/* tc-arm.c -- Assemble for the ARM Copyright (C) 1994, 95, 96, 1997 Free Software Foundation, Inc. Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org) Modified by David Taylor (dtaylor@armltd.co.uk) This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #define NO_RELOC 0 #include "as.h" /* need TARGET_CPU */ #include "config.h" #include "subsegs.h" #include "obstack.h" #include "symbols.h" #include "listing.h" /* ??? This is currently unused. */ #ifdef __STDC__ #define internalError() \ as_fatal ("ARM Internal Error, line %d, %s", __LINE__, __FILE__) #else #define internalError() as_fatal ("ARM Internal Error") #endif /* Types of processor to assemble for. */ #define ARM_1 0x00000001 #define ARM_2 0x00000002 #define ARM_3 0x00000004 #define ARM_250 ARM_3 #define ARM_6 0x00000008 #define ARM_7 ARM_6 /* same core instruction set */ /* The following bitmasks control CPU extensions (ARM7 onwards): */ #define ARM_LONGMUL 0x00000010 /* allow long multiplies */ #define ARM_ARCH4 0x00000020 #define ARM_THUMB ARM_ARCH4 /* Some useful combinations: */ #define ARM_ANY 0x00ffffff #define ARM_2UP 0x00fffffe #define ARM_ALL ARM_2UP /* Not arm1 only */ #define ARM_3UP 0x00fffffc #define ARM_6UP 0x00fffff8 /* Includes ARM7 */ #define FPU_CORE 0x80000000 #define FPU_FPA10 0x40000000 #define FPU_FPA11 0x40000000 #define FPU_NONE 0 /* Some useful combinations */ #define FPU_ALL 0xff000000 /* Note this is ~ARM_ANY */ #define FPU_MEMMULTI 0x7f000000 /* Not fpu_core */ #ifndef CPU_DEFAULT #define CPU_DEFAULT ARM_ALL #endif #ifndef FPU_DEFAULT #define FPU_DEFAULT FPU_ALL #endif unsigned long cpu_variant = CPU_DEFAULT | FPU_DEFAULT; /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ CONST char comment_chars[] = "@"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments like this one will always work. */ CONST char line_comment_chars[] = "#"; CONST char line_separator_chars[] = ""; /* Chars that can be used to separate mant from exp in floating point nums */ CONST char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ CONST char FLT_CHARS[] = "rRsSfFdDxXeEpP"; CONST int md_reloc_size = 8; /* Size of relocation record */ static int thumb_mode = 0; /* non-zero if assembling thumb instructions */ typedef struct arm_fix { int thumb_mode; } arm_fix_data; struct arm_it { CONST char *error; unsigned long instruction; int suffix; int size; struct { bfd_reloc_code_real_type type; expressionS exp; int pc_rel; } reloc; }; struct arm_it inst; struct asm_shift { CONST char *template; unsigned long value; }; static CONST struct asm_shift shift[] = { {"asl", 0}, {"lsl", 0}, {"lsr", 0x00000020}, {"asr", 0x00000040}, {"ror", 0x00000060}, {"rrx", 0x00000060}, {"ASL", 0}, {"LSL", 0}, {"LSR", 0x00000020}, {"ASR", 0x00000040}, {"ROR", 0x00000060}, {"RRX", 0x00000060} }; #define NO_SHIFT_RESTRICT 1 #define SHIFT_RESTRICT 0 #define NUM_FLOAT_VALS 8 CONST char *fp_const[] = { "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0 }; /* Number of littlenums required to hold an extended precision number */ #define MAX_LITTLENUMS 6 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS]; #define FAIL (-1) #define SUCCESS (0) #define SUFF_S 1 #define SUFF_D 2 #define SUFF_E 3 #define SUFF_P 4 #define CP_T_X 0x00008000 #define CP_T_Y 0x00400000 #define CP_T_Pre 0x01000000 #define CP_T_UD 0x00800000 #define CP_T_WB 0x00200000 #define CONDS_BIT (0x00100000) #define LOAD_BIT (0x00100000) #define TRANS_BIT (0x00200000) struct asm_cond { CONST char *template; unsigned long value; }; /* This is to save a hash look-up in the common case */ #define COND_ALWAYS 0xe0000000 static CONST struct asm_cond conds[] = { {"eq", 0x00000000}, {"ne", 0x10000000}, {"cs", 0x20000000}, {"hs", 0x20000000}, {"cc", 0x30000000}, {"ul", 0x30000000}, {"lo", 0x30000000}, {"mi", 0x40000000}, {"pl", 0x50000000}, {"vs", 0x60000000}, {"vc", 0x70000000}, {"hi", 0x80000000}, {"ls", 0x90000000}, {"ge", 0xa0000000}, {"lt", 0xb0000000}, {"gt", 0xc0000000}, {"le", 0xd0000000}, {"al", 0xe0000000}, {"nv", 0xf0000000} }; /* Warning: If the top bit of the set_bits is set, then the standard instruction bitmask is ignored, and the new bitmask is taken from the set_bits: */ struct asm_flg { CONST char *template; /* Basic flag string */ unsigned long set_bits; /* Bits to set */ }; static CONST struct asm_flg s_flag[] = { {"s", CONDS_BIT}, {NULL, 0} }; static CONST struct asm_flg ldr_flags[] = { {"b", 0x00400000}, {"t", TRANS_BIT}, {"bt", 0x00400000 | TRANS_BIT}, {"h", 0x801000b0}, {"sh", 0x801000f0}, {"sb", 0x801000d0}, {NULL, 0} }; static CONST struct asm_flg str_flags[] = { {"b", 0x00400000}, {"t", TRANS_BIT}, {"bt", 0x00400000 | TRANS_BIT}, {"h", 0x800000b0}, {NULL, 0} }; static CONST struct asm_flg byte_flag[] = { {"b", 0x00400000}, {NULL, 0} }; static CONST struct asm_flg cmp_flags[] = { {"s", CONDS_BIT}, {"p", 0x0010f000}, {NULL, 0} }; static CONST struct asm_flg ldm_flags[] = { {"ed", 0x01800000}, {"fd", 0x00800000}, {"ea", 0x01000000}, {"fa", 0x08000000}, {"ib", 0x01800000}, {"ia", 0x00800000}, {"db", 0x01000000}, {"da", 0x08000000}, {NULL, 0} }; static CONST struct asm_flg stm_flags[] = { {"ed", 0x08000000}, {"fd", 0x01000000}, {"ea", 0x00800000}, {"fa", 0x01800000}, {"ib", 0x01800000}, {"ia", 0x00800000}, {"db", 0x01000000}, {"da", 0x08000000}, {NULL, 0} }; static CONST struct asm_flg lfm_flags[] = { {"fd", 0x00800000}, {"ea", 0x01000000}, {NULL, 0} }; static CONST struct asm_flg sfm_flags[] = { {"fd", 0x01000000}, {"ea", 0x00800000}, {NULL, 0} }; static CONST struct asm_flg round_flags[] = { {"p", 0x00000020}, {"m", 0x00000040}, {"z", 0x00000060}, {NULL, 0} }; /* The implementation of the FIX instruction is broken on some assemblers, in that it accepts a precision specifier as well as a rounding specifier, despite the fact that this is meaningless. To be more compatible, we accept it as well, though of course it does not set any bits. */ static CONST struct asm_flg fix_flags[] = { {"p", 0x00000020}, {"m", 0x00000040}, {"z", 0x00000060}, {"sp", 0x00000020}, {"sm", 0x00000040}, {"sz", 0x00000060}, {"dp", 0x00000020}, {"dm", 0x00000040}, {"dz", 0x00000060}, {"ep", 0x00000020}, {"em", 0x00000040}, {"ez", 0x00000060}, {NULL, 0} }; static CONST struct asm_flg except_flag[] = { {"e", 0x00400000}, {NULL, 0} }; static CONST struct asm_flg cplong_flag[] = { {"l", 0x00400000}, {NULL, 0} }; struct asm_psr { CONST char *template; unsigned long number; }; #define PSR_ALL 0x00010000 static CONST struct asm_psr psrs[] = { /* Valid 's */ {"cpsr", 0}, {"cpsr_all", 0}, {"spsr", 1}, {"spsr_all", 1}, /* Valid 's */ {"cpsr_flg", 2}, {"spsr_flg", 3} }; /* Functions called by parser */ /* ARM instructions */ static void do_arit PARAMS ((char *operands, unsigned long flags)); static void do_cmp PARAMS ((char *operands, unsigned long flags)); static void do_mov PARAMS ((char *operands, unsigned long flags)); static void do_ldst PARAMS ((char *operands, unsigned long flags)); static void do_ldmstm PARAMS ((char *operands, unsigned long flags)); static void do_branch PARAMS ((char *operands, unsigned long flags)); static void do_swi PARAMS ((char *operands, unsigned long flags)); /* Pseudo Op codes */ static void do_adr PARAMS ((char *operands, unsigned long flags)); static void do_nop PARAMS ((char *operands, unsigned long flags)); /* ARM 2 */ static void do_mul PARAMS ((char *operands, unsigned long flags)); static void do_mla PARAMS ((char *operands, unsigned long flags)); /* ARM 3 */ static void do_swap PARAMS ((char *operands, unsigned long flags)); /* ARM 6 */ static void do_msr PARAMS ((char *operands, unsigned long flags)); static void do_mrs PARAMS ((char *operands, unsigned long flags)); /* ARM 7M */ static void do_mull PARAMS ((char *operands, unsigned long flags)); /* ARM THUMB */ static void do_bx PARAMS ((char *operands, unsigned long flags)); /* Coprocessor Instructions */ static void do_cdp PARAMS ((char *operands, unsigned long flags)); static void do_lstc PARAMS ((char *operands, unsigned long flags)); static void do_co_reg PARAMS ((char *operands, unsigned long flags)); static void do_fp_ctrl PARAMS ((char *operands, unsigned long flags)); static void do_fp_ldst PARAMS ((char *operands, unsigned long flags)); static void do_fp_ldmstm PARAMS ((char *operands, unsigned long flags)); static void do_fp_dyadic PARAMS ((char *operands, unsigned long flags)); static void do_fp_monadic PARAMS ((char *operands, unsigned long flags)); static void do_fp_cmp PARAMS ((char *operands, unsigned long flags)); static void do_fp_from_reg PARAMS ((char *operands, unsigned long flags)); static void do_fp_to_reg PARAMS ((char *operands, unsigned long flags)); static void fix_new_arm PARAMS ((fragS *frag, int where, short int size, expressionS *exp, int pc_rel, int reloc)); static int arm_reg_parse PARAMS ((char **ccp)); static int arm_psr_parse PARAMS ((char **ccp)); /* ARM instructions take 4bytes in the object file, Thumb instructions take 2: */ #define INSN_SIZE 4 /* LONGEST_INST is the longest basic instruction name without conditions or * flags. * ARM7M has 4 of length 5 */ #define LONGEST_INST 5 struct asm_opcode { CONST char *template; /* Basic string to match */ unsigned long value; /* Basic instruction code */ CONST char *comp_suffix; /* Compulsory suffix that must follow conds */ CONST struct asm_flg *flags; /* Bits to toggle if flag 'n' set */ unsigned long