periph_flags &= ~PERIPH_MEDIA_LOADED; goto bad3; } SC_DEBUG(periph, SCSIPI_DB3, ("Params loaded ")); /* Load the partition info if not already loaded. */ if (param_error == 0) { sdgetdisklabel(sd); SC_DEBUG(periph, SCSIPI_DB3, ("Disklabel loaded ")); } } } /* Check that the partition exists. */ if (part != RAW_PART && (part >= sd->sc_dk.dk_label->d_npartitions || sd->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) { error = ENXIO; goto bad3; } out: /* Insure only one open at a time. */ switch (fmt) { case S_IFCHR: sd->sc_dk.dk_copenmask |= (1 << part); break; case S_IFBLK: sd->sc_dk.dk_bopenmask |= (1 << part); break; } sd->sc_dk.dk_openmask = sd->sc_dk.dk_copenmask | sd->sc_dk.dk_bopenmask; SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n")); (void) lockmgr(&sd->sc_dk.dk_openlock, LK_RELEASE, NULL); return (0); bad3: if (sd->sc_dk.dk_openmask == 0) { if (periph->periph_flags & PERIPH_REMOVABLE) scsipi_prevent(periph, SPAMR_ALLOW, XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE); periph->periph_flags &= ~PERIPH_OPEN; } bad2: if (sd->sc_dk.dk_openmask == 0) scsipi_adapter_delref(adapt); bad1: (void) lockmgr(&sd->sc_dk.dk_openlock, LK_RELEASE, NULL); return (error); } /* * close the device.. only called if we are the LAST occurence of an open * device. Convenient now but usually a pain. */ static int sdclose(dev_t dev, int flag, int fmt, struct proc *p) { struct sd_softc *sd = sd_cd.cd_devs[SDUNIT(dev)]; struct scsipi_periph *periph = sd->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; int part = SDPART(dev); int error; if ((error = lockmgr(&sd->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL)) != 0) return (error); switch (fmt) { case S_IFCHR: sd->sc_dk.dk_copenmask &= ~(1 << part); break; case S_IFBLK: sd->sc_dk.dk_bopenmask &= ~(1 << part); break; } sd->sc_dk.dk_openmask = sd->sc_dk.dk_copenmask | sd->sc_dk.dk_bopenmask; if (sd->sc_dk.dk_openmask == 0) { /* * If the disk cache needs flushing, and the disk supports * it, do it now. */ if ((sd->flags & SDF_DIRTY) != 0) { if (sd_flush(sd, 0)) { printf("%s: cache synchronization failed\n", sd->sc_dev.dv_xname); sd->flags &= ~SDF_FLUSHING; } else sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY); } if (! (periph->periph_flags & PERIPH_KEEP_LABEL)) periph->periph_flags &= ~PERIPH_MEDIA_LOADED; scsipi_wait_drain(periph); if (periph->periph_flags & PERIPH_REMOVABLE) scsipi_prevent(periph, SPAMR_ALLOW, XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_NOT_READY); periph->periph_flags &= ~PERIPH_OPEN; scsipi_wait_drain(periph); scsipi_adapter_delref(adapt); } (void) lockmgr(&sd->sc_dk.dk_openlock, LK_RELEASE, NULL); return (0); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void sdstrategy(struct buf *bp) { struct sd_softc *sd = sd_cd.cd_devs[SDUNIT(bp->b_dev)]; struct scsipi_periph *periph = sd->sc_periph; struct disklabel *lp; daddr_t blkno; int s; boolean_t sector_aligned; SC_DEBUG(sd->sc_periph, SCSIPI_DB2, ("sdstrategy ")); SC_DEBUG(sd->sc_periph, SCSIPI_DB1, ("%d bytes @ blk %" PRId64 "\n", bp->b_bcount, bp->b_blkno)); /* * If the device has been made invalid, error out */ if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0 || (sd->sc_dev.dv_flags & DVF_ACTIVE) == 0) { if (periph->periph_flags & PERIPH_OPEN) bp->b_error = EIO; else bp->b_error = ENODEV; goto bad; } lp = sd->sc_dk.dk_label; /* * The transfer must be a whole number of blocks, offset must not be * negative. */ if (lp->d_secsize == DEV_BSIZE) { sector_aligned = (bp->b_bcount & (DEV_BSIZE - 1)) == 0; } else { sector_aligned = (bp->b_bcount % lp->d_secsize) == 0; } if (!sector_aligned || bp->b_blkno < 0) { bp->b_error = EINVAL; goto bad; } /* * If it's a null transfer, return immediatly */ if (bp->b_bcount == 0) goto done; /* * Do bounds checking, adjust transfer. if error, process. * If end of partition, just return. */ if (SDPART(bp->b_dev) == RAW_PART) { if (bounds_check_with_mediasize(bp, DEV_BSIZE, sd->params.disksize512) <= 0) goto done; } else { if (bounds_check_with_label(&sd->sc_dk, bp, (sd->flags & (SDF_WLABEL|SDF_LABELLING)) != 0) <= 0) goto done; } /* * Now convert the block number to absolute and put it in * terms of the device's logical block size. */ if (lp->d_secsize == DEV_BSIZE) blkno = bp->b_blkno; else if (lp->d_secsize > DEV_BSIZE) blkno = bp->b_blkno / (lp->d_secsize / DEV_BSIZE); else blkno = bp->b_blkno * (DEV_BSIZE / lp->d_secsize); if (SDPART(bp->b_dev) != RAW_PART) blkno += lp->d_partitions[SDPART(bp->b_dev)].p_offset; bp->b_rawblkno = blkno; s = splbio(); /* * Place it in the queue of disk activities for this disk. * * XXX Only do disksort() if the current operating mode does not * XXX include tagged queueing. */ BUFQ_PUT(sd->buf_queue, bp); /* * Tell