/* $NetBSD: print-802_11.c,v 1.11 2006/08/06 17:52:17 dyoung Exp $ */ /* * Copyright (c) 2001 * Fortress Technologies, Inc. All rights reserved. * Charlie Lenahan (clenahan@fortresstech.com) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #include #ifndef lint #if 0 static const char rcsid[] _U_ = "@(#) Header: /tcpdump/master/tcpdump/print-802_11.c,v 1.22.2.6 2003/12/10 09:52:33 guy Exp (LBL)"; #else __RCSID("$NetBSD: print-802_11.c,v 1.11 2006/08/06 17:52:17 dyoung Exp $"); #endif #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include "interface.h" #include "addrtoname.h" #include "ethertype.h" #include "extract.h" #include "cpack.h" #include "ieee802_11.h" #include "ieee802_11_radio.h" #define PRINT_RATE(_sep, _r, _suf) \ printf("%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf) #define PRINT_RATES(p) \ do { \ int z; \ const char *sep = " ["; \ for (z = 0; z < p.rates.length ; z++) { \ PRINT_RATE(sep, p.rates.rate[z], \ (p.rates.rate[z] & 0x80 ? "*" : "")); \ sep = " "; \ } \ if (p.rates.length != 0) \ printf(" Mbit]"); \ } while (0) static const char *auth_alg_text[]={"Open System","Shared Key","EAP"}; static const char *subtype_text[]={ "Assoc Request", "Assoc Response", "ReAssoc Request", "ReAssoc Response", "Probe Request", "Probe Response", "", "", "Beacon", "ATIM", "Disassociation", "Authentication", "DeAuthentication", "", "" }; static const char *status_text[] = { "Succesful", /* 0 */ "Unspecified failure", /* 1 */ "Reserved", /* 2 */ "Reserved", /* 3 */ "Reserved", /* 4 */ "Reserved", /* 5 */ "Reserved", /* 6 */ "Reserved", /* 7 */ "Reserved", /* 8 */ "Reserved", /* 9 */ "Cannot Support all requested capabilities in the Capability Information field", /* 10 */ "Reassociation denied due to inability to confirm that association exists", /* 11 */ "Association denied due to reason outside the scope of the standard", /* 12 */ "Responding station does not support the specified authentication algorithm ", /* 13 */ "Received an Authentication frame with authentication transaction " \ "sequence number out of expected sequence", /* 14 */ "Authentication rejected because of challenge failure", /* 15 */ "Authentication rejected due to timeout waiting for next frame in sequence", /* 16 */ "Association denied because AP is unable to handle additional associated stations", /* 17 */ "Association denied due to requesting station not supporting all of the " \ "data rates in BSSBasicRateSet parameter", /* 18 */ NULL }; static const char *reason_text[] = { "Reserved", /* 0 */ "Unspecified reason", /* 1 */ "Previous authentication no longer valid", /* 2 */ "Deauthenticated because sending station is leaving (or has left) IBSS or ESS", /* 3 */ "Disassociated due to inactivity", /* 4 */ "Disassociated because AP is unable to handle all currently associated stations", /* 5 */ "Class 2 frame receivedfrom nonauthenticated station", /* 6 */ "Class 3 frame received from nonassociated station", /* 7 */ "Disassociated because sending station is leaving (or has left) BSS", /* 8 */ "Station requesting (re)association is not authenticated with responding station", /* 9 */ NULL }; static int wep_print(const u_char *p) { u_int32_t iv; if (!TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN)) return 0; iv = EXTRACT_LE_32BITS(p); printf("Data IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv), IV_KEYID(iv)); return 1; } static int parse_elements(struct mgmt_body_t *pbody, const u_char *p, int offset) { for (;;) { if (!TTEST2(*(p + offset), 1)) return 1; switch (*(p + offset)) { case E_SSID: if (!TTEST2(*(p + offset), 2)) return 0; memcpy(&pbody->ssid, p + offset, 2); offset += 2; if (pbody->ssid.length <= 0) break; if (!TTEST2(*(p + offset), pbody->ssid.length)) return 0; memcpy(&pbody->ssid.ssid, p + offset, pbody->ssid.length); offset += pbody->ssid.length; pbody->ssid.ssid[pbody->ssid.length] = '\0'; break; case E_CHALLENGE: if (!TTEST2(*(p + offset), 2)) return 0; memcpy(&pbody->challenge, p + offset, 2); offset += 2; if (pbody->challenge.length <= 0) break; if (!TTEST2(*(p + offset), pbody->challenge.length)) return 0; memcpy(&pbody->challenge.text, p + offset, pbody->challenge.length); offset += pbody->challenge.length; pbody->challenge.text[pbody->challenge.length] = '\0'; break; case E_RATES: if (!TTEST2(*(p + offset), 2)) return 0; memcpy(&(pbody->rates), p + offset, 2); offset += 2; if (pbody->rates.length <= 0) break; if (!TTEST2(*(p + offset), pbody->rates.length)) return 0; memcpy(&pbody->rates.rate, p + offset, pbody->rates.length); offset += pbody->rates.length; break; case E_DS: if (!TTEST2(*(p + offset), 3)) return 0; memcpy(&pbody->ds, p + offset, 3); offset += 3; break; case E_CF: if (!TTEST2(*(p + offset), 8)) return 0; memcpy(&pbody->cf, p + offset, 8); offset += 8; break; case E_TIM: if (!TTEST2(*(p + offset), 2)) return 0; memcpy(&pbody->tim, p + offset, 2); offset += 2; if (!TTEST2(*(p + offset), 3)) return 0; memcpy(&pbody->tim.count, p + offset, 3); offset += 3; if (pbody->tim.length <= 3) break; if (!TTEST2(*(p + offset), pbody->tim.length - 3)) return 0; memcpy(pbody->tim.bitmap, p + (pbody->tim.length - 3), (pbody->tim.length - 3)); offset += pbody->tim.length - 3; break; default: #if 0 printf("(1) unhandled element_id (%d) ", *(p + offset) ); #endif offset += *(p + offset + 1) + 2; break; } } return 1; } /********************************************************************************* * Print Handle functions for the management frame types *********************************************************************************/ static int handle_beacon(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN)) return 0; memcpy(&pbody.timestamp, p, 8); offset += IEEE802_11_TSTAMP_LEN; pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_BCNINT_LEN; pbody.capability_info = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_CAPINFO_LEN; if (!parse_elements(&pbody, p, offset)) return 0; printf(" ("); fn_print(pbody.ssid.ssid, NULL); printf(")"); PRINT_RATES(pbody); printf(" %s CH: %u%s", CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS", pbody.ds.channel, CAPABILITY_PRIVACY(pbody.capability_info) ? ", PRIVACY" : "" ); return 1; } static int handle_assoc_request(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)) return 0; pbody.capability_info = EXTRACT_LE_16BITS(p); offset += IEEE802_11_CAPINFO_LEN; pbody.listen_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_LISTENINT_LEN; if (!parse_elements(&pbody, p, offset)) return 0; printf(" ("); fn_print(pbody.ssid.ssid, NULL); printf(")"); PRINT_RATES(pbody); return 1; } static int handle_assoc_response(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN + IEEE802_11_AID_LEN)) return 0; pbody.capability_info = EXTRACT_LE_16BITS(p); offset += IEEE802_11_CAPINFO_LEN; pbody.status_code = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_STATUS_LEN; pbody.aid = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_AID_LEN; if (!parse_elements(&pbody, p, offset)) return 0; printf(" AID(%x) :%s: %s", ((u_int16_t)(pbody.aid << 2 )) >> 2 , CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "", (pbody.status_code < 19 ? status_text[pbody.status_code] : "n/a")); return 1; } static int handle_reassoc_request(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN + IEEE802_11_AP_LEN)) return 0; pbody.capability_info = EXTRACT_LE_16BITS(p); offset += IEEE802_11_CAPINFO_LEN; pbody.listen_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_LISTENINT_LEN; memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN); offset += IEEE802_11_AP_LEN; if (!parse_elements(&pbody, p, offset)) return 0; printf(" ("); fn_print(pbody.ssid.ssid, NULL); printf(") AP : %s", etheraddr_string( pbody.ap )); return 1; } static int handle_reassoc_response(const u_char *p) { /* Same as a Association Reponse */ return handle_assoc_response(p); } static int handle_probe_request(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!parse_elements(&pbody, p, offset)) return 0; printf(" ("); fn_print(pbody.ssid.ssid, NULL); printf(")"); PRINT_RATES(pbody); return 1; } static int handle_probe_response(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN)) return 0; memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN); offset += IEEE802_11_TSTAMP_LEN; pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_BCNINT_LEN; pbody.capability_info = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_CAPINFO_LEN; if (!parse_elements(&pbody, p, offset)) return 0; printf(" ("); fn_print(pbody.ssid.ssid, NULL); printf(") "); PRINT_RATES(pbody); printf(" CH: %u%s", pbody.ds.channel, CAPABILITY_PRIVACY(pbody.capability_info) ? ", PRIVACY" : "" ); return 1; } static int handle_atim(void) { /* the frame body for ATIM is null. */ return 1; } static int handle_disassoc(const u_char *p) { struct mgmt_body_t pbody; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_REASON_LEN)) return 0; pbody.reason_code = EXTRACT_LE_16BITS(p); printf(": %s", (pbody.reason_code < 10) ? reason_text[pbody.reason_code] : "Reserved" ); return 1; } static int handle_auth(const u_char *p) { struct mgmt_body_t pbody; int offset = 0; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, 6)) return 0; pbody.auth_alg = EXTRACT_LE_16BITS(p); offset += 2; pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset); offset += 2; pbody.status_code = EXTRACT_LE_16BITS(p + offset); offset += 2; if (!parse_elements(&pbody, p, offset)) return 0; if ((pbody.auth_alg == 1) && ((pbody.auth_trans_seq_num == 2) || (pbody.auth_trans_seq_num == 3))) { printf(" (%s)-%x [Challenge Text] %s", (pbody.auth_alg < (sizeof(auth_alg_text)/sizeof(auth_alg_text[0]))) ? auth_alg_text[pbody.auth_alg] : "Reserved", pbody.auth_trans_seq_num, ((pbody.auth_trans_seq_num % 2) ? ((pbody.status_code < 19) ? status_text[pbody.status_code] : "n/a") : "")); return 1; } printf(" (%s)-%x: %s", (pbody.auth_alg < 4) ? auth_alg_text[pbody.auth_alg] : "Reserved", pbody.auth_trans_seq_num, (pbody.auth_trans_seq_num % 2) ? ((pbody.status_code < 19) ? status_text[pbody.status_code] : "n/a") : ""); return 1; } static int handle_deauth(const struct mgmt_header_t *pmh, const u_char *p) { struct mgmt_body_t pbody; int offset = 0; const char *reason = NULL; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_REASON_LEN)) return 0; pbody.reason_code = EXTRACT_LE_16BITS(p); offset += IEEE802_11_REASON_LEN; reason = (pbody.reason_code < 10) ? reason_text[pbody.reason_code] : "Reserved"; if (eflag) { printf(": %s", reason); } else { printf(" (%s): %s", etheraddr_string(pmh->sa), reason); } return 1; } /********************************************************************************* * Print Body funcs *********************************************************************************/ static int mgmt_body_print(u_int16_t fc, const struct mgmt_header_t *pmh, const u_char *p) { printf("%s", subtype_text[FC_SUBTYPE(fc)]); switch (FC_SUBTYPE(fc)) { case ST_ASSOC_REQUEST: return handle_assoc_request(p); case ST_ASSOC_RESPONSE: return handle_assoc_response(p); case