variants; /* Which CPU variants this exists for */ void (*parms)(); /* Function to call to parse args */ }; static CONST struct asm_opcode insns[] = { /* ARM Instructions */ {"and", 0x00000000, NULL, s_flag, ARM_ANY, do_arit}, {"eor", 0x00200000, NULL, s_flag, ARM_ANY, do_arit}, {"sub", 0x00400000, NULL, s_flag, ARM_ANY, do_arit}, {"rsb", 0x00600000, NULL, s_flag, ARM_ANY, do_arit}, {"add", 0x00800000, NULL, s_flag, ARM_ANY, do_arit}, {"adc", 0x00a00000, NULL, s_flag, ARM_ANY, do_arit}, {"sbc", 0x00c00000, NULL, s_flag, ARM_ANY, do_arit}, {"rsc", 0x00e00000, NULL, s_flag, ARM_ANY, do_arit}, {"orr", 0x01800000, NULL, s_flag, ARM_ANY, do_arit}, {"bic", 0x01c00000, NULL, s_flag, ARM_ANY, do_arit}, {"tst", 0x01000000, NULL, cmp_flags, ARM_ANY, do_cmp}, {"teq", 0x01200000, NULL, cmp_flags, ARM_ANY, do_cmp}, {"cmp", 0x01400000, NULL, cmp_flags, ARM_ANY, do_cmp}, {"cmn", 0x01600000, NULL, cmp_flags, ARM_ANY, do_cmp}, {"mov", 0x01a00000, NULL, s_flag, ARM_ANY, do_mov}, {"mvn", 0x01e00000, NULL, s_flag, ARM_ANY, do_mov}, {"str", 0x04000000, NULL, str_flags, ARM_ANY, do_ldst}, {"ldr", 0x04100000, NULL, ldr_flags, ARM_ANY, do_ldst}, {"stm", 0x08000000, NULL, stm_flags, ARM_ANY, do_ldmstm}, {"ldm", 0x08100000, NULL, ldm_flags, ARM_ANY, do_ldmstm}, {"swi", 0x0f000000, NULL, NULL, ARM_ANY, do_swi}, {"bl", 0x0bfffffe, NULL, NULL, ARM_ANY, do_branch}, {"b", 0x0afffffe, NULL, NULL, ARM_ANY, do_branch}, /* Pseudo ops */ {"adr", 0x028f0000, NULL, NULL, ARM_ANY, do_adr}, {"nop", 0x01a00000, NULL, NULL, ARM_ANY, do_nop}, /* ARM 2 multiplies */ {"mul", 0x00000090, NULL, s_flag, ARM_2UP, do_mul}, {"mla", 0x00200090, NULL, s_flag, ARM_2UP, do_mla}, /* ARM 3 - swp instructions */ {"swp", 0x01000090, NULL, byte_flag, ARM_3UP, do_swap}, /* ARM 6 Coprocessor instructions */ {"mrs", 0x010f0000, NULL, NULL, ARM_6UP, do_mrs}, {"msr", 0x0128f000, NULL, NULL, ARM_6UP, do_msr}, /* ARM 7M long multiplies - need signed/unsigned flags! */ {"smull", 0x00c00090, NULL, s_flag, ARM_LONGMUL, do_mull}, {"umull", 0x00800090, NULL, s_flag, ARM_LONGMUL, do_mull}, {"smlal", 0x00e00090, NULL, s_flag, ARM_LONGMUL, do_mull}, {"umlal", 0x00a00090, NULL, s_flag, ARM_LONGMUL, do_mull}, /* ARM THUMB interworking */ {"bx", 0x012fff10, NULL, NULL, ARM_THUMB, do_bx}, /* Floating point instructions */ {"wfs", 0x0e200110, NULL, NULL, FPU_ALL, do_fp_ctrl}, {"rfs", 0x0e300110, NULL, NULL, FPU_ALL, do_fp_ctrl}, {"wfc", 0x0e400110, NULL, NULL, FPU_ALL, do_fp_ctrl}, {"rfc", 0x0e500110, NULL, NULL, FPU_ALL, do_fp_ctrl}, {"ldf", 0x0c100100, "sdep", NULL, FPU_ALL, do_fp_ldst}, {"stf", 0x0c000100, "sdep", NULL, FPU_ALL, do_fp_ldst}, {"lfm", 0x0c100200, NULL, lfm_flags, FPU_MEMMULTI, do_fp_ldmstm}, {"sfm", 0x0c000200, NULL, sfm_flags, FPU_MEMMULTI, do_fp_ldmstm}, {"mvf", 0x0e008100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"mnf", 0x0e108100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"abs", 0x0e208100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"rnd", 0x0e308100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"sqt", 0x0e408100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"log", 0x0e508100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"lgn", 0x0e608100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"exp", 0x0e708100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"sin", 0x0e808100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"cos", 0x0e908100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"tan", 0x0ea08100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"asn", 0x0eb08100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"acs", 0x0ec08100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"atn", 0x0ed08100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"urd", 0x0ee08100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"nrm", 0x0ef08100, "sde", round_flags, FPU_ALL, do_fp_monadic}, {"adf", 0x0e000100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"suf", 0x0e200100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"rsf", 0x0e300100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"muf", 0x0e100100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"dvf", 0x0e400100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"rdf", 0x0e500100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"pow", 0x0e600100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"rpw", 0x0e700100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"rmf", 0x0e800100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"fml", 0x0e900100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"fdv", 0x0ea00100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"frd", 0x0eb00100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"pol", 0x0ec00100, "sde", round_flags, FPU_ALL, do_fp_dyadic}, {"cmf", 0x0e90f110, NULL, except_flag, FPU_ALL, do_fp_cmp}, {"cnf", 0x0eb0f110, NULL, except_flag, FPU_ALL, do_fp_cmp}, /* The FPA10 data sheet suggests that the 'E' of cmfe/cnfe should not be an optional suffix, but part of the instruction. To be compatible, we accept either. */ {"cmfe", 0x0ed0f110, NULL, NULL, FPU_ALL, do_fp_cmp}, {"cnfe", 0x0ef0f110, NULL, NULL, FPU_ALL, do_fp_cmp}, {"flt", 0x0e000110, "sde", round_flags, FPU_ALL, do_fp_from_reg}, {"fix", 0x0e100110, NULL, fix_flags, FPU_ALL, do_fp_to_reg}, /* Generic copressor instructions */ {"cdp", 0x0e000000, NULL, NULL, ARM_2UP, do_cdp}, {"ldc", 0x0c100000, NULL, cplong_flag, ARM_2UP, do_lstc}, {"stc", 0x0c000000, NULL, cplong_flag, ARM_2UP, do_lstc}, {"mcr", 0x0e000010, NULL, NULL, ARM_2UP, do_co_reg}, {"mrc", 0x0e100010, NULL, NULL, ARM_2UP, do_co_reg}, }; /* defines for various bits that we will want to toggle */ #define INST_IMMEDIATE 0x02000000 #define OFFSET_REG 0x02000000 #define HWOFFSET_IMM 0x00400000 #define SHIFT_BY_REG 0x00000010 #define PRE_INDEX 0x01000000 #define INDEX_UP 0x00800000 #define WRITE_BACK 0x00200000 #define MULTI_SET_PSR 0x00400000 #define LITERAL_MASK 0xf000f000 #define COND_MASK 0xf0000000 #define OPCODE_MASK 0xfe1fffff #define DATA_OP_SHIFT 21 /* Codes to distinguish the arithmetic instructions */ #define OPCODE_AND 0 #define OPCODE_EOR 1 #define OPCODE_SUB 2 #define OPCODE_RSB 3 #define OPCODE_ADD 4 #define OPCODE_ADC 5 #define OPCODE_SBC 6 #define OPCODE_RSC 7 #define OPCODE_TST 8 #define OPCODE_TEQ 9 #define OPCODE_CMP 10 #define OPCODE_CMN 11 #define OPCODE_ORR 12 #define OPCODE_MOV 13 #define OPCODE_BIC 14 #define OPCODE_MVN 15 static void do_t_arit PARAMS ((char *operands)); static void do_t_add PARAMS ((char *operands)); static void do_t_asr PARAMS ((char *operands)); static void do_t_branch PARAMS ((char *operands)); static void do_t_bx PARAMS ((char *operands)); static void do_t_compare PARAMS ((char *operands)); static void do_t_ldmstm PARAMS ((char *operands)); static void do_t_ldr PARAMS ((char *operands)); static void do_t_ldrb PARAMS ((char *operands)); static void do_t_ldrh PARAMS ((char *operands)); static void do_t_lds PARAMS ((char *operands)); static void do_t_lsl PARAMS ((char *operands)); static void do_t_lsr PARAMS ((char *operands)); static void do_t_mov PARAMS ((char *operands)); static void do_t_push_pop PARAMS ((char *operands)); static void do_t_str PARAMS ((char *operands)); static void do_t_strb PARAMS ((char *operands)); static void do_t_strh PARAMS ((char *operands)); static void do_t_sub PARAMS ((char *operands)); static void do_t_swi PARAMS ((char *operands)); static void do_t_adr PARAMS ((char *operands)); #define T_OPCODE_MUL 0x4340 #define T_OPCODE_TST 0x4200 #define T_OPCODE_CMN 0x42c0 #define T_OPCODE_NEG 0x4240 #define T_OPCODE_MVN 0x43c0 #define T_OPCODE_ADD_R3 0x1800 #define T_OPCODE_SUB_R3 0x1a00 #define T_OPCODE_ADD_HI 0x4400 #define T_OPCODE_ADD_ST 0xb000 #define T_OPCODE_SUB_ST 0xb080 #define T_OPCODE_ADD_SP 0xa800 #define T_OPCODE_ADD_PC 0xa000 #define T_OPCODE_ADD_I8 0x3000 #define T_OPCODE_SUB_I8 0x3800 #define T_OPCODE_ADD_I3 0x1c00 #define T_OPCODE_SUB_I3 0x1e00 #define T_OPCODE_ASR_R 0x4100 #define T_OPCODE_LSL_R 0x4080 #define T_OPCODE_LSR_R 0x40c0 #define T_OPCODE_ASR_I 0x1000 #define T_OPCODE_LSL_I 0x0000 #define T_OPCODE_LSR_I 0x0800 #define T_OPCODE_MOV_I8 0x2000 #define T_OPCODE_CMP_I8 0x2800 #define T_OPCODE_CMP_LR 0x4280 #define T_OPCODE_MOV_HR 0x4600 #define T_OPCODE_CMP_HR 0x4500 #define T_OPCODE_LDR_PC 0x4800 #define T_OPCODE_LDR_SP 0x9800 #define T_OPCODE_STR_SP 0x9000 #define T_OPCODE_LDR_IW 0x6800 #define T_OPCODE_STR_IW 0x6000 #define T_OPCODE_LDR_IH 0x8800 #define T_OPCODE_STR_IH 0x8000 #define T_OPCODE_LDR_IB 0x7800 #define T_OPCODE_STR_IB 0x7000 #define T_OPCODE_LDR_RW 0x5800 #define T_OPCODE_STR_RW 0x5000 #define T_OPCODE_LDR_RH 0x5a00 #define T_OPCODE_STR_RH 0x5200 #define T_OPCODE_LDR_RB 0x5c00 #define T_OPCODE_STR_RB 0x5400 #define T_OPCODE_PUSH 0xb400 #define T_OPCODE_POP 0xbc00 #define T_OPCODE_BRANCH 0xe7fe static int thumb_reg PARAMS ((char **str, int hi_lo)); #define THUMB_SIZE 2 /* Size of thumb instruction */ #define THUMB_REG_LO 0x1 #define THUMB_REG_HI 0x2 #define THUMB_REG_ANY 0x3 #define THUMB_H1 0x0080 #define THUMB_H2 0x0040 #define THUMB_ASR 0 #define THUMB_LSL 1 #define THUMB_LSR 2 #define THUMB_MOVE 0 #define THUMB_COMPARE 1 #define THUMB_LOAD 0 #define THUMB_STORE 1 #define THUMB_PP_PC_LR 0x0100 /* These three are used for immediate shifts, do not alter */ #define THUMB_WORD 2 #define THUMB_HALFWORD 1 #define THUMB_BYTE 