the device to get going on the transfer if it's * not doing anything, otherwise just wait for completion */ sdstart(sd->sc_periph); splx(s); return; bad: bp->b_flags |= B_ERROR; done: /* * Correctly set the buf to indicate a completed xfer */ bp->b_resid = bp->b_bcount; biodone(bp); } /* * sdstart looks to see if there is a buf waiting for the device * and that the device is not already busy. If both are true, * It dequeues the buf and creates a scsi command to perform the * transfer in the buf. The transfer request will call scsipi_done * on completion, which will in turn call this routine again * so that the next queued transfer is performed. * The bufs are queued by the strategy routine (sdstrategy) * * This routine is also called after other non-queued requests * have been made of the scsi driver, to ensure that the queue * continues to be drained. * * must be called at the correct (highish) spl level * sdstart() is called at splbio from sdstrategy, sdrestart and scsipi_done */ static void sdstart(struct scsipi_periph *periph) { struct sd_softc *sd = (void *)periph->periph_dev; struct disklabel *lp = sd->sc_dk.dk_label; struct buf *bp = 0; struct scsipi_rw_16 cmd16; struct scsipi_rw_10 cmd_big; struct scsi_rw_6 cmd_small; struct scsipi_generic *cmdp; struct scsipi_xfer *xs; int nblks, cmdlen, error, flags; SC_DEBUG(periph, SCSIPI_DB2, ("sdstart ")); /* * Check if the device has room for another command */ while (periph->periph_active < periph->periph_openings) { /* * there is excess capacity, but a special waits * It'll need the adapter as soon as we clear out of the * way and let it run (user level wait). */ if (periph->periph_flags & PERIPH_WAITING) { periph->periph_flags &= ~PERIPH_WAITING; wakeup((caddr_t)periph); return; } /* * If the device has become invalid, abort all the * reads and writes until all files have been closed and * re-opened */ if (__predict_false( (periph->periph_flags & PERIPH_MEDIA_LOADED) == 0)) { if ((bp = BUFQ_GET(sd->buf_queue)) != NULL) { bp->b_error = EIO; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; biodone(bp); continue; } else { return; } } /* * See if there is a buf with work for us to do.. */ if ((bp = BUFQ_PEEK(sd->buf_queue)) == NULL) return; /* * We have a buf, now we should make a command. */ if (lp->d_secsize == DEV_BSIZE) nblks = bp->b_bcount >> DEV_BSHIFT; else nblks = howmany(bp->b_bcount, lp->d_secsize); /* * Fill out the scsi command. Use the smallest CDB possible * (6-byte, 10-byte, or 16-byte). */ if (((bp->b_rawblkno & 0x1fffff) == bp->b_rawblkno) && ((nblks & 0xff) == nblks) && !(periph->periph_quirks & PQUIRK_ONLYBIG)) { /* 6-byte CDB */ memset(&cmd_small, 0, sizeof(cmd_small)); cmd_small.opcode = (bp->b_flags & B_READ) ? SCSI_READ_6_COMMAND : SCSI_WRITE_6_COMMAND; _lto3b(bp->b_rawblkno, cmd_small.addr); cmd_small.length = nblks & 0xff; cmdlen = sizeof(cmd_small); cmdp = (struct scsipi_generic *)&cmd_small; } else if ((bp->b_rawblkno & 0xffffffff) == bp->b_rawblkno) { /* 10-byte CDB */ memset(&cmd_big, 0, sizeof(cmd_big)); cmd_big.opcode = (bp->b_flags & B_READ) ? READ_10 : WRITE_10; _lto4b(bp->b_rawblkno, cmd_big.addr); _lto2b(nblks, cmd_big.length); cmdlen = sizeof(cmd_big); cmdp = (struct scsipi_generic *)&cmd_big; } else { /* 16-byte CDB */ memset(&cmd16, 0, sizeof(cmd16)); cmd16.opcode = (bp->b_flags & B_READ) ? READ_16 : WRITE_16; _lto8b(bp->b_rawblkno, cmd16.addr); _lto4b(nblks, cmd16.length); cmdlen = sizeof(cmd16); cmdp = (struct scsipi_generic *)&cmd16; } /* Instrumentation. */ disk_busy(&sd->sc_dk); /* * Mark the disk dirty so that the cache will be * flushed on close. */ if ((bp->b_flags & B_READ) == 0) sd->flags |= SDF_DIRTY; /* * Figure out what flags to use. */ flags = XS_CTL_NOSLEEP|XS_CTL_ASYNC|XS_CTL_SIMPLE_TAG; if (bp->b_flags & B_READ) flags |= XS_CTL_DATA_IN; else flags |= XS_CTL_DATA_OUT; /* * Call the routine that chats with the adapter. * Note: we cannot sleep as we may be an interrupt */ xs = scsipi_make_xs(periph, cmdp, cmdlen, (u_char *)bp->b_data, bp->b_bcount, SDRETRIES, SD_IO_TIMEOUT, bp, flags); if (__predict_false(xs == NULL)) { /* * out of memory. Keep this buffer in the queue, and * retry later. */ callout_reset(&sd->sc_callout, hz / 2, sdrestart, periph); return; } /* * need to dequeue the buffer before queuing the command, * because cdstart may be called recursively from the * HBA driver */ #ifdef DIAGNOSTIC if (BUFQ_GET(sd->buf_queue) != bp) panic("sdstart(): dequeued wrong buf"); #else BUFQ_GET(sd->buf_queue); #endif error = scsipi_execute_xs(xs); /* with a scsipi_xfer preallocated, scsipi_command can't fail */ KASSERT(error == 0); } } static void sdrestart(void *v) { int s = splbio(); sdstart((struct scsipi_periph *)v); splx(s); } static void sddone(struct scsipi_xfer *xs, int error) { struct sd_softc *sd = (void *)xs->xs_periph->periph_dev; struct buf *bp = xs->bp; if (sd->flags & SDF_FLUSHING) { /* Flush completed, no longer dirty. */ sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY); } if (bp) { bp->b_error = error; bp->b_resid = xs->resid; if (error) bp->b_flags |= B_ERROR; disk_unbusy(&sd->sc_dk, bp->b_bcount - bp->b_resid, (bp->b_flags & B_READ)); #if NRND > 0 rnd_add_uint32(&sd->rnd_source, bp->b_rawblkno); #endif biodone(bp); } } static void sdminphys(struct buf *bp) { struct sd_softc *sd = sd_cd.cd_devs[SDUNIT(bp->b_dev)]; long xmax; /* * If the device is ancient, we want to make sure that * the transfer fits into a 6-byte cdb. * * XXX Note that the SCSI-I spec says that 256-block transfers * are allowed in a 6-byte read/write, and are specified * by settng the "length" to 0. However, we're conservative * here, allowing only 255-block transfers in case an * ancient device gets confused by length == 0. A length of 0 * in a 10-byte read/write actually means 0 blocks. */ if ((sd->flags & SDF_ANCIENT) && ((sd->sc_periph->periph_flags & (PERIPH_REMOVABLE | PERIPH_MEDIA_LOADED)) != PERIPH_REMOVABLE)) { xmax = sd->sc_dk.dk_label->d_secsize * 0xff; if (bp->b_bcount > xmax) bp->b_bcount = xmax; } scsipi_adapter_minphys(sd->sc_periph->periph_channel, bp); } static int sdread(dev_t dev, struct uio *uio, int ioflag) { return (physio(sdstrategy, NULL, dev, B_READ, sdminphys, uio)); } static int sdwrite(dev_t dev, struct uio *uio, int ioflag) { return (physio(sdstrategy, NULL, dev, B_WRITE, sdminphys, uio)); } /* * Perform special action on behalf of the user * Knows about the internals of this device */ static int sdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) { struct sd_softc *sd = sd_cd.cd_devs[SDUNIT(dev)]; struct scsipi_periph *periph = sd->sc_periph; int part = SDPART(dev); int error = 0; #ifdef __HAVE_OLD_DISKLABEL struct disklabel *newlabel = NULL; #endif SC_DEBUG(sd->sc_periph, SCSIPI_DB2, ("sdioctl 0x%lx ", cmd)); /* * If the device is not valid, some IOCTLs can still be * handled on the raw partition. Check this here. */ if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) { switch (cmd) { case DIOCKLABEL: case DIOCWLABEL: case DIOCLOCK: case DIOCEJECT: case ODIOCEJECT: case DIOCGCACHE: case DIOCSCACHE: case SCIOCIDENTIFY: case OSCIOCIDENTIFY: case SCIOCCOMMAND: case SCIOCDEBUG: if (part == RAW_PART) break; /* FALLTHROUGH */ default: if ((periph->periph_flags & PERIPH_OPEN) == 0) return (ENODEV); else return (EIO); } } switch (cmd) { case DIOCGDINFO: *(struct disklabel *)addr = *(sd->sc_dk.dk_label); return (0); #ifdef __HAVE_OLD_DISKLABEL case ODIOCGDINFO: newlabel = malloc(sizeof *newlabel, M_TEMP, M_WAITOK); if (newlabel == NULL) return EIO; memcpy(newlabel, sd->sc_dk.dk_label, sizeof (*newlabel)); if (newlabel->d_npartitions <= OLDMAXPARTITIONS) memcpy(addr, newlabel, sizeof (struct olddisklabel)); else error = ENOTTY; free(newlabel, M_TEMP); return error; #endif case DIOCGPART: ((struct partinfo *)addr)->disklab = sd->sc_dk.dk_label; ((struct partinfo *)addr)->part = &sd->sc_dk.dk_label->d_partitions[part]; return (0); case DIOCWDINFO: case DIOCSDINFO: #ifdef __HAVE_OLD_DISKLABEL case ODIOCWDINFO: case ODIOCSDINFO: #endif { struct disklabel *lp; if ((flag & FWRITE) == 0) return (EBADF); #ifdef __HAVE_OLD_DISKLABEL if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) { newlabel = malloc(sizeof *newlabel, M_TEMP, M_WAITOK); if (newlabel == NULL) return EIO; memset(newlabel, 0, sizeof newlabel); memcpy(newlabel, addr, sizeof (struct olddisklabel)); lp = newlabel; } else #endif lp = (struct disklabel *)addr; if ((error = lockmgr(&sd->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL)) != 0) goto bad; sd->flags |= SDF_LABELLING; error = setdisklabel(sd->sc_dk.dk_label, lp, /*sd->sc_dk.dk_openmask : */0, sd->sc_dk.dk_cpulabel); if (error == 0) { if (cmd == DIOCWDINFO #ifdef __HAVE_OLD_DISKLABEL || cmd == ODIOCWDINFO #endif ) error = writedisklabel(SDLABELDEV(dev), sdstrategy, sd->sc_dk.dk_label, sd->sc_dk.dk_cpulabel); } sd->flags &= ~SDF_LABELLING; (void) lockmgr(&sd->sc_dk.dk_openlock, LK_RELEASE, NULL); bad: #ifdef __HAVE_OLD_DISKLABEL if (newlabel != NULL) free(newlabel, M_TEMP); #endif return (error); } case DIOCKLABEL: if (*(int *)addr) periph->periph_flags |= PERIPH_KEEP_LABEL; else periph->periph_flags &= ~PERIPH_KEEP_LABEL; return (0); case DIOCWLABEL: if ((flag & FWRITE) == 0) return (EBADF); if (*(int *)addr) sd->flags |= SDF_WLABEL; else sd->flags &= ~SDF_WLABEL; return (0); case DIOCLOCK: return (scsipi_prevent(periph, (*(int *)addr) ? SPAMR_PREVENT_DT : SPAMR_ALLOW, 0)); case DIOCEJECT: if ((periph->periph_flags & PERIPH_REMOVABLE) == 0) return (ENOTTY); if (*(int *)addr == 0) { /* * Don't force eject: check that we are the only * partition open. If so, unlock it. */ if ((sd->sc_dk.dk_openmask & ~(1 << part)) == 0 && sd->sc_dk.dk_bopenmask + sd->sc_dk.dk_copenmask == sd->sc_dk.dk_openmask) { error = scsipi_prevent(periph, SPAMR_ALLOW, XS_CTL_IGNORE_NOT_READY); if (error) return (error); } else { return (EBUSY); } } /* FALLTHROUGH */ case ODIOCEJECT: return ((periph->periph_flags & PERIPH_REMOVABLE) == 0 ? ENOTTY : scsipi_start(periph, SSS_STOP|SSS_LOEJ, 0)); case DIOCGDEFLABEL: sdgetdefaultlabel(sd, (struct disklabel *)addr); return (0); #ifdef __HAVE_OLD_DISKLABEL case ODIOCGDEFLABEL: newlabel = malloc(sizeof *newlabel, M_TEMP, M_WAITOK); if (newlabel == NULL) return EIO; sdgetdefaultlabel(sd, newlabel); if (newlabel->d_npartitions <= OLDMAXPARTITIONS) memcpy(addr, newlabel, sizeof (struct olddisklabel)); else error = ENOTTY; free(newlabel, M_TEMP); return error; #endif case DIOCGCACHE: return (sd_getcache(sd, (int *) addr)); case DIOCSCACHE: if ((flag & FWRITE) == 0) return (EBADF); return (sd_setcache(sd, *(int *) addr)); case DIOCCACHESYNC: /* * XXX Do we really need to care about having a writable * file descriptor here? */ if ((flag & FWRITE) == 0) return (EBADF); if (((sd->flags & SDF_DIRTY) != 0 || *(int *)addr != 0)) { error = sd_flush(sd, 0); if (error) sd->flags &= ~SDF_FLUSHING; else sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY); } else error = 0; return (error); case DIOCAWEDGE: { struct dkwedge_info *dkw = (void *) addr; if ((flag & FWRITE) == 0) return (EBADF); /* If the ioctl happens here, the parent is us. */ strcpy(dkw->dkw_parent, sd->sc_dev.dv_xname); return (dkwedge_add(dkw)); } case DIOCDWEDGE: { struct dkwedge_info *dkw = (void *) addr; if ((flag & FWRITE) == 0) return (EBADF); /* If the ioctl happens here, the parent is us. */ strcpy(dkw->dkw_parent, sd->sc_dev.dv_xname); return (dkwedge_del(dkw)); } case DIOCLWEDGES: { struct dkwedge_list *dkwl = (void *) addr; return (dkwedge_list(&sd->sc_dk, dkwl, p)); } default: if (part != RAW_PART) return (ENOTTY); return (scsipi_do_ioctl(periph, dev, cmd, addr, flag, p)); } #ifdef DIAGNOSTIC panic("sdioctl: impossible"); #endif } static void sdgetdefaultlabel(struct sd_softc *sd, struct disklabel *lp) { memset(lp, 0, sizeof(struct disklabel)); lp->d_secsize = sd->params.blksize; lp->d_ntracks = sd->params.heads; lp->d_nsectors = sd->params.sectors; lp->d_ncylinders = sd->params.cyls; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; switch (scsipi_periph_bustype(sd->sc_periph)) { case SCSIPI_BUSTYPE_SCSI: lp->d_type = DTYPE_SCSI; break; case SCSIPI_BUSTYPE_ATAPI: lp->d_type = DTYPE_ATAPI; break; } /* * XXX * We could probe the mode pages to figure out what kind of disc it is. * Is this worthwhile? */ strncpy(lp->d_typename, "mydisk", 16); strncpy(lp->d_packname, "fictitious", 16); lp->d_secperunit = sd->params.disksize; lp->d_rpm = sd->params.rot_rate; lp->d_interleave = 1; lp->d_flags = sd->sc_periph->periph_flags & PERIPH_REMOVABLE ? D_REMOVABLE : 0; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); } /* * Load the label information on the named device */ static void sdgetdisklabel(struct sd_softc *sd) { struct disklabel *lp = sd->sc_dk.dk_label; const char *errstring; memset(sd->sc_dk.dk_cpulabel, 0, sizeof(struct cpu_disklabel)); sdgetdefaultlabel(sd, lp); if (lp->d_secpercyl == 0) { lp->d_secpercyl = 100; /* as long as it's not 0 - readdisklabel divides by it (?) */ } /* * Call the generic disklabel extraction routine */ errstring = readdisklabel(MAKESDDEV(0, sd->sc_dev.dv_unit, RAW_PART), sdstrategy, lp, sd->sc_dk.dk_cpulabel); if (errstring) { printf("%s: %s\n", sd->sc_dev.dv_xname, errstring); return; } } static void sd_shutdown(void *arg) { struct sd_softc *sd = arg; /* * If the disk cache needs to be flushed, and the disk supports * it, flush it. We're cold at this point, so we poll for * completion. */ if ((sd->flags & SDF_DIRTY) != 0) { if (sd_flush(sd, XS_CTL_NOSLEEP|XS_CTL_POLL)) { printf("%s: cache synchronization failed\n", sd->sc_dev.dv_xname); sd->flags &= ~SDF_FLUSHING; } else sd->flags &= ~(SDF_FLUSHING|SDF_DIRTY); } } /* * Check Errors */ static int sd_interpret_sense(struct scsipi_xfer *xs) { struct scsipi_periph *periph = xs->xs_periph; struct scsi_sense_data *sense = &xs->sense.scsi_sense; struct sd_softc *sd = (void *)periph->periph_dev; int s, error, retval = EJUSTRETURN; /* * If the periph is already recovering, just do the normal * error processing. */ if (periph->periph_flags & PERIPH_RECOVERING) return (retval); /* * If the device is not open yet, let the generic code handle it. */ if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) return (retval); /* * If it isn't a extended or extended/deferred error, let * the generic code handle it. */ if (SSD_RCODE(sense->response_code) != SSD_RCODE_CURRENT && SSD_RCODE(sense->response_code) != SSD_RCODE_DEFERRED) return (retval); if (SSD_SENSE_KEY(sense->flags) == SKEY_NOT_READY && sense->asc == 0x4) { if (sense->ascq == 0x01) { /* * Unit In The Process Of Becoming Ready. */ printf("%s: waiting for pack to spin up...