ST_REASSOC_REQUEST: return handle_reassoc_request(p); case ST_REASSOC_RESPONSE: return handle_reassoc_response(p); case ST_PROBE_REQUEST: return handle_probe_request(p); case ST_PROBE_RESPONSE: return handle_probe_response(p); case ST_BEACON: return handle_beacon(p); case ST_ATIM: return handle_atim(); case ST_DISASSOC: return handle_disassoc(p); case ST_AUTH: if (!TTEST2(*p, 3)) return 0; if ((p[0] == 0 ) && (p[1] == 0) && (p[2] == 0)) { printf("Authentication (Shared-Key)-3 "); return wep_print(p); } return handle_auth(p); case ST_DEAUTH: return handle_deauth(pmh, p); break; default: printf("Unhandled Management subtype(%x)", FC_SUBTYPE(fc)); return 1; } } /********************************************************************************* * Handles printing all the control frame types *********************************************************************************/ static int ctrl_body_print(u_int16_t fc, const u_char *p) { switch (FC_SUBTYPE(fc)) { case CTRL_PS_POLL: printf("Power Save-Poll"); if (!TTEST2(*p, CTRL_PS_POLL_HDRLEN)) return 0; printf(" AID(%x)", EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_t *)p)->aid))); break; case CTRL_RTS: printf("Request-To-Send"); if (!TTEST2(*p, CTRL_RTS_HDRLEN)) return 0; if (!eflag) printf(" TA:%s ", etheraddr_string(((const struct ctrl_rts_t *)p)->ta)); break; case CTRL_CTS: printf("Clear-To-Send"); if (!TTEST2(*p, CTRL_CTS_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_cts_t *)p)->ra)); break; case CTRL_ACK: printf("Acknowledgment"); if (!TTEST2(*p, CTRL_ACK_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_ack_t *)p)->ra)); break; case CTRL_CF_END: printf("CF-End"); if (!TTEST2(*p, CTRL_END_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_end_t *)p)->ra)); break; case CTRL_END_ACK: printf("CF-End+CF-Ack"); if (!TTEST2(*p, CTRL_END_ACK_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra)); break; default: printf("Unknown Ctrl Subtype"); } return 1; } /* * Print Header funcs */ /* * Data Frame - Address field contents * * To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4 * 0 | 0 | DA | SA | BSSID | n/a * 0 | 1 | DA | BSSID | SA | n/a * 1 | 0 | BSSID | SA | DA | n/a * 1 | 1 | RA | TA | DA | SA */ static void data_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { switch (FC_SUBTYPE(fc)) { case DATA_DATA: case DATA_NODATA: break; case DATA_DATA_CF_ACK: case DATA_NODATA_CF_ACK: printf("CF Ack "); break; case DATA_DATA_CF_POLL: case DATA_NODATA_CF_POLL: printf("CF Poll "); break; case DATA_DATA_CF_ACK_POLL: case DATA_NODATA_CF_ACK_POLL: printf("CF Ack/Poll "); break; } #define ADDR1 (p + 4) #define ADDR2 (p + 10) #define ADDR3 (p + 16) #define ADDR4 (p + 24) if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR2; if (dstp != NULL) *dstp = ADDR1; if (!eflag) return; printf("DA:%s SA:%s BSSID:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3)); } else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR3; if (dstp != NULL) *dstp = ADDR1; if (!eflag) return; printf("DA:%s BSSID:%s SA:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3)); } else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR2; if (dstp != NULL) *dstp = ADDR3; if (!eflag) return; printf("BSSID:%s SA:%s DA:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3)); } else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR4; if (dstp != NULL) *dstp = ADDR3; if (!eflag) return; printf("RA:%s TA:%s DA:%s SA:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3), etheraddr_string(ADDR4)); } #undef ADDR1 #undef ADDR2 #undef ADDR3 #undef ADDR4 } static void mgmt_header_print(const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p; if (srcp != NULL) *srcp = hp->sa; if (dstp != NULL) *dstp = hp->da; if (!eflag) return; printf("BSSID:%s DA:%s SA:%s ", etheraddr_string((hp)->bssid), etheraddr_string((hp)->da), etheraddr_string((hp)->sa)); } static void ctrl_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { if (srcp != NULL) *srcp = NULL; if (dstp != NULL) *dstp = NULL; if (!eflag) return; switch (FC_SUBTYPE(fc)) { case CTRL_PS_POLL: printf("BSSID:%s TA:%s ", etheraddr_string(((const struct ctrl_ps_poll_t *)p)->bssid), etheraddr_string(((const struct ctrl_ps_poll_t *)p)->ta)); break; case CTRL_RTS: printf("RA:%s TA:%s ", etheraddr_string(((const struct ctrl_rts_t *)p)->ra), etheraddr_string(((const struct ctrl_rts_t *)p)->ta)); break; case CTRL_CTS: printf("RA:%s ", etheraddr_string(((const struct ctrl_cts_t *)p)->ra)); break; case CTRL_ACK: printf("RA:%s ", etheraddr_string(((const struct ctrl_ack_t *)p)->ra)); break; case CTRL_CF_END: printf("RA:%s BSSID:%s ", etheraddr_string(((const struct ctrl_end_t *)p)->ra), etheraddr_string(((const struct ctrl_end_t *)p)->bssid)); break; case CTRL_END_ACK: printf("RA:%s BSSID:%s ", etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra), etheraddr_string(((const struct ctrl_end_ack_t *)p)->bssid)); break; default: printf("(H) Unknown Ctrl Subtype"); break; } } static int extract_header_length(u_int16_t fc) { switch (FC_TYPE(fc)) { case T_MGMT: return MGMT_HDRLEN; case T_CTRL: switch (FC_SUBTYPE(fc)) { case CTRL_PS_POLL: return CTRL_PS_POLL_HDRLEN; case CTRL_RTS: return CTRL_RTS_HDRLEN; case CTRL_CTS: return CTRL_CTS_HDRLEN; case CTRL_ACK: return CTRL_ACK_HDRLEN; case CTRL_CF_END: return CTRL_END_HDRLEN; case CTRL_END_ACK: return CTRL_END_ACK_HDRLEN; default: return 0; } case T_DATA: return (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24; default: printf("unknown IEEE802.11 frame type (%d)", FC_TYPE(fc)); return 0; } } /* * Print the 802.11 MAC header if eflag is set, and set "*srcp" and "*dstp" * to point to the source and destination MAC addresses in any case if * "srcp" and "dstp" aren't null. */ static inline void ieee_802_11_hdr_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { if (vflag) { if (FC_MORE_DATA(fc)) printf("More Data "); if (FC_MORE_FLAG(fc)) printf("More Fragments "); if (FC_POWER_MGMT(fc)) printf("Pwr Mgmt "); if (FC_RETRY(fc)) printf("Retry "); if (FC_ORDER(fc)) printf("Strictly Ordered "); if (FC_WEP(fc)) printf("WEP Encrypted "); if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL) printf("%dus ", EXTRACT_LE_16BITS( &((const struct mgmt_header_t *)p)->duration)); } switch (FC_TYPE(fc)) { case T_MGMT: mgmt_header_print(p, srcp, dstp); break; case T_CTRL: ctrl_header_print(fc, p, srcp, dstp); break; case T_DATA: data_header_print(fc, p, srcp, dstp); break; default: printf("(header) unknown IEEE802.11 frame type (%d)", FC_TYPE(fc)); *srcp = NULL; *dstp = NULL; break; } } static u_int ieee802_11_print(const u_char *p, u_int length, u_int caplen) { u_int16_t fc; u_int hdrlen; const u_int8_t *src, *dst; u_short extracted_ethertype; if (caplen < IEEE802_11_FC_LEN) { printf("[|802.11]"); return caplen; } fc = EXTRACT_LE_16BITS(p); hdrlen = extract_header_length(fc); if (caplen < hdrlen) { printf("[|802.11]"); return hdrlen; } ieee_802_11_hdr_print(fc, p, &src, &dst); /* * Go past the 802.11 header. */ length -= hdrlen; caplen -= hdrlen; p += hdrlen; switch (FC_TYPE(fc)) { case T_MGMT: if (!mgmt_body_print(fc, (const struct mgmt_header_t *)(p - hdrlen), p)) { printf("[|802.11]"); return hdrlen; } break; case T_CTRL: if (!ctrl_body_print(fc, p - hdrlen)) { printf("[|802.11]"); return hdrlen; } break; case T_DATA: /* There may be a problem w/ AP not having this bit set */ if (FC_WEP(fc)) { if (!wep_print(p)) { printf("[|802.11]"); return hdrlen; } } else if (llc_print(p, length, caplen, dst, src, &extracted_ethertype) == 0) { /* * Some kinds of LLC packet we cannot * handle intelligently */ if (!eflag) ieee_802_11_hdr_print(fc, p - hdrlen, NULL, NULL); if (extracted_ethertype) printf("(LLC %s) ", etherproto_string( htons(extracted_ethertype))); if (!xflag && !qflag) default_print(p, caplen); } break; default: printf("unknown 802.11 frame type (%d)", FC_TYPE(fc)); break; } return hdrlen; } /* * This is the top level routine of the printer. 'p' points * to the 802.11 header of the packet, 'h->ts' is the timestamp, * 'h->len' is the length of the packet off the wire, and 'h->caplen' * is the number of bytes actually captured. */ u_int ieee802_11_if_print(const struct pcap_pkthdr *h, const u_char *p) { return ieee802_11_print(p, h->len, h->caplen); } static int print_radiotap_field(struct cpack_state *s, u_int32_t bit) { union { int8_t i8; u_int8_t u8; int16_t i16; u_int16_t u16; u_int32_t u32; u_int64_t u64; } u, u2; int rc; switch (bit) { case IEEE80211_RADIOTAP_FLAGS: case IEEE80211_RADIOTAP_RATE: case IEEE80211_RADIOTAP_DB_ANTSIGNAL: case IEEE80211_RADIOTAP_DB_ANTNOISE: case IEEE80211_RADIOTAP_ANTENNA: rc = cpack_uint8(s, &u.u8); break; case IEEE80211_RADIOTAP_DBM_ANTSIGNAL: case IEEE80211_RADIOTAP_DBM_ANTNOISE: rc = cpack_int8(s, &u.i8); break; case IEEE80211_RADIOTAP_CHANNEL: rc = cpack_uint16(s, &u.u16); if (rc != 0) break; rc = cpack_uint16(s, &u2.u16); break; case IEEE80211_RADIOTAP_FHSS: case IEEE80211_RADIOTAP_LOCK_QUALITY: case IEEE80211_RADIOTAP_TX_ATTENUATION: rc = cpack_uint16(s, &u.u16); break; case IEEE80211_RADIOTAP_DB_TX_ATTENUATION: rc = cpack_uint8(s, &u.u8); break; case IEEE80211_RADIOTAP_DBM_TX_POWER: rc = cpack_uint8(s, &u.i8); break; case IEEE80211_RADIOTAP_TSFT: rc = cpack_uint64(s, &u.u64); break; default: /* this bit indicates a field whose * size we do not know, so we cannot * proceed. */ printf("[0x%08x] ", bit); return -1; } if (rc != 0) { printf("[|802.11]"); return rc; } switch (bit) { case IEEE80211_RADIOTAP_CHANNEL: printf("%u MHz ", u.u16); if (u2.u16 != 0) printf("(0x%04x) ", u2.u16); break; case IEEE80211_RADIOTAP_FHSS: printf("fhset %d fhpat %d ", u.u16 & 0xff, (u.u16 >> 8) & 0xff); break; case IEEE80211_RADIOTAP_RATE: PRINT_RATE("", u.u8, " Mb/s "); break; case IEEE80211_RADIOTAP_DBM_ANTSIGNAL: printf("%ddBm signal ", u.i8); break; case IEEE80211_RADIOTAP_DBM_ANTNOISE: printf("%ddBm noise ", u.i8); break; case IEEE80211_RADIOTAP_DB_ANTSIGNAL: printf("%ddB signal ", u.u8); break; case IEEE80211_RADIOTAP_DB_ANTNOISE: printf("%ddB noise ", u.u8); break; case IEEE80211_RADIOTAP_LOCK_QUALITY: printf("%u sq ", u.u16); break; case IEEE80211_RADIOTAP_TX_ATTENUATION: printf("%d tx power ", -(int)u.u16); break; case IEEE80211_RADIOTAP_DB_TX_ATTENUATION: printf("%ddB tx power ", -(int)u.u8); break; case IEEE80211_RADIOTAP_DBM_TX_POWER: printf("%ddBm tx power ", u.i8); break; case IEEE80211_RADIOTAP_FLAGS: if (u.u8 & IEEE80211_RADIOTAP_F_CFP) printf("cfp "); if (u.u8 & IEEE80211_RADIOTAP_F_SHORTPRE) printf("short preamble "); if (u.u8 & IEEE80211_RADIOTAP_F_WEP) printf("wep "); if (u.u8 & IEEE80211_RADIOTAP_F_FRAG) printf("fragmented "); if (u.u8 & IEEE80211_RADIOTAP_F_BADFCS) printf("bad-fcs "); break; case IEEE80211_RADIOTAP_ANTENNA: printf("antenna %d ", u.u8); break; case IEEE80211_RADIOTAP_TSFT: printf("%" PRIu64 "us tsft ", u.u64); break; } return 0; } static u_int ieee802_11_radio_print(const u_char *p, u_int length, u_int caplen) { #define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x))) #define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x))) #define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x))) #define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x))) #define BITNO_2(x) (((x) & 2) ? 