0 struct thumb_opcode { CONST char *template; /* Basic string to match */ unsigned long value; /* Basic instruction code */ int size; void (*parms)(); /* Function to call to parse args */ }; static CONST struct thumb_opcode tinsns[] = { {"adc", 0x4140, 2, do_t_arit}, {"add", 0x0000, 2, do_t_add}, {"and", 0x4000, 2, do_t_arit}, {"asr", 0x0000, 2, do_t_asr}, {"b", T_OPCODE_BRANCH, 2, do_t_branch}, {"beq", 0xd0fe, 2, do_t_branch}, {"bne", 0xd1fe, 2, do_t_branch}, {"bcs", 0xd2fe, 2, do_t_branch}, {"bhs", 0xd2fe, 2, do_t_branch}, {"bcc", 0xd3fe, 2, do_t_branch}, {"bul", 0xd3fe, 2, do_t_branch}, {"blo", 0xd3fe, 2, do_t_branch}, {"bmi", 0xd4fe, 2, do_t_branch}, {"bpl", 0xd5fe, 2, do_t_branch}, {"bvs", 0xd6fe, 2, do_t_branch}, {"bvc", 0xd7fe, 2, do_t_branch}, {"bhi", 0xd8fe, 2, do_t_branch}, {"bls", 0xd9fe, 2, do_t_branch}, {"bge", 0xdafe, 2, do_t_branch}, {"blt", 0xdbfe, 2, do_t_branch}, {"bgt", 0xdcfe, 2, do_t_branch}, {"ble", 0xddfe, 2, do_t_branch}, {"bic", 0x4380, 2, do_t_arit}, {"bl", 0xf7fffffe, 4, do_t_branch}, {"bx", 0x4700, 2, do_t_bx}, {"cmn", T_OPCODE_CMN, 2, do_t_arit}, {"cmp", 0x0000, 2, do_t_compare}, {"eor", 0x4040, 2, do_t_arit}, {"ldmia", 0xc800, 2, do_t_ldmstm}, {"ldr", 0x0000, 2, do_t_ldr}, {"ldrb", 0x0000, 2, do_t_ldrb}, {"ldrh", 0x0000, 2, do_t_ldrh}, {"ldrsb", 0x5600, 2, do_t_lds}, {"ldrsh", 0x5e00, 2, do_t_lds}, {"ldsb", 0x5600, 2, do_t_lds}, {"ldsh", 0x5e00, 2, do_t_lds}, {"lsl", 0x0000, 2, do_t_lsl}, {"lsr", 0x0000, 2, do_t_lsr}, {"mov", 0x0000, 2, do_t_mov}, {"mul", T_OPCODE_MUL, 2, do_t_arit}, {"mvn", T_OPCODE_MVN, 2, do_t_arit}, {"neg", T_OPCODE_NEG, 2, do_t_arit}, {"orr", 0x4300, 2, do_t_arit}, {"pop", 0xbc00, 2, do_t_push_pop}, {"push", 0xb400, 2, do_t_push_pop}, {"ror", 0x41c0, 2, do_t_arit}, {"sbc", 0x4180, 2, do_t_arit}, {"stmia", 0xc000, 2, do_t_ldmstm}, {"str", 0x0000, 2, do_t_str}, {"strb", 0x0000, 2, do_t_strb}, {"strh", 0x0000, 2, do_t_strh}, {"swi", 0xdf00, 2, do_t_swi}, {"sub", 0x0000, 2, do_t_sub}, {"tst", T_OPCODE_TST, 2, do_t_arit}, /* Pseudo ops: */ {"adr", 0x0000, 2, do_t_adr}, {"nop", 0x0000, 2, do_nop}, }; struct reg_entry { CONST char *name; int number; }; #define int_register(reg) ((reg) >= 0 && (reg) <= 15) #define cp_register(reg) ((reg) >= 32 && (reg) <= 47) #define fp_register(reg) ((reg) >= 16 && (reg) <= 23) #define REG_PC 15 #define REG_LR 14 #define REG_SP 13 /* These are the standard names; Users can add aliases with .req */ static CONST struct reg_entry reg_table[] = { /* Processor Register Numbers */ {"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, {"r12", 12}, {"r13", REG_SP},{"r14", REG_LR},{"r15", REG_PC}, /* APCS conventions */ {"a1", 0}, {"a2", 1}, {"a3", 2}, {"a4", 3}, {"v1", 4}, {"v2", 5}, {"v3", 6}, {"v4", 7}, {"v5", 8}, {"v6", 9}, {"sb", 9}, {"v7", 10}, {"sl", 10}, {"fp", 11}, {"ip", 12}, {"sp", REG_SP},{"lr", REG_LR},{"pc", REG_PC}, /* FP Registers */ {"f0", 16}, {"f1", 17}, {"f2", 18}, {"f3", 19}, {"f4", 20}, {"f5", 21}, {"f6", 22}, {"f7", 23}, {"c0", 32}, {"c1", 33}, {"c2", 34}, {"c3", 35}, {"c4", 36}, {"c5", 37}, {"c6", 38}, {"c7", 39}, {"c8", 40}, {"c9", 41}, {"c10", 42}, {"c11", 43}, {"c12", 44}, {"c13", 45}, {"c14", 46}, {"c15", 47}, {"cr0", 32}, {"cr1", 33}, {"cr2", 34}, {"cr3", 35}, {"cr4", 36}, {"cr5", 37}, {"cr6", 38}, {"cr7", 39}, {"cr8", 40}, {"cr9", 41}, {"cr10", 42}, {"cr11", 43}, {"cr12", 44}, {"cr13", 45}, {"cr14", 46}, {"cr15", 47}, {NULL, 0} }; static CONST char *bad_args = "Bad arguments to instruction"; static CONST char *bad_pc = "r15 not allowed here"; static struct hash_control *arm_ops_hsh = NULL; static struct hash_control *arm_tops_hsh = NULL; static struct hash_control *arm_cond_hsh = NULL; static struct hash_control *arm_shift_hsh = NULL; static struct hash_control *arm_reg_hsh = NULL; static struct hash_control *arm_psr_hsh = NULL; /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function */ static void s_req PARAMS ((int)); static void s_align PARAMS ((int)); static void s_bss PARAMS ((int)); static void s_even PARAMS ((int)); static void s_ltorg PARAMS ((int)); static void s_arm PARAMS ((int)); static void s_thumb PARAMS ((int)); static void s_code PARAMS ((int)); static int my_get_expression PARAMS ((expressionS *, char **)); CONST pseudo_typeS md_pseudo_table[] = { {"req", s_req, 0}, /* Never called becasue '.req' does not start line */ {"bss", s_bss, 0}, {"align", s_align, 0}, {"arm", s_arm, 0}, {"thumb", s_thumb, 0}, {"code", s_code, 0}, {"even", s_even, 0}, {"ltorg", s_ltorg, 0}, {"pool", s_ltorg, 0}, {"word", cons, 4}, {"extend", float_cons, 'x'}, {"ldouble", float_cons, 'x'}, {"packed", float_cons, 'p'}, {0, 0, 0} }; /* Stuff needed to resolve the label ambiguity As: ... label: may differ from: ... label: */ symbolS *last_label_seen; /* Literal stuff */ #define MAX_LITERAL_POOL_SIZE 1024 typedef struct literalS { struct expressionS exp; struct arm_it *inst; } literalT; literalT literals[MAX_LITERAL_POOL_SIZE]; int next_literal_pool_place = 0; /* Next free entry in the pool */ int lit_pool_num = 1; /* Next literal pool number */ symbolS *current_poolP = NULL; symbolS *symbol_make_empty (); static int add_to_lit_pool () { int lit_count = 0; if (current_poolP == NULL) current_poolP = symbol_make_empty(); /* Check if this literal value is already in the pool: */ while (lit_count < next_literal_pool_place) { if (literals[lit_count].exp.X_op == inst.reloc.exp.X_op && inst.reloc.exp.X_op == O_constant && literals[lit_count].exp.X_add_number == inst.reloc.exp.X_add_number && literals[lit_count].exp.X_unsigned == inst.reloc.exp.X_unsigned) break; lit_count++; } if (lit_count == next_literal_pool_place) /* new entry */ { if (next_literal_pool_place > MAX_LITERAL_POOL_SIZE) { inst.error = "Literal Pool Overflow\n"; return FAIL; } literals[next_literal_pool_place].exp = inst.reloc.exp; lit_count = next_literal_pool_place++; } inst.reloc.exp.X_op = O_symbol; inst.reloc.exp.X_add_number = (lit_count)*4-8; inst.reloc.exp.X_add_symbol = current_poolP; return SUCCESS; } /* Can't use symbol_new here, so have to create a symbol and them at a later date assign it a value. Thats what these functions do */ static void symbol_locate (symbolP, name, segment, valu, frag) symbolS *symbolP; CONST char *name; /* It is copied, the caller can modify */ segT segment; /* Segment identifier (SEG_) */ valueT valu; /* Symbol value */ fragS *frag; /* Associated fragment */ { unsigned int name_length; char *preserved_copy_of_name; name_length = strlen (name) + 1; /* +1 for \0 */ obstack_grow (¬es, name, name_length); preserved_copy_of_name = obstack_finish (¬es); #ifdef STRIP_UNDERSCORE if (preserved_copy_of_name[0] == '_') preserved_copy_of_name++; #endif #ifdef tc_canonicalize_symbol_name preserved_copy_of_name = tc_canonicalize_symbol_name (preserved_copy_of_name); #endif S_SET_NAME (symbolP, preserved_copy_of_name); S_SET_SEGMENT (symbolP, segment); S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers(symbolP); symbolP->sy_frag = frag; /* * Link to end of symbol chain. */ { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); } symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif #ifdef DEBUG_SYMS verify_symbol_chain(symbol_rootP, symbol_lastP); #endif /* DEBUG_SYMS */ } symbolS * symbol_make_empty () { symbolS *symbolP; symbolP = (symbolS *) obstack_alloc (¬es, sizeof (symbolS)); /* symbol must be born in some fixed state. This seems as good as any. */ memset (symbolP, 0, sizeof (symbolS)); #ifdef BFD_ASSEMBLER symbolP->bsym = bfd_make_empty_symbol (stdoutput); assert (symbolP->bsym != 0); symbolP->bsym->udata.p = (PTR) symbolP; #endif return symbolP; } /* Check that an immediate is valid, and if so, convert it to the right format */ /* OH, for a rotate instruction in C! */ static int validate_immediate (val) int val; { unsigned int a = (unsigned int) val; int i; /* Do the easy (and most common ones) quickly */ for (i = 0; i <= 24; i += 2) { if ((a & (0xff << i)) == a) return (int) (((32 - i) & 0x1e) << 7) | ((a >> i) & 0xff); } /* Now do the harder ones */ for (; i < 32; i += 2) { if ((a & ((0xff << i) | (0xff >> (32 - i)))) == a) { a = ((a >> i) & 0xff) | ((a << (32 - i)) & 0xff); return (int) a | (((32 - i) >> 1) << 8); } } return FAIL; } static int validate_offset_imm (val, hwse) int val; int hwse; { if ((hwse && (val < -255 || val > 255)) || (val < -4095 || val > 4095)) return FAIL; return val; } static void s_req (a) int a; { as_bad ("Invalid syntax for .req directive."); } static void s_bss (ignore) int ignore; { /* We don't support putting frags in the BSS segment, we fake it by marking in_bss, then looking at s_skip for clues?.. */ subseg_set (bss_section, 0); demand_empty_rest_of_line (); } static void s_even (ignore) int ignore; { if (!need_pass_2) /* Never make frag if expect extra pass. */ frag_align (1, 0, 0); record_alignment (now_seg, 1); demand_empty_rest_of_line (); } static void s_ltorg (internal) int internal; { int lit_count = 0; char sym_name[20]; if (current_poolP == NULL) { /* Nothing to do */ if (!internal) as_tsktsk ("Nothing to put in the pool\n"); return; } /* Align pool as you have word accesses */ /* Only make a frag if we have to ... */ if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 2); if (internal) as_tsktsk ("Inserting implicit pool at change of section"); sprintf (sym_name, "$$lit_\002%x", lit_pool_num++); symbol_locate (current_poolP, sym_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (current_poolP); while (lit_count < next_literal_pool_place) /* First output the expression in the instruction to the pool */ emit_expr (&(literals[lit_count++].exp), 4); /* .word */ next_literal_pool_place = 0; current_poolP = NULL; } #if 0 /* not used */ static void arm_align (power, fill) int power; int fill; { /* Only make a frag if we HAVE to ... */ if (power && !need_pass_2) frag_align (power, fill, 0); record_alignment (now_seg, power); } #endif static void s_align (unused) /* Same as s_align_ptwo but align 0 => align 2 */ int unused; { register int temp; register long temp_fill; long max_alignment = 15; temp = get_absolute_expression (); if (temp > max_alignment) as_bad ("Alignment too large: %d. assumed.", temp = max_alignment); else if (temp < 0) { as_bad ("Alignment negative. 