/* $NetBSD: subr_time.c,v 1.2 2007/11/29 18:04:46 ad Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 */ #include __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.2 2007/11/29 18:04:46 ad Exp $"); #include #include #include #include #include #include #ifdef __HAVE_TIMECOUNTER /* * Compute number of hz until specified time. Used to compute second * argument to callout_reset() from an absolute time. */ int hzto(struct timeval *tvp) { struct timeval now, tv; tv = *tvp; /* Don't modify original tvp. */ getmicrotime(&now); timersub(&tv, &now, &tv); return tvtohz(&tv); } #endif /* __HAVE_TIMECOUNTER */ /* * Compute number of ticks in the specified amount of time. */ int tvtohz(struct timeval *tv) { unsigned long ticks; long sec, usec; /* * If the number of usecs in the whole seconds part of the time * difference fits in a long, then the total number of usecs will * fit in an unsigned long. Compute the total and convert it to * ticks, rounding up and adding 1 to allow for the current tick * to expire. Rounding also depends on unsigned long arithmetic * to avoid overflow. * * Otherwise, if the number of ticks in the whole seconds part of * the time difference fits in a long, then convert the parts to * ticks separately and add, using similar rounding methods and * overflow avoidance. This method would work in the previous * case, but it is slightly slower and assumes that hz is integral. * * Otherwise, round the time difference down to the maximum * representable value. * * If ints are 32-bit, then the maximum value for any timeout in * 10ms ticks is 248 days. */ sec = tv->tv_sec; usec = tv->tv_usec; if (usec < 0) { sec--; usec += 1000000; } if (sec < 0 || (sec == 0 && usec <= 0)) { /* * Would expire now or in the past. Return 0 ticks. * This is different from the legacy hzto() interface, * and callers need to check for it. */ ticks = 0; } else if (sec <= (LONG_MAX / 1000000)) ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) / tick) + 1; else if (sec <= (LONG_MAX / hz)) ticks = (sec * hz) + (((unsigned long)usec + (tick - 1)) / tick) + 1; else ticks = LONG_MAX; if (ticks > INT_MAX) ticks = INT_MAX; return ((int)ticks); } #ifndef __HAVE_TIMECOUNTER /* * Compute number of hz until specified time. Used to compute second * argument to callout_reset() from an absolute time. */ int hzto(struct timeval *tv) { unsigned long ticks; long sec, usec; int s; /* * If the number of usecs in the whole seconds part of the time * difference fits in a long, then the total number of usecs will * fit in an unsigned long. Compute the total and convert it to * ticks, rounding up and adding 1 to allow for the current tick * to expire. Rounding also depends on unsigned long arithmetic * to avoid overflow. * * Otherwise, if the number of ticks in the whole seconds part of * the time difference fits in a long, then convert the parts to * ticks separately and add, using similar rounding methods and * overflow avoidance. This method would work in the previous * case, but it is slightly slower and assume that hz is integral. * * Otherwise, round the time difference down to the maximum * representable value. * * If ints are 32-bit, then the maximum value for any timeout in * 10ms ticks is 248 days. */ s = splclock(); sec = tv->tv_sec - time.tv_sec; usec = tv->tv_usec - time.tv_usec; splx(s); if (usec < 0) { sec--; usec += 1000000; } if (sec < 0 || (sec == 0 && usec <= 0)) { /* * Would expire now or in the past. Return 0 ticks. * This is different from the legacy hzto() interface, * and callers need to check for it. */ ticks = 0; } else if (sec <= (LONG_MAX / 1000000)) ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) / tick) + 1; else if (sec <= (LONG_MAX / hz)) ticks = (sec * hz) + (((unsigned long)usec + (tick - 1)) / tick) + 1; else ticks = LONG_MAX; if (ticks > INT_MAX) ticks = INT_MAX; return ((int)ticks); } #endif /* !__HAVE_TIMECOUNTER */ /* * Compute number of ticks in the specified amount of time. */ int tstohz(struct timespec *ts) { struct timeval tv; /* * usec has great enough resolution for hz, so convert to a * timeval and use tvtohz() above. */ TIMESPEC_TO_TIMEVAL(&tv, ts); return tvtohz(&tv); } /* * Check that a proposed value to load into the .it_value or * .it_interval part of an interval timer is acceptable, and * fix it to have at least minimal value (i.e. if it is less * than the resolution of the clock, round it up.) */ int itimerfix(struct timeval *tv) { if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) return (EINVAL); if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) tv->tv_usec = tick; return (0); } int itimespecfix(struct timespec *ts) { if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) return (EINVAL); if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) ts->tv_nsec = tick * 1000; return (0); }