1 : 0) #define BIT(n) (1 << n) #define IS_EXTENDED(__p) \ (EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0 struct cpack_state cpacker; struct ieee80211_radiotap_header *hdr; u_int32_t present, next_present; u_int32_t *presentp, *last_presentp; enum ieee80211_radiotap_type bit; int bit0; const u_char *iter; u_int len; if (caplen < sizeof(*hdr)) { printf("[|802.11]"); return caplen; } hdr = (struct ieee80211_radiotap_header *)p; len = EXTRACT_LE_16BITS(&hdr->it_len); if (caplen < len) { printf("[|802.11]"); return caplen; } for (last_presentp = &hdr->it_present; IS_EXTENDED(last_presentp) && (u_char*)(last_presentp + 1) <= p + len; last_presentp++); /* are there more bitmap extensions than bytes in header? */ if (IS_EXTENDED(last_presentp)) { printf("[|802.11]"); return caplen; } iter = (u_char*)(last_presentp + 1); if (cpack_init(&cpacker, (u_int8_t*)iter, len - (iter - p)) != 0) { /* XXX */ printf("[|802.11]"); return caplen; } for (bit0 = 0, presentp = &hdr->it_present; presentp <= last_presentp; presentp++, bit0 += 32) { for (present = EXTRACT_LE_32BITS(presentp); present; present = next_present) { /* clear the least significant bit that is set */ next_present = present & (present - 1); /* extract the least significant bit that is set */ bit = bit0 + BITNO_32(present ^ next_present); if (print_radiotap_field(&cpacker, bit) != 0) goto out; } } out: return len + ieee802_11_print(p + len, length - len, caplen - len); #undef BITNO_32 #undef BITNO_16 #undef BITNO_8 #undef BITNO_4 #undef BITNO_2 #undef BIT } static u_int ieee802_11_avs_radio_print(const u_char *p, u_int length, u_int caplen) { u_int32_t caphdr_len; caphdr_len = EXTRACT_32BITS(p + 4); if (caphdr_len < 8) { /* * Yow! The capture header length is claimed not * to be large enough to include even the version * cookie or capture header length! */ printf("[|802.11]"); return caplen; } if (caplen < caphdr_len) { printf("[|802.11]"); return caplen; } return caphdr_len + ieee802_11_print(p + caphdr_len, length - caphdr_len, caplen - caphdr_len); } #define PRISM_HDR_LEN 144 #define WLANCAP_MAGIC_COOKIE_V1 0x80211001 /* * For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header, * containing information such as radio information, which we * currently ignore. * * If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1, it's * really DLT_IEEE802_11_RADIO (currently, on Linux, there's no * ARPHRD_ type for DLT_IEEE802_11_RADIO, as there is a * ARPHRD_IEEE80211_PRISM for DLT_PRISM_HEADER, so * ARPHRD_IEEE80211_PRISM is used for DLT_IEEE802_11_RADIO, and * the first 4 bytes of the header are used to indicate which it is). */ u_int prism_if_print(const struct pcap_pkthdr *h, const u_char *p) { u_int caplen = h->caplen; u_int length = h->len; if (caplen < 4) { printf("[|802.11]"); return caplen; } if (EXTRACT_32BITS(p) == WLANCAP_MAGIC_COOKIE_V1) return ieee802_11_avs_radio_print(p, length, caplen); if (caplen < PRISM_HDR_LEN) { printf("[|802.11]"); return caplen; } return PRISM_HDR_LEN + ieee802_11_print(p + PRISM_HDR_LEN, length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN); } /* * For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra * header, containing information such as radio information, which we * currently ignore. */ u_int ieee802_11_radio_if_print(const struct pcap_pkthdr *h, const u_char *p) { u_int caplen = h->caplen; u_int length = h->len; if (caplen < 8) { printf("[|802.11]"); return caplen; } return ieee802_11_radio_print(p, length, caplen); }