\n", sd->sc_dev.dv_xname); if (!callout_pending(&periph->periph_callout)) scsipi_periph_freeze(periph, 1); callout_reset(&periph->periph_callout, 5 * hz, scsipi_periph_timed_thaw, periph); retval = ERESTART; } else if (sense->ascq == 0x02) { printf("%s: pack is stopped, restarting...\n", sd->sc_dev.dv_xname); s = splbio(); periph->periph_flags |= PERIPH_RECOVERING; splx(s); error = scsipi_start(periph, SSS_START, XS_CTL_URGENT|XS_CTL_HEAD_TAG| XS_CTL_THAW_PERIPH|XS_CTL_FREEZE_PERIPH); if (error) { printf("%s: unable to restart pack\n", sd->sc_dev.dv_xname); retval = error; } else retval = ERESTART; s = splbio(); periph->periph_flags &= ~PERIPH_RECOVERING; splx(s); } } if (SSD_SENSE_KEY(sense->flags) == SKEY_MEDIUM_ERROR && sense->asc == 0x31 && sense->ascq == 0x00) { /* maybe for any asq ? */ /* Medium Format Corrupted */ retval = EFTYPE; } return (retval); } static int sdsize(dev_t dev) { struct sd_softc *sd; int part, unit, omask; int size; unit = SDUNIT(dev); if (unit >= sd_cd.cd_ndevs) return (-1); sd = sd_cd.cd_devs[unit]; if (sd == NULL) return (-1); if ((sd->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (-1); part = SDPART(dev); omask = sd->sc_dk.dk_openmask & (1 << part); if (omask == 0 && sdopen(dev, 0, S_IFBLK, NULL) != 0) return (-1); if ((sd->sc_periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) size = -1; else if (sd->sc_dk.dk_label->d_partitions[part].p_fstype != FS_SWAP) size = -1; else size = sd->sc_dk.dk_label->d_partitions[part].p_size * (sd->sc_dk.dk_label->d_secsize / DEV_BSIZE); if (omask == 0 && sdclose(dev, 0, S_IFBLK, NULL) != 0) return (-1); return (size); } /* #define SD_DUMP_NOT_TRUSTED if you just want to watch */ static struct scsipi_xfer sx; static int sddoingadump; /* * dump all of physical memory into the partition specified, starting * at offset 'dumplo' into the partition. */ static int sddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size) { struct sd_softc *sd; /* disk unit to do the I/O */ struct disklabel *lp; /* disk's disklabel */ int unit, part; int sectorsize; /* size of a disk sector */ int nsects; /* number of sectors in partition */ int sectoff; /* sector offset of partition */ int totwrt; /* total number of sectors left to write */ int nwrt; /* current number of sectors to write */ struct scsipi_rw_10 cmd; /* write command */ struct scsipi_xfer *xs; /* ... convenience */ struct scsipi_periph *periph; struct scsipi_channel *chan; /* Check if recursive dump; if so, punt. */ if (sddoingadump) return (EFAULT); /* Mark as active early. */ sddoingadump = 1; unit = SDUNIT(dev); /* Decompose unit & partition. */ part = SDPART(dev); /* Check for acceptable drive number. */ if (unit >= sd_cd.cd_ndevs || (sd = sd_cd.cd_devs[unit]) == NULL) return (ENXIO); if ((sd->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (ENODEV); periph = sd->sc_periph; chan = periph->periph_channel; /* Make sure it was initialized. */ if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) return (ENXIO); /* Convert to disk sectors. Request must be a multiple of size. */ lp = sd->sc_dk.dk_label; sectorsize = lp->d_secsize; if ((size % sectorsize) != 0) return (EFAULT); totwrt = size / sectorsize; blkno = dbtob(blkno) / sectorsize; /* blkno in DEV_BSIZE units */ nsects = lp->d_partitions[part].p_size; sectoff = lp->d_partitions[part].p_offset; /* Check transfer bounds against partition size. */ if ((blkno < 0) || ((blkno + totwrt) > nsects)) return (EINVAL); /* Offset block number to start of partition. */ blkno += sectoff; xs = &sx; while (totwrt > 0) { nwrt = totwrt; /* XXX */ #ifndef SD_DUMP_NOT_TRUSTED /* * Fill out the scsi command */ memset(&cmd, 0, sizeof(cmd)); cmd.opcode = WRITE_10; _lto4b(blkno, cmd.addr); _lto2b(nwrt, cmd.length); /* * Fill out the scsipi_xfer structure * Note: we cannot sleep as we may be an interrupt * don't use scsipi_command() as it may want to wait * for an xs. */ memset(xs, 0, sizeof(sx)); xs->xs_control |= XS_CTL_NOSLEEP | XS_CTL_POLL | XS_CTL_DATA_OUT; xs->xs_status = 0; xs->xs_periph = periph; xs->xs_retries = SDRETRIES; xs->timeout = 10000; /* 10000 millisecs for a disk ! */ xs->cmd = (struct scsipi_generic *)&cmd; xs->cmdlen = sizeof(cmd); xs->resid = nwrt * sectorsize; xs->error = XS_NOERROR; xs->bp = 0; xs->data = va; xs->datalen = nwrt * sectorsize; /* * Pass all this info to the scsi driver. */ scsipi_adapter_request(chan, ADAPTER_REQ_RUN_XFER, xs); if ((xs->xs_status & XS_STS_DONE) == 0 || xs->error != XS_NOERROR) return (EIO); #else /* SD_DUMP_NOT_TRUSTED */ /* Let's just talk about this first... */ printf("sd%d: dump addr 0x%x, blk %d\n", unit, va, blkno); delay(500 * 1000); /* half a second */ #endif /* SD_DUMP_NOT_TRUSTED */ /* update block count */ totwrt -= nwrt; blkno += nwrt; va += sectorsize * nwrt; } sddoingadump = 0; return (0); } static int sd_mode_sense(struct sd_softc *sd, u_int8_t byte2, void *sense, size_t size, int page, int flags, int *big) { if ((sd->sc_periph->periph_quirks & PQUIRK_ONLYBIG) && !(sd->sc_periph->periph_quirks & PQUIRK_NOBIGMODESENSE)) { *big = 1; return scsipi_mode_sense_big(sd->sc_periph, byte2, page, sense, size + sizeof(struct scsi_mode_parameter_header_10), flags | XS_CTL_DATA_ONSTACK, SDRETRIES, 6000); } else { *big = 0; return scsipi_mode_sense(sd->sc_periph, byte2, page, sense, size + sizeof(struct scsi_mode_parameter_header_6), flags | XS_CTL_DATA_ONSTACK, SDRETRIES, 6000); } } static int sd_mode_select(struct sd_softc *sd, u_int8_t byte2, void *sense, size_t size, int flags, int big) { if (big) { struct scsi_mode_parameter_header_10 *header = sense; _lto2b(0, header->data_length); return scsipi_mode_select_big(sd->sc_periph, byte2, sense, size + sizeof(struct scsi_mode_parameter_header_10), flags | XS_CTL_DATA_ONSTACK, SDRETRIES, 6000); } else { struct scsi_mode_parameter_header_6 *header = sense; header->data_length = 0; return scsipi_mode_select(sd->sc_periph, byte2, sense, size + sizeof(struct scsi_mode_parameter_header_6), flags | XS_CTL_DATA_ONSTACK, SDRETRIES, 6000); } } static int sd_get_simplifiedparms(struct sd_softc *sd, struct disk_parms *dp, int flags) { struct { struct scsi_mode_parameter_header_6 header; /* no block descriptor */ u_int8_t pg_code; /* page code (should be 6) */ u_int8_t pg_length; /* page length (should be 11) */ u_int8_t wcd; /* bit0: cache disable */ u_int8_t lbs[2]; /* logical block size */ u_int8_t size[5]; /* number of log. blocks */ u_int8_t pp; /* power/performance */ u_int8_t flags; u_int8_t resvd; } scsipi_sense; u_int64_t sectors; int error; /* * scsipi_size (ie "read capacity") and mode sense page 6 * give the same information. Do both for now, and check * for consistency. * XXX probably differs for removable media */ dp->blksize = 512; if ((sectors = scsipi_size(sd->sc_periph, flags)) == 0) return (SDGP_RESULT_OFFLINE); /* XXX? */ error = scsipi_mode_sense(sd->sc_periph, SMS_DBD, 6, &scsipi_sense.header, sizeof(scsipi_sense), flags | XS_CTL_DATA_ONSTACK, SDRETRIES, 6000); if (error != 0) return (SDGP_RESULT_OFFLINE); /* XXX? */ dp->blksize = _2btol(scsipi_sense.lbs); if (dp->blksize == 0) dp->blksize = 512; /* * Create a pseudo-geometry. */ dp->heads = 64; dp->sectors = 32; dp->cyls = sectors / (dp->heads * dp->sectors); dp->disksize = _5btol(scsipi_sense.size); if (dp->disksize <= UINT32_MAX && dp->disksize != sectors) { printf("RBC size: mode sense=%llu, get cap=%llu\n", (unsigned long long)dp->disksize, (unsigned long long)sectors); dp->disksize = sectors; } dp->disksize512 = (dp->disksize * dp->blksize) / DEV_BSIZE; return (SDGP_RESULT_OK); } /* * Get the scsi driver to send a full inquiry to the * device and use the * results to fill out the disk parameter structure. */ static int sd_get_capacity(struct sd_softc *sd, struct disk_parms *dp, int flags) { u_int64_t sectors; int error; #if 0 int i; u_int8_t *p; #endif dp->disksize = sectors = scsipi_size(sd->sc_periph, flags); if (sectors == 0) { struct scsipi_read_format_capacities cmd; struct { struct scsipi_capacity_list_header header; struct scsipi_capacity_descriptor desc; } __attribute__((packed)) data; memset(&cmd, 0, sizeof(cmd)); memset(&data, 0, sizeof(data)); cmd.opcode = READ_FORMAT_CAPACITIES; _lto2b(sizeof(data), cmd.length); error = scsipi_command(sd->sc_periph, (void *)&cmd, sizeof(cmd), (void *)&data, sizeof(data), SDRETRIES, 20000, NULL, flags | XS_CTL_DATA_IN | XS_CTL_DATA_ONSTACK); if (error == EFTYPE) { /* Medium Format Corrupted, handle as not formatted */ return (SDGP_RESULT_UNFORMATTED); } if (error || data.header.length == 0) return (SDGP_RESULT_OFFLINE); #if 0 printf("rfc: length=%d\n", data.header.length); printf("rfc result:"); for (i = sizeof(struct scsipi_capacity_list_header) + data.header.length, p = (void *)&data; i; i--, p++) printf(" %02x", *p); printf("\n"); #endif switch (data.desc.byte5 & SCSIPI_CAP_DESC_CODE_MASK) { case SCSIPI_CAP_DESC_CODE_RESERVED: case SCSIPI_CAP_DESC_CODE_FORMATTED: break; case SCSIPI_CAP_DESC_CODE_UNFORMATTED: return (SDGP_RESULT_UNFORMATTED); case SCSIPI_CAP_DESC_CODE_NONE: return (SDGP_RESULT_OFFLINE); } dp->disksize = sectors = _4btol(data.desc.nblks); if (sectors == 0) return (SDGP_RESULT_OFFLINE); /* XXX? */ dp->blksize = _3btol(data.desc.blklen); if (dp->blksize == 0) dp->blksize = 512; } else { struct sd_mode_sense_data scsipi_sense; int big, bsize; struct scsi_general_block_descriptor *bdesc; memset(&scsipi_sense, 0, sizeof(scsipi_sense)); error = sd_mode_sense(sd, 0, &scsipi_sense, sizeof(scsipi_sense.blk_desc), 0, flags | XS_CTL_SILENT, &big); dp->blksize = 512; if (!error) { if (big) { bdesc = (void *)(&scsipi_sense.header.big + 1); bsize = _2btol(scsipi_sense.header.big.blk_desc_len); } else { bdesc = (void *)(&scsipi_sense.header.small + 1); bsize = scsipi_sense.header.small.blk_desc_len; } #if 0 printf("page 0 sense:"); for (i = sizeof(scsipi_sense), p = (void *)&scsipi_sense; i; i--, p++) printf(" %02x", *p); printf("\n"); printf("page 0 bsize=%d\n", bsize); printf("page 0 ok\n"); #endif if (bsize >= 8) { dp->blksize = _3btol(bdesc->blklen); if (dp->blksize == 0) dp->blksize = 512; } } } dp->disksize512 = (sectors * dp->blksize) / DEV_BSIZE; return (0); } static int sd_get_parms_page4(struct sd_softc *sd, struct disk_parms *dp, int flags) { struct sd_mode_sense_data scsipi_sense; int error; int big, poffset, byte2; union scsi_disk_pages *pages; #if 0 int i; u_int8_t *p; #endif byte2 = SMS_DBD; again: memset(&scsipi_sense, 0, sizeof(scsipi_sense)); error = sd_mode_sense(sd, byte2, &scsipi_sense, (byte2 ? 0 : sizeof(scsipi_sense.blk_desc)) + sizeof(scsipi_sense.pages.rigid_geometry), 4, flags | XS_CTL_SILENT, &big); if (error) { if (byte2 == SMS_DBD) { /* No result; try once more with DBD off */ byte2 = 0; goto again; } return (error); } if (big) { poffset = sizeof scsipi_sense.header.big; poffset += _2btol(scsipi_sense.header.big.blk_desc_len); } else { poffset = sizeof scsipi_sense.header.small; poffset += scsipi_sense.header.small.blk_desc_len; } pages = (void *)((u_long)&scsipi_sense + poffset); #if 0 printf("page 4 sense:"); for (i = sizeof(scsipi_sense), p = (void *)&scsipi_sense; i; i--, p++) printf(" %02x", *p); printf("\n"); printf("page 4 pg_code=%d sense=%p/%p\n", pages->rigid_geometry.pg_code, &scsipi_sense, pages); #endif if ((pages->rigid_geometry.pg_code & PGCODE_MASK) != 4) return (ERESTART); SC_DEBUG(sd->sc_periph, SCSIPI_DB3, ("%d cyls, %d heads, %d precomp, %d red_write, %d land_zone\n", _3btol(pages->rigid_geometry.ncyl), pages->rigid_geometry.nheads, _2btol(pages->rigid_geometry.st_cyl_wp), _2btol(pages->rigid_geometry.st_cyl_rwc), _2btol(pages->rigid_geometry.land_zone))); /* * KLUDGE!! (for zone recorded disks) * give a number of sectors so that sec * trks * cyls * is <= disk_size * can lead to wasted space! THINK ABOUT THIS ! */ dp->heads = pages->rigid_geometry.nheads; dp->cyls = _3btol(pages->rigid_geometry.ncyl); if (dp->heads == 0 || dp->cyls == 0) return (ERESTART); dp->sectors = dp->disksize / (dp->heads * dp->cyls); /* XXX */ dp->rot_rate = _2btol(pages->rigid_geometry.rpm); if (dp->rot_rate == 0) dp->rot_rate = 3600; #if 0 printf("page 4 ok\n"); #endif return (0); } static int sd_get_parms_page5(struct sd_softc *sd, struct disk_parms *dp, int flags) { struct sd_mode_sense_data scsipi_sense; int error; int big, poffset, byte2; union scsi_disk_pages *pages; #if 0 int i; u_int8_t *p; #endif byte2 = SMS_DBD; again: memset(&scsipi_sense, 0, sizeof(scsipi_sense)); error = sd_mode_sense(sd, 0, &scsipi_sense, (byte2 ? 0 : sizeof(scsipi_sense.blk_desc)) + sizeof(scsipi_sense.pages.flex_geometry), 5, flags | XS_CTL_SILENT, &big); if (error) { if (byte2 == SMS_DBD) { /* No result; try once more with DBD off */ byte2 = 0; goto again; } return (error); } if (big) { poffset = sizeof scsipi_sense.header.big; poffset += _2btol(scsipi_sense.header.big.blk_desc_len); } else { poffset = sizeof scsipi_sense.header.small; poffset += scsipi_sense.header.small.blk_desc_len; } pages = (void *)((u_long)&scsipi_sense + poffset); #if 0 printf("page 5 sense:"); for (i = sizeof(scsipi_sense), p = (void *)&scsipi_sense; i; i--, p++) printf(" %02x", *p); printf("\n"); printf("page 5 pg_code=%d sense=%p/%p\n", pages->flex_geometry.pg_code, &scsipi_sense, pages); #endif if ((pages->flex_geometry.pg_code & PGCODE_MASK) != 5) return (ERESTART); SC_DEBUG(sd->sc_periph, SCSIPI_DB3, ("%d cyls, %d heads, %d sec, %d bytes/sec\n", _3btol(pages->flex_geometry.ncyl), pages->flex_geometry.nheads, pages->flex_geometry.ph_sec_tr, _2btol(pages->flex_geometry.bytes_s))); dp->heads = pages->flex_geometry.nheads; dp->cyls = _2btol(pages->flex_geometry.ncyl); dp->sectors = pages->flex_geometry.ph_sec_tr; if (dp->heads == 0 || dp->cyls == 0 || dp->sectors == 0) return (ERESTART); dp->rot_rate = _2btol(pages->rigid_geometry.rpm); if (dp->rot_rate == 0) dp->rot_rate = 3600; #if 0 printf("page 5 ok\n"); #endif return (0); } static int sd_get_parms(struct sd_softc *sd, struct disk_parms *dp, int flags) { int error; /* * If offline, the SDEV_MEDIA_LOADED flag will be * cleared by the caller if necessary. */ if (sd->type == T_SIMPLE_DIRECT) return (sd_get_simplifiedparms(sd, dp, flags)); error = sd_get_capacity(sd, dp, flags); if (error) return (error); if (sd->type == T_OPTICAL) goto page0; if (sd->sc_periph->periph_flags & PERIPH_REMOVABLE) { if (!sd_get_parms_page5(sd, dp, flags) || !sd_get_parms_page4(sd, dp, flags)) return (SDGP_RESULT_OK); } else { if (!sd_get_parms_page4(sd, dp, flags) || !sd_get_parms_page5(sd, dp, flags)) return (SDGP_RESULT_OK); } page0: printf("%s: fabricating a geometry\n", sd->sc_dev.dv_xname); /* Try calling driver's method for figuring out geometry. */ if (!sd->sc_periph->periph_channel->chan_adapter->adapt_getgeom || !(*sd->sc_periph->periph_channel->chan_adapter->adapt_getgeom) (sd->sc_periph, dp, dp->disksize)) { /* * Use adaptec standard fictitious geometry * this depends on which controller (e.g. 1542C is * different. but we have to put SOMETHING here..) */ dp->heads = 64; dp->sectors = 32; dp->cyls = dp->disksize / (64 * 32); } dp->rot_rate = 3600; return (SDGP_RESULT_OK); } static int sd_flush(struct sd_softc *sd, int flags) { struct scsipi_periph *periph = sd->sc_periph; struct scsi_synchronize_cache_10 cmd; /* * If the device is SCSI-2, issue a SYNCHRONIZE CACHE. * We issue with address 0 length 0, which should be * interpreted by the device as "all remaining blocks * starting at address 0". We ignore ILLEGAL REQUEST * in the event that the command is not supported by * the device, and poll for completion so that we know * that the cache has actually been flushed. * * Unless, that is, the device can't handle the SYNCHRONIZE CACHE * command, as indicated by our quirks flags. * * XXX What about older devices? */ if (periph->periph_version < 2 || (periph->periph_quirks & PQUIRK_NOSYNCCACHE)) return (0); sd->flags |= SDF_FLUSHING; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = SCSI_SYNCHRONIZE_CACHE_10; return (scsipi_command(periph, (void *)&cmd, sizeof(cmd), 0, 0, SDRETRIES, 100000, NULL, flags | XS_CTL_IGNORE_ILLEGAL_REQUEST)); } static int sd_getcache(struct sd_softc *sd, int *bitsp) { struct scsipi_periph *periph = sd->sc_periph; struct sd_mode_sense_data scsipi_sense; int error, bits = 0; int big; union scsi_disk_pages *pages; if (periph->periph_version < 2) return (EOPNOTSUPP); memset(&scsipi_sense, 0, sizeof(scsipi_sense)); error = sd_mode_sense(sd, SMS_DBD, &scsipi_sense, sizeof(scsipi_sense.pages.caching_params), 8, 0, &big); if (error) return (error); if (big) pages = (void *)(&scsipi_sense.header.big + 1); else pages = (void *)(&scsipi_sense.header.small + 1); if ((pages->caching_params.flags & CACHING_RCD) == 0) bits |= DKCACHE_READ; if (pages->caching_params.flags & CACHING_WCE) bits |= DKCACHE_WRITE; if (pages->caching_params.pg_code & PGCODE_PS) bits |= DKCACHE_SAVE; memset(&scsipi_sense, 0, sizeof(scsipi_sense)); error = sd_mode_sense(sd, SMS_DBD, &scsipi_sense, sizeof(scsipi_sense.pages.caching_params), SMS_PCTRL_CHANGEABLE|8, 0, &big); if (error == 0) { if (big) pages = (void *)(&scsipi_sense.header.big + 1); else pages = (void *)(&scsipi_sense.header.small + 1); if (pages->caching_params.flags & CACHING_RCD) bits |= DKCACHE_RCHANGE; if (pages->caching_params.flags & CACHING_WCE) bits |= DKCACHE_WCHANGE; } *bitsp = bits; return (0); } static int sd_setcache(struct sd_softc *sd, int bits) { struct scsipi_periph *periph = sd->sc_periph; struct sd_mode_sense_data scsipi_sense; int error; uint8_t oflags, byte2 = 0; int big; union scsi_disk_pages *pages; if (periph->periph_version < 2) return (EOPNOTSUPP); memset(&scsipi_sense, 0, sizeof(scsipi_sense)); error = sd_mode_sense(sd, SMS_DBD, &scsipi_sense, sizeof(scsipi_sense.pages.caching_params), 8, 0, &big); if (error) return (error); if (big) pages = (void *)(&scsipi_sense.header.big + 1); else pages = (void *)(&scsipi_sense.header.small + 1); oflags = pages->caching_params.flags; if (bits & DKCACHE_READ) pages->caching_params.flags &= ~CACHING_RCD; else pages->caching_params.flags |= CACHING_RCD; if (bits & DKCACHE_WRITE) pages->caching_params.flags |= CACHING_WCE; else pages->caching_params.flags &= ~CACHING_WCE; if (oflags == pages->caching_params.flags) return (0); pages->caching_params.pg_code &= PGCODE_MASK; if (bits & DKCACHE_SAVE) byte2 |= SMS_SP; return (sd_mode_select(sd, byte2|SMS_PF, &scsipi_sense, sizeof(struct scsi_mode_page_header) + pages->caching_params.pg_length, 0, big)); }