0 assumed."); temp = 0; } if (*input_line_pointer == ',') { input_line_pointer++; temp_fill = get_absolute_expression (); } else temp_fill = 0; if (!temp) temp = 2; /* Only make a frag if we HAVE to. . . */ if (temp && !need_pass_2) frag_align (temp, (int) temp_fill, 0); demand_empty_rest_of_line (); record_alignment (now_seg, temp); } static void opcode_select (width) int width; { switch (width) { case 16: if (! thumb_mode) { if (! (cpu_variant & ARM_THUMB)) as_bad ("selected processor does not support THUMB opcodes"); thumb_mode = 1; /* No need to force the alignment, since we will have been coming from ARM mode, which is word-aligned. */ record_alignment (now_seg, 1); } break; case 32: if (thumb_mode) { if ((cpu_variant & ARM_ANY) == ARM_THUMB) as_bad ("selected processor does not support ARM opcodes"); thumb_mode = 0; if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 1); } break; default: as_bad ("invalid instruction size selected (%d)", width); } } static void s_arm (ignore) int ignore; { opcode_select (32); demand_empty_rest_of_line (); } static void s_thumb (ignore) int ignore; { opcode_select (16); demand_empty_rest_of_line (); } static void s_code (unused) int unused; { register int temp; temp = get_absolute_expression (); switch (temp) { case 16: case 32: opcode_select(temp); break; default: as_bad ("invalid operand to .code directive (%d)", temp); } } static void end_of_line (str) char *str; { while (*str == ' ') str++; if (*str != '\0') inst.error = "Garbage following instruction"; } static int skip_past_comma (str) char **str; { char *p = *str, c; int comma = 0; while ((c = *p) == ' ' || c == ',') { p++; if (c == ',' && comma++) return FAIL; } if (c == '\0') return FAIL; *str = p; return comma ? SUCCESS : FAIL; } /* A standard register must be given at this point. Shift is the place to put it in the instruction. */ static int reg_required_here (str, shift) char **str; int shift; { int reg; char *start = *str; if ((reg = arm_reg_parse (str)) != FAIL && int_register (reg)) { inst.instruction |= reg << shift; return reg; } /* In the few cases where we might be able to accept something else this error can be overridden */ inst.error = "Register expected"; /* Restore the start point, we may have got a reg of the wrong class. */ *str = start; return FAIL; } static int psr_required_here (str, shift) char **str; int shift; { int psr; char *start = *str; if ((psr = arm_psr_parse (str)) != FAIL && psr < 2) { if (psr == 1) inst.instruction |= 1 << shift; /* Should be bit 22 */ return psr; } /* In the few cases where we might be able to accept something else this error can be overridden */ inst.error = " expected"; /* Restore the start point. */ *str = start; return FAIL; } static int psrf_required_here (str, shift) char **str; int shift; { int psrf; char *start = *str; if ((psrf = arm_psr_parse (str)) != FAIL && psrf > 1) { if (psrf == 1 || psrf == 3) inst.instruction |= 1 << shift; /* Should be bit 22 */ return psrf; } /* In the few cases where we might be able to accept something else this error can be overridden */ inst.error = " expected"; /* Restore the start point. */ *str = start; return FAIL; } static int co_proc_number (str) char **str; { int processor, pchar; while (**str == ' ') (*str)++; /* The data sheet seems to imply that just a number on its own is valid here, but the RISC iX assembler seems to accept a prefix 'p'. We will accept either. */ if (**str == 'p' || **str == 'P') (*str)++; pchar = *(*str)++; if (pchar >= '0' && pchar <= '9') { processor = pchar - '0'; if (**str >= '0' && **str <= '9') { processor = processor * 10 + *(*str)++ - '0'; if (processor > 15) { inst.error = "Illegal co-processor number"; return FAIL; } } } else { inst.error = "Bad or missing co-processor number"; return FAIL; } inst.instruction |= processor << 8; return SUCCESS; } static int cp_opc_expr (str, where, length) char **str; int where; int length; { expressionS expr; while (**str == ' ') (*str)++; memset (&expr, '\0', sizeof (expr)); if (my_get_expression (&expr, str)) return FAIL; if (expr.X_op != O_constant) { inst.error = "bad or missing expression"; return FAIL; } if ((expr.X_add_number & ((1 << length) - 1)) != expr.X_add_number) { inst.error = "immediate co-processor expression too large"; return FAIL; } inst.instruction |= expr.X_add_number << where; return SUCCESS; } static int cp_reg_required_here (str, where) char **str; int where; { int reg; char *start = *str; if ((reg = arm_reg_parse (str)) != FAIL && cp_register (reg)) { reg &= 15; inst.instruction |= reg << where; return reg; } /* In the few cases where we might be able to accept something else this error can be overridden */ inst.error = "Co-processor register expected"; /* Restore the start point */ *str = start; return FAIL; } static int fp_reg_required_here (str, where) char **str; int where; { int reg; char *start = *str; if ((reg = arm_reg_parse (str)) != FAIL && fp_register (reg)) { reg &= 7; inst.instruction |= reg << where; return reg; } /* In the few cases where we might be able to accept something else this error can be overridden */ inst.error = "Floating point register expected"; /* Restore the start point */ *str = start; return FAIL; } static int cp_address_offset (str) char **str; { int offset; while (**str == ' ') (*str)++; if (**str != '#') { inst.error = "immediate expression expected"; return FAIL; } (*str)++; if (my_get_expression (&inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_op == O_constant) { offset = inst.reloc.exp.X_add_number; if (offset & 3) { inst.error = "co-processor address must be word aligned"; return FAIL; } if (offset > 1023 || offset < -1023) { inst.error = "offset too large"; return FAIL; } if (offset >= 0) inst.instruction |= INDEX_UP; else offset = -offset; inst.instruction |= offset >> 2; } else inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM; return SUCCESS; } static int cp_address_required_here (str) char **str; { char *p = *str; int pre_inc = 0; int write_back = 0; if (*p == '[') { int reg; p++; while (*p == ' ') p++; if ((reg = reg_required_here (&p, 16)) == FAIL) { inst.error = "Register required"; return FAIL; } while (*p == ' ') p++; if (*p == ']') { p++; if (skip_past_comma (&p) == SUCCESS) { /* [Rn], #expr */ write_back = WRITE_BACK; if (reg == REG_PC) { inst.error = "pc may not be used in post-increment"; return FAIL; } if (cp_address_offset (&p) == FAIL) return FAIL; } else pre_inc = PRE_INDEX | INDEX_UP; } else { /* '['Rn, #expr']'[!] */ if (skip_past_comma (&p) == FAIL) { inst.error = "pre-indexed expression expected"; return FAIL; } pre_inc = PRE_INDEX; if (cp_address_offset (&p) == FAIL) return FAIL; while (*p == ' ') p++; if (*p++ != ']') { inst.error = "missing ]"; return FAIL; } while (*p == ' ') p++; if (*p == '!') { if (reg == REG_PC) { inst.error = "pc may not be used with write-back"; return FAIL; } p++; write_back = WRITE_BACK; } } } else { if (my_get_expression (&inst.reloc.exp, &p)) return FAIL; inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM; inst.reloc.exp.X_add_number -= 8; /* PC rel adjust */ inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = PRE_INDEX; } inst.instruction |= write_back | pre_inc; *str = p; return SUCCESS; } static void do_nop (str, flags) char *str; unsigned long flags; { /* Do nothing really */ inst.instruction |= flags; /* This is pointless */ end_of_line (str); return; } static void do_mrs (str, flags) char *str; unsigned long flags; { /* Only one syntax */ while (*str == ' ') str++; if (reg_required_here (&str, 12) == FAIL) { inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || psr_required_here (&str, 22) == FAIL) { inst.error = " expected"; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_msr (str, flags) char *str; unsigned long flags; { int psr, psrf, reg; /* Three possible forms: ", Rm", ", Rm", ", #expression" */ while (*str == ' ') str++; if ((psr = psr_required_here (&str, 22)) != FAIL) { inst.instruction |= PSR_ALL; /* Sytax should be ", Rm" */ if (skip_past_comma (&str) == FAIL || (reg = reg_required_here (&str, 0)) == FAIL) { inst.error = bad_args; return; } } else if ((psrf = psrf_required_here (&str, 22)) != FAIL) /* Syntax could be ", rm", ", #expression" */ { if (skip_past_comma (&str) == FAIL) { inst.error = bad_args; return; } if ((reg = reg_required_here (&str, 0)) != FAIL) ; /* Immediate expression */ else if (*(str++) == '#') { inst.error = NULL; if (my_get_expression (&inst.reloc.exp, &str)) { inst.error = "Register or shift expression expected"; return; } if (inst.reloc.exp.X_add_symbol) { inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; } else { int value = validate_immediate (inst.reloc.exp.X_add_number); if (value == FAIL) { inst.error = "Invalid constant"; return; } inst.instruction |= value; } flags |= INST_IMMEDIATE; } else { inst.error = "Error: the other"; return; } } else { inst.error = bad_args; return; } inst.error = NULL; inst.instruction |= flags; end_of_line (str); return; } /* Long Multiply Parser UMULL RdLo, RdHi, Rm, Rs SMULL RdLo, RdHi, Rm, Rs UMLAL RdLo, RdHi, Rm, Rs SMLAL RdLo, RdHi, Rm, Rs */ static void do_mull (str, flags) char *str; unsigned long flags; { int rdlo, rdhi, rm, rs; /* only one format "rdlo, rdhi, rm, rs" */ while (*str == ' ') str++; if ((rdlo = reg_required_here (&str, 12)) == FAIL) { inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || (rdhi = reg_required_here (&str, 16)) == FAIL) { inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 0)) == FAIL) { inst.error = bad_args; return; } /* rdhi, rdlo and rm must all be different */ if (rdlo == rdhi || rdlo == rm || rdhi == rm) as_tsktsk ("rdhi, rdlo and rm must all be different"); if (skip_past_comma (&str) == FAIL || (rs = reg_required_here (&str, 8)) == FAIL) { inst.error = bad_args; return; } if (rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC) { inst.error = bad_pc; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_mul (str, flags) char *str; unsigned long flags; { int rd, rm; /* only one format "rd, rm, rs" */ while (*str == ' ') str++; if ((rd = reg_required_here (&str, 16)) == FAIL) { inst.error = bad_args; return; } if (rd == REG_PC) { inst.error = bad_pc; return; } if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 0)) == FAIL) { inst.error = bad_args; return; } if (rm == REG_PC) { inst.error = bad_pc; return; } if (rm == rd) as_tsktsk ("rd and rm should be different in mul"); if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 8)) == FAIL) { inst.error = bad_args; return; } if (rm == REG_PC) { inst.error = bad_pc; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_mla (str, flags) char *str; unsigned long flags; { int rd, rm; /* only one format "rd, rm, rs, rn" */ while (*str == ' ') str++; if ((rd = reg_required_here (&str, 16)) == FAIL) { inst.error = bad_args; return; } if (rd == REG_PC) { inst.error = bad_pc; return; } if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 0)) == FAIL) { inst.error = bad_args; return; } if (rm == REG_PC) { inst.error = bad_pc; return; } if (rm == rd) as_tsktsk ("rd and rm should be different in mla"); if (skip_past_comma (&str) == FAIL || (rd = reg_required_here (&str, 8)) == FAIL || skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 12)) == FAIL) { inst.error = bad_args; return; } if (rd == REG_PC || rm == REG_PC) { inst.error = bad_pc; return; } inst.instruction |= flags; end_of_line (str); return; } /* Returns the index into fp_values of a floating point number, or -1 if not in the table. */ static int my_get_float_expression (str) char **str; { LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *save_in; expressionS exp; int i, j; memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE)); /* Look for a raw floating point number */ if ((save_in = atof_ieee (*str, 'x', words)) != NULL && (is_end_of_line [(int)(*save_in)] || *save_in == '\0')) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = save_in; return i; } } } /* Try and parse a more complex expression, this will probably fail unless the code uses a floating point prefix (eg "0f") */ save_in = input_line_pointer; input_line_pointer = *str; if (expression (&exp) == absolute_section && exp.X_op == O_big && exp.X_add_number < 0) { /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it. Ditto for 15. */ if (gen_to_words (words, 5, (long)15) == 0) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = input_line_pointer; input_line_pointer = save_in; return i; } } } } *str = input_line_pointer; input_line_pointer = save_in; return -1; } /* Return true if anything in the expression is a bignum */ static int walk_no_bignums (sp) symbolS *sp; { if (sp->sy_value.X_op == O_big) return 1; if (sp->sy_value.X_add_symbol) { return (walk_no_bignums (sp->sy_value.X_add_symbol) || (sp->sy_value.X_op_symbol && walk_no_bignums (sp->sy_value.X_op_symbol))); } return 0; } static int my_get_expression (ep, str) expressionS *ep; char **str; { char *save_in; segT seg; save_in = input_line_pointer; input_line_pointer = *str; seg = expression (ep); #ifdef OBJ_AOUT if (seg != absolute_section && seg != text_section && seg != data_section && seg != bss_section && seg != undefined_section) { inst.error = "bad_segment"; *str = input_line_pointer; input_line_pointer = save_in; return 1; } #endif /* Get rid of any bignums now, so that we don't generate an error for which we can't establish a line number later on. Big numbers are never valid in instructions, which is where this routine is always called. */ if (ep->X_op == O_big || (ep->X_add_symbol && (walk_no_bignums (ep->X_add_symbol) || (ep->X_op_symbol && walk_no_bignums (ep->X_op_symbol))))) { inst.error = "Invalid constant"; *str = input_line_pointer; input_line_pointer = save_in; return 1; } *str = input_line_pointer; input_line_pointer = save_in; return 0; } /* unrestrict should be one if is permitted for this instruction */ static int decode_shift (str, unrestrict) char **str; int unrestrict; { struct asm_shift *shft; char *p; char c; while (**str == ' ') (*str)++; for (p = *str; isalpha (*p); p++) ; if (p == *str) { inst.error = "Shift expression expected"; return FAIL; } c = *p; *p = '\0'; shft = (struct asm_shift *) hash_find (arm_shift_hsh, *str); *p = c; if (shft) { if (!strcmp (*str, "rrx") || !strcmp (*str, "RRX")) { *str = p; inst.instruction |= shft->value; return SUCCESS; } while (*p == ' ') p++; if (unrestrict && reg_required_here (&p, 8) != FAIL) { inst.instruction |= shft->value | SHIFT_BY_REG; *str = p; return SUCCESS; } else if (*p == '#') { inst.error = NULL; p++; if (my_get_expression (&inst.reloc.exp, &p)) return FAIL; /* Validate some simple #expressions */ if (inst.reloc.exp.X_op == O_constant) { unsigned num = inst.reloc.exp.X_add_number; /* Reject operations greater than 32, or lsl #32 */ if (num > 32 || (num == 32 && shft->value == 0)) { inst.error = "Invalid immediate shift"; return FAIL; } /* Shifts of zero should be converted to lsl (which is zero)*/ if (num == 0) { *str = p; return SUCCESS; } /* Shifts of 32 are encoded as 0, for those shifts that support it. */ if (num == 32) num = 0; inst.instruction |= (num << 7) | shft->value; *str = p; return SUCCESS; } inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; inst.reloc.pc_rel = 0; inst.instruction |= shft->value; *str = p; return SUCCESS; } else { inst.error = unrestrict ? "shift requires register or #expression" : "shift requires #expression"; *str = p; return FAIL; } } inst.error = "Shift expression expected"; return FAIL; } /* Do those data_ops which can take a negative immediate constant */ /* by altering the instuction. A bit of a hack really */ /* MOV <-> MVN AND <-> BIC ADC <-> SBC by inverting the second operand, and ADD <-> SUB CMP <-> CMN by negating the second operand. */ static int negate_data_op (instruction, value) unsigned long *instruction; unsigned long value; { int op, new_inst; unsigned long negated, inverted; negated = validate_immediate (-value); inverted = validate_immediate (~value); op = (*instruction >> DATA_OP_SHIFT) & 0xf; switch (op) { /* First negates */ case OPCODE_SUB: /* ADD <-> SUB */ new_inst = OPCODE_ADD; value = negated; break; case OPCODE_ADD: new_inst = OPCODE_SUB; value = negated; break; case OPCODE_CMP: /* CMP <-> CMN */ new_inst = OPCODE_CMN; value = negated; break; case OPCODE_CMN: new_inst = OPCODE_CMP; value = negated; break; /* Now Inverted ops */ case OPCODE_MOV: /* MOV <-> MVN */ new_inst = OPCODE_MVN; value = inverted; break; case OPCODE_MVN: new_inst = OPCODE_MOV; value = inverted; break; case OPCODE_AND: /* AND <-> BIC */ new_inst = OPCODE_BIC; value = inverted; break; case OPCODE_BIC: new_inst = OPCODE_AND; value = inverted; break; case OPCODE_ADC: /* ADC <-> SBC */ new_inst = OPCODE_SBC; value = inverted; break; case OPCODE_SBC: new_inst = OPCODE_ADC; value = inverted; break; /* We cannot do anything */ default: return FAIL; } if (value == FAIL) return FAIL; *instruction &= OPCODE_MASK; *instruction |= new_inst << DATA_OP_SHIFT; return value; } static int data_op2 (str) char **str; { int value; expressionS expr; while (**str == ' ') (*str)++; if (reg_required_here (str, 0) != FAIL) { if (skip_past_comma (str) == SUCCESS) { /* Shift operation on register */ return decode_shift (str, NO_SHIFT_RESTRICT); } return SUCCESS; } else { /* Immediate expression */ if (*((*str)++) == '#') { inst.error = NULL; if (my_get_expression (&inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_add_symbol) { inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; } else { if (skip_past_comma (str) == SUCCESS) { /* #x, y -- ie explicit rotation by Y */ if (my_get_expression (&expr, str)) return FAIL; if (expr.X_op != O_constant) { inst.error = "Constant expression expected"; return FAIL; } /* Rotate must be a multiple of 2 */ if (((unsigned) expr.X_add_number) > 30 || (expr.X_add_number & 1) != 0 || ((unsigned) inst.reloc.exp.X_add_number) > 255) { inst.error = "Invalid constant"; return FAIL; } inst.instruction |= INST_IMMEDIATE; inst.instruction |= inst.reloc.exp.X_add_number; inst.instruction |= expr.X_add_number << 7; return SUCCESS; } /* Implicit rotation, select a suitable one */ value = validate_immediate (inst.reloc.exp.X_add_number); if (value == FAIL) { /* Can't be done, perhaps the code reads something like "add Rd, Rn, #-n", where "sub Rd, Rn, #n" would be ok */ if ((value = negate_data_op (&inst.instruction, inst.reloc.exp.X_add_number)) == FAIL) { inst.error = "Invalid constant"; return FAIL; } } inst.instruction |= value; } inst.instruction |= INST_IMMEDIATE; return SUCCESS; } inst.error = "Register or shift expression expected"; return FAIL; } } static int fp_op2 (str, flags) char **str; unsigned long flags; { while (**str == ' ') (*str)++; if (fp_reg_required_here (str, 0) != FAIL) return SUCCESS; else { /* Immediate expression */ if (*((*str)++) == '#') { int i; inst.error = NULL; while (**str == ' ') (*str)++; /* First try and match exact strings, this is to guarantee that some formats will work even for cross assembly */ for (i = 0; fp_const[i]; i++) { if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0) { char *start = *str; *str += strlen (fp_const[i]); if (is_end_of_line[(int)**str] || **str == '\0') { inst.instruction |= i + 8; return SUCCESS; } *str = start; } } /* Just because we didn't get a match doesn't mean that the constant isn't valid, just that it is in a format that we don't automatically recognize. Try parsing it with the standard expression routines. */ if ((i = my_get_float_expression (str)) >= 0) { inst.instruction |= i + 8; return SUCCESS; } inst.error = "Invalid floating point immediate expression"; return FAIL; } inst.error = "Floating point register or immediate expression expected"; return FAIL; } } static void do_arit (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; if (reg_required_here (&str, 12) == FAIL || skip_past_comma (&str) == FAIL || reg_required_here (&str, 16) == FAIL || skip_past_comma (&str) == FAIL || data_op2 (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_adr (str, flags) char *str; unsigned long flags; { /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-8" */ while (*str == ' ') str++; if (reg_required_here (&str, 12) == FAIL || skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (!inst.error) inst.error = bad_args; return; } /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */ inst.reloc.pc_rel = 1; inst.instruction |= flags; end_of_line (str); return; } static void do_cmp (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; if (reg_required_here (&str, 16) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || data_op2 (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } inst.instruction |= flags; if ((flags & 0x0000f000) == 0) inst.instruction |= CONDS_BIT; end_of_line (str); return; } static void do_mov (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; if (reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || data_op2 (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static int ldst_extend (str, hwse) char **str; int hwse; { int add = INDEX_UP; switch (**str) { case '#': (*str)++; if (my_get_expression (&inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_op == O_constant) { int value = inst.reloc.exp.X_add_number; if ((hwse && (value < -255 || value > 255)) || (value < -4095 || value > 4095)) { inst.error = "address offset too large"; return FAIL; } if (value < 0) { value = -value; add = 0; } /* Halfword and signextension instructions have the immediate value split across bits 11..8 and bits 3..0 */ if (hwse) inst.instruction |= add | HWOFFSET_IMM | (value >> 4) << 8 | value & 0xF; else inst.instruction |= add | value; } else { if (hwse) { inst.instruction |= HWOFFSET_IMM; inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; } else inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM; inst.reloc.pc_rel = 0; } return SUCCESS; case '-': add = 0; /* and fall through */ case '+': (*str)++; /* and fall through */ default: if (reg_required_here (str, 0) == FAIL) { inst.error = "Register expected"; return FAIL; } if (hwse) inst.instruction |= add; else { inst.instruction |= add | OFFSET_REG; if (skip_past_comma (str) == SUCCESS) return decode_shift (str, SHIFT_RESTRICT); } return SUCCESS; } } static void do_ldst (str, flags) char *str; unsigned long flags; { int halfword = 0; int pre_inc = 0; int conflict_reg; int value; /* This is not ideal, but it is the simplest way of dealing with the ARM7T halfword instructions (since they use a different encoding, but the same mnemonic): */ if (halfword = ((flags & 0x80000000) != 0)) { /* This is actually a load/store of a halfword, or a signed-extension load */ if ((cpu_variant & ARM_ARCH4) == 0) { inst.error = "Processor does not support halfwords or signed bytes\n"; return; } inst.instruction = (inst.instruction & COND_MASK) | (flags & ~COND_MASK); flags = 0; } while (*str == ' ') str++; if ((conflict_reg = reg_required_here (&str, 12)) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL) { inst.error = "Address expected"; return; } if (*str == '[') { int reg; str++; while (*str == ' ') str++; if ((reg = reg_required_here (&str, 16)) == FAIL) { inst.error = "Register required"; return; } conflict_reg = (((conflict_reg == reg) && (inst.instruction & LOAD_BIT)) ? 1 : 0); while (*str == ' ') str++; if (*str == ']') { str++; if (skip_past_comma (&str) == SUCCESS) { /* [Rn],... (post inc) */ if (ldst_extend (&str, halfword) == FAIL) return; if (conflict_reg) as_warn ("destination register same as write-back base\n"); } else { /* [Rn] */ if (halfword) inst.instruction |= HWOFFSET_IMM; while (*str == ' ') str++; if (*str == '!') { if (conflict_reg) as_warn ("destination register same as write-back base\n"); str++; inst.instruction |= WRITE_BACK; } flags |= INDEX_UP; if (! (flags & TRANS_BIT)) pre_inc = 1; } } else { /* [Rn,...] */ if (skip_past_comma (&str) == FAIL) { inst.error = "pre-indexed expression expected"; return; } pre_inc = 1; if (ldst_extend (&str, halfword) == FAIL) return; while (*str == ' ') str++; if (*str++ != ']') { inst.error = "missing ]"; return; } while (*str == ' ') str++; if (*str == '!') { if (conflict_reg) as_tsktsk ("destination register same as write-back base\n"); str++; inst.instruction |= WRITE_BACK; } } } else if (*str == '=') { /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op */ str++; while (*str == ' ') str++; if (my_get_expression (&inst.reloc.exp, &str)) return; if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol) { inst.error = "Constant expression expected"; return; } if (inst.reloc.exp.X_op == O_constant && (value = validate_immediate(inst.reloc.exp.X_add_number)) != FAIL) { /* This can be done with a mov instruction */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT); inst.instruction |= (flags & COND_MASK) | (value & 0xfff); end_of_line(str); return; } else { /* Insert into literal pool */ if (add_to_lit_pool () == FAIL) { if (!inst.error) inst.error = "literal pool insertion failed\n"; return; } /* Change the instruction exp to point to the pool */ if (halfword) { inst.instruction |= HWOFFSET_IMM; inst.reloc.type = BFD_RELOC_ARM_HWLITERAL; } else inst.reloc.type = BFD_RELOC_ARM_LITERAL; inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = 1; } } else { if (my_get_expression (&inst.reloc.exp, &str)) return; if (halfword) { inst.instruction |= HWOFFSET_IMM; inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; } else inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM; inst.reloc.exp.X_add_number -= 8; /* PC rel adjust */ inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = 1; } if (pre_inc && (flags & TRANS_BIT)) inst.error = "Pre-increment instruction with translate"; inst.instruction |= flags | (pre_inc ? PRE_INDEX : 0); end_of_line (str); return; } static long reg_list (strp) char **strp; { char *str = *strp; long range = 0; int another_range; /* We come back here if we get ranges concatenated by '+' or '|' */ do { another_range = 0; if (*str == '{') { int in_range = 0; int cur_reg = -1; str++; do { int reg; while (*str == ' ') str++; if ((reg = arm_reg_parse (&str)) == FAIL || !int_register (reg)) { inst.error = "Register expected"; return FAIL; } if (in_range) { int i; if (reg <= cur_reg) { inst.error = "Bad range in register list"; return FAIL; } for (i = cur_reg + 1; i < reg; i++) { if (range & (1 << i)) as_tsktsk ("Warning: Duplicated register (r%d) in register list", i); else range |= 1 << i; } in_range = 0; } if (range & (1 << reg)) as_tsktsk ("Warning: Duplicated register (r%d) in register list", reg); else if (reg <= cur_reg) as_tsktsk ("Warning: Register range not in ascending order"); range |= 1 << reg; cur_reg = reg; } while (skip_past_comma (&str) != FAIL || (in_range = 1, *str++ == '-')); str--; while (*str == ' ') str++; if (*str++ != '}') { inst.error = "Missing `}'"; return FAIL; } } else { expressionS expr; if (my_get_expression (&expr, &str)) return FAIL; if (expr.X_op == O_constant) { if (expr.X_add_number != (expr.X_add_number & 0x0000ffff)) { inst.error = "invalid register mask"; return FAIL; } if ((range & expr.X_add_number) != 0) { int regno = range & expr.X_add_number; regno &= -regno; regno = (1 << regno) - 1; as_tsktsk ("Warning: Duplicated register (r%d) in register list", regno); } range |= expr.X_add_number; } else { if (inst.reloc.type != 0) { inst.error = "expression too complex"; return FAIL; } memcpy (&inst.reloc.exp, &expr, sizeof (expressionS)); inst.reloc.type = BFD_RELOC_ARM_MULTI; inst.reloc.pc_rel = 0; } } while (*str == ' ') str++; if (*str == '|' || *str == '+') { str++; another_range = 1; } } while (another_range); *strp = str; return range; } static void do_ldmstm (str, flags) char *str; unsigned long flags; { int base_reg; long range; while (*str == ' ') str++; if ((base_reg = reg_required_here (&str, 16)) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (base_reg == REG_PC) { inst.error = "r15 not allowed as base register"; return; } while (*str == ' ') str++; if (*str == '!') { flags |= WRITE_BACK; str++; } if (skip_past_comma (&str) == FAIL || (range = reg_list (&str)) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (*str == '^') { str++; flags |= MULTI_SET_PSR; } inst.instruction |= flags | range; end_of_line (str); return; } static void do_swi (str, flags) char *str; unsigned long flags; { /* Allow optional leading '#'. */ while (*str == ' ') str++; if (*str == '#') str++; if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_ARM_SWI; inst.reloc.pc_rel = 0; inst.instruction |= flags; end_of_line (str); return; } static void do_swap (str, flags) char *str; unsigned long flags; { int reg; while (*str == ' ') str++; if ((reg = reg_required_here (&str, 12)) == FAIL) return; if (reg == REG_PC) { inst.error = "r15 not allowed in swap"; return; } if (skip_past_comma (&str) == FAIL || (reg = reg_required_here (&str, 0)) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (reg == REG_PC) { inst.error = "r15 not allowed in swap"; return; } if (skip_past_comma (&str) == FAIL || *str++ != '[') { inst.error = bad_args; return; } while (*str == ' ') str++; if ((reg = reg_required_here (&str, 16)) == FAIL) return; if (reg == REG_PC) { inst.error = bad_pc; return; } while (*str == ' ') str++; if (*str++ != ']') { inst.error = "missing ]"; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_branch (str, flags) char *str; unsigned long flags; { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH; inst.reloc.pc_rel = 1; end_of_line (str); return; } static void do_bx (str, flags) char *str; unsigned long flags; { int reg; while (*str == ' ') str++; if ((reg = reg_required_here (&str, 0)) == FAIL) return; if (reg == REG_PC) as_tsktsk ("Use of r15 in bx has undefined behaviour"); end_of_line (str); return; } static void do_cdp (str, flags) char *str; unsigned long flags; { /* Co-processor data operation. Format: CDP{cond} CP#,,CRd,CRn,CRm{,} */ while (*str == ' ') str++; if (co_proc_number (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_opc_expr (&str, 20,4) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 16) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 0) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == SUCCESS) { if (cp_opc_expr (&str, 5, 3) == FAIL) { if (!inst.error) inst.error = bad_args; return; } } end_of_line (str); return; } static void do_lstc (str, flags) char *str; unsigned long flags; { /* Co-processor register load/store. Format: */ while (*str == ' ') str++; if (co_proc_number (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_address_required_here (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_co_reg (str, flags) char *str; unsigned long flags; { /* Co-processor register transfer. Format: {cond} CP#,,Rd,CRn,CRm{,} */ while (*str == ' ') str++; if (co_proc_number (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_opc_expr (&str, 21, 3) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 16) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 0) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == SUCCESS) { if (cp_opc_expr (&str, 5, 3) == FAIL) { if (!inst.error) inst.error = bad_args; return; } } end_of_line (str); return; } static void do_fp_ctrl (str, flags) char *str; unsigned long flags; { /* FP control registers. Format: {cond} Rn */ while (*str == ' ') str++; if (reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = bad_args; return; } end_of_line (str); return; } static void do_fp_ldst (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; switch (inst.suffix) { case SUFF_S: break; case SUFF_D: inst.instruction |= CP_T_X; break; case SUFF_E: inst.instruction |= CP_T_Y; break; case SUFF_P: inst.instruction |= CP_T_X | CP_T_Y; break; default: abort (); } if (fp_reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || cp_address_required_here (&str) == FAIL) { if (!inst.error) inst.error = bad_args; return; } end_of_line (str); } static void do_fp_ldmstm (str, flags) char *str; unsigned long flags; { int num_regs; while (*str == ' ') str++; if (fp_reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = bad_args; return; } /* Get Number of registers to transfer */ if (skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (! inst.error) inst.error = "constant expression expected"; return; } if (inst.reloc.exp.X_op != O_constant) { inst.error = "Constant value required for number of registers"; return; } num_regs = inst.reloc.exp.X_add_number; if (num_regs < 1 || num_regs > 4) { inst.error = "number of registers must be in the range [1:4]"; return; } switch (num_regs) { case 1: inst.instruction |= CP_T_X; break; case 2: inst.instruction |= CP_T_Y; break; case 3: inst.instruction |= CP_T_Y | CP_T_X; break; case 4: break; default: abort (); } if (flags) { int reg; int write_back; int offset; /* The instruction specified "ea" or "fd", so we can only accept [Rn]{!}. The instruction does not really support stacking or unstacking, so we have to emulate these by setting appropriate bits and offsets. */ if (skip_past_comma (&str) == FAIL || *str != '[') { if (! inst.error) inst.error = bad_args; return; } str++; while (*str == ' ') str++; if ((reg = reg_required_here (&str, 16)) == FAIL) { inst.error = "Register required"; return; } while (*str == ' ') str++; if (*str != ']') { inst.error = bad_args; return; } str++; if (*str == '!') { write_back = 1; str++; if (reg == REG_PC) { inst.error = "R15 not allowed as base register with write-back"; return; } } else write_back = 0; if (flags & CP_T_Pre) { /* Pre-decrement */ offset = 3 * num_regs; if (write_back) flags |= CP_T_WB; } else { /* Post-increment */ if (write_back) { flags |= CP_T_WB; offset = 3 * num_regs; } else { /* No write-back, so convert this into a standard pre-increment instruction -- aesthetically more pleasing. */ flags = CP_T_Pre | CP_T_UD; offset = 0; } } inst.instruction |= flags | offset; } else if (skip_past_comma (&str) == FAIL || cp_address_required_here (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } end_of_line (str); } static void do_fp_dyadic (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; switch (inst.suffix) { case SUFF_S: break; case SUFF_D: inst.instruction |= 0x00000080; break; case SUFF_E: inst.instruction |= 0x00080000; break; default: abort (); } if (fp_reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || fp_reg_required_here (&str, 16) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || fp_op2 (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_fp_monadic (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; switch (inst.suffix) { case SUFF_S: break; case SUFF_D: inst.instruction |= 0x00000080; break; case SUFF_E: inst.instruction |= 0x00080000; break; default: abort (); } if (fp_reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || fp_op2 (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_fp_cmp (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; if (fp_reg_required_here (&str, 16) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || fp_op2 (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_fp_from_reg (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; switch (inst.suffix) { case SUFF_S: break; case SUFF_D: inst.instruction |= 0x00000080; break; case SUFF_E: inst.instruction |= 0x00080000; break; default: abort (); } if (fp_reg_required_here (&str, 16) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } static void do_fp_to_reg (str, flags) char *str; unsigned long flags; { while (*str == ' ') str++; if (reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) == FAIL || fp_reg_required_here (&str, 0) == FAIL) { if (! inst.error) inst.error = bad_args; return; } inst.instruction |= flags; end_of_line (str); return; } /* Thumb specific routines */ /* Parse and validate that a register is of the right form, this saves repeated checking of this information in many similar cases. Unlike the 32-bit case we do not insert the register into the opcode here, since the position is often unknown until the full instruction has been parsed. */ static int thumb_reg (strp, hi_lo) char **strp; int hi_lo; { int reg; if ((reg = arm_reg_parse (strp)) == FAIL || ! int_register (reg)) { inst.error = "Register expected"; return FAIL; } switch (hi_lo) { case THUMB_REG_LO: if (reg > 7) { inst.error = "lo register required"; return FAIL; } break; case THUMB_REG_HI: if (reg < 8) { inst.error = "hi register required"; return FAIL; } break; default: break; } return reg; } /* Parse an add or subtract instruction, SUBTRACT is non-zero if the opcode was SUB. */ static void thumb_add_sub (str, subtract) char *str; int subtract; { int Rd, Rs, Rn = FAIL; while (*str == ' ') str++; if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (*str == '#') { Rs = Rd; str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else { if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; if (skip_past_comma (&str) == FAIL) { /* Two operand format, shuffle the registers and pretend there are 3 */ Rn = Rs; Rs = Rd; } else if (*str == '#') { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Rn = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; } /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL; for the latter case, EXPR contains the immediate that was found. */ if (Rn != FAIL) { /* All register format. */ if (Rd > 7 || Rs > 7 || Rd > 7) { if (Rs != Rd) { inst.error = "dest and source1 must be the same register"; return; } /* Can't do this for SUB */ if (subtract) { inst.error = "subtract valid only on lo regs"; return; } inst.instruction = (T_OPCODE_ADD_HI | (Rd > 7 ? THUMB_H1 : 0) | (Rn > 7 ? THUMB_H2 : 0)); inst.instruction |= (Rd & 7) | ((Rn & 7) << 3); } else { inst.instruction = subtract ? T_OPCODE_SUB_R3 : T_OPCODE_ADD_R3; inst.instruction |= Rd | (Rs << 3) | (Rn << 6); } } else { /* Immediate expression, now things start to get nasty. */ /* First deal with HI regs, only very restricted cases allowed: Adjusting SP, and using PC or SP to get an address. */ if ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP)) || (Rs > 7 && Rs != REG_SP && Rs != REG_PC)) { inst.error = "invalid Hi register with immediate"; return; } if (inst.reloc.exp.X_op != O_constant) { /* Value isn't known yet, all we can do is store all the fragments we know about in the instruction and let the reloc hacking work it all out. */ inst.instruction = (subtract ? 0x8000 : 0) | (Rd << 4) | Rs; inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; } else { int offset = inst.reloc.exp.X_add_number; if (subtract) offset = -offset; if (offset < 0) { offset = -offset; subtract = 1; /* Quick check, in case offset is MIN_INT */ if (offset < 0) { inst.error = "immediate value out of range"; return; } } else subtract = 0; if (Rd == REG_SP) { if (offset & ~0x1fc) { inst.error = "invalid immediate value for stack adjust"; return; } inst.instruction = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; inst.instruction |= offset >> 2; } else if (Rs == REG_PC || Rs == REG_SP) { if (subtract || (offset & ~0x3fc)) { inst.error = "invalid immediate for address calculation"; return; } inst.instruction = (Rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); inst.instruction |= (Rd << 8) | (offset >> 2); } else if (Rs == Rd) { if (offset & ~0xff) { inst.error = "immediate value out of range"; return; } inst.instruction = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; inst.instruction |= (Rd << 8) | offset; } else { if (offset & ~0x7) { inst.error = "immediate value out of range"; return; } inst.instruction = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; inst.instruction |= Rd | (Rs << 3) | (offset << 6); } } } end_of_line (str); } static void thumb_shift (str, shift) char *str; int shift; { int Rd, Rs, Rn = FAIL; while (*str == ' ') str++; if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (*str == '#') { /* Two operand immediate format, set Rs to Rd. */ Rs = Rd; str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else { if ((Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (skip_past_comma (&str) == FAIL) { /* Two operand format, shuffle the registers and pretend there are 3 */ Rn = Rs; Rs = Rd; } else if (*str == '#') { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; } /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL; for the latter case, EXPR contains the immediate that was found. */ if (Rn != FAIL) { if (Rs != Rd) { inst.error = "source1 and dest must be same register"; return; } switch (shift) { case THUMB_ASR: inst.instruction = T_OPCODE_ASR_R; break; case THUMB_LSL: inst.instruction = T_OPCODE_LSL_R; break; case THUMB_LSR: inst.instruction = T_OPCODE_LSR_R; break; } inst.instruction |= Rd | (Rn << 3); } else { switch (shift) { case THUMB_ASR: inst.instruction = T_OPCODE_ASR_I; break; case THUMB_LSL: inst.instruction = T_OPCODE_LSL_I; break; case THUMB_LSR: inst.instruction = T_OPCODE_LSR_I; break; } if (inst.reloc.exp.X_op != O_constant) { /* Value isn't known yet, create a dummy reloc and let reloc hacking fix it up */ inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT; } else { unsigned shift_value = inst.reloc.exp.X_add_number; if (shift_value > 32 || (shift_value == 32 && shift == THUMB_LSL)) { inst.error = "Invalid immediate for shift"; return; } /* Shifts of zero are handled by converting to LSL */ if (shift_value == 0) inst.instruction = T_OPCODE_LSL_I; /* Shifts of 32 are encoded as a shift of zero */ if (shift_value == 32) shift_value = 0; inst.instruction |= shift_value << 6; } inst.instruction |= Rd | (Rs << 3); } end_of_line (str); } static void thumb_mov_compare (str, move) char *str; int move; { int Rd, Rs = FAIL; while (*str == ' ') str++; if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (*str == '#') { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; if (Rs != FAIL) { if (Rs < 8 && Rd < 8) { if (move == THUMB_MOVE) /* A move of two lowregs is, by convention, encoded as ADD Rd, Rs, #0 */ inst.instruction = T_OPCODE_ADD_I3; else inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= Rd | (Rs << 3); } else { if (move == THUMB_MOVE) inst.instruction = T_OPCODE_MOV_HR; else inst.instruction = T_OPCODE_CMP_HR; if (Rd > 7) inst.instruction |= THUMB_H1; if (Rs > 7) inst.instruction |= THUMB_H2; inst.instruction |= (Rd & 7) | ((Rs & 7) << 3); } } else { if (Rd > 7) { inst.error = "only lo regs allowed with immediate"; return; } if (move == THUMB_MOVE) inst.instruction = T_OPCODE_MOV_I8; else inst.instruction = T_OPCODE_CMP_I8; inst.instruction |= Rd << 8; if (inst.reloc.exp.X_op != O_constant) inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM; else { unsigned value = inst.reloc.exp.X_add_number; if (value > 255) { inst.error = "invalid immediate"; return; } inst.instruction |= value; } } end_of_line (str); } static void thumb_load_store (str, load_store, size) char *str; int load_store; int size; { int Rd, Rb, Ro = FAIL; while (*str == ' ') str++; if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (*str == '[') { str++; if ((Rb = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; if (skip_past_comma (&str) != FAIL) { if (*str == '#') { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; } else { inst.reloc.exp.X_op = O_constant; inst.reloc.exp.X_add_number = 0; } if (*str != ']') { inst.error = "expected ']'"; return; } str++; } else if (*str == '=') { abort (); } else { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.instruction = T_OPCODE_LDR_PC | (Rd << 8); inst.reloc.pc_rel = 1; inst.reloc.exp.X_add_number -= 4; /* Pipeline offset */ inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; end_of_line (str); return; } if (Rb == REG_PC || Rb == REG_SP) { if (size != THUMB_WORD) { inst.error = "byte or halfword not valid for base register"; return; } else if (Rb == REG_PC && load_store != THUMB_LOAD) { inst.error = "R15 based store not allowed"; return; } else if (Ro != FAIL) { inst.error = "Invalid base register for register offset"; return; } if (Rb == REG_PC) inst.instruction = T_OPCODE_LDR_PC; else if (load_store == THUMB_LOAD) inst.instruction = T_OPCODE_LDR_SP; else inst.instruction = T_OPCODE_STR_SP; inst.instruction |= Rd << 8; if (inst.reloc.exp.X_op == O_constant) { unsigned offset = inst.reloc.exp.X_add_number; if (offset & ~0x3fc) { inst.error = "invalid offset"; return; } inst.instruction |= offset >> 2; } else inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; } else if (Rb > 7) { inst.error = "invalid base register in load/store"; return; } else if (Ro == FAIL) { /* Immediate offset */ if (size == THUMB_WORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_IW : T_OPCODE_STR_IW); else if (size == THUMB_HALFWORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_IH : T_OPCODE_STR_IH); else inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_IB : T_OPCODE_STR_IB); inst.instruction |= Rd | (Rb << 3); if (inst.reloc.exp.X_op == O_constant) { unsigned offset = inst.reloc.exp.X_add_number; if (offset & ~(0x1f << size)) { inst.error = "Invalid offset"; return; } inst.instruction |= offset << 6; } else inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; } else { /* Register offset */ if (size == THUMB_WORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_RW : T_OPCODE_STR_RW); else if (size == THUMB_HALFWORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_RH : T_OPCODE_STR_RH); else inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_RB : T_OPCODE_STR_RB); inst.instruction |= Rd | (Rb << 3) | (Ro << 6); } end_of_line (str); } /* Handle the Format 4 instructions that do not have equivalents in other formats. That is, ADC, AND, EOR, SBC, ROR, TST, NEG, CMN, ORR, MUL, BIC and MVN. */ static void do_t_arit (str) char *str; { int Rd, Rs, Rn; while (*str == ' ') str++; if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (skip_past_comma (&str) == FAIL || (Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (skip_past_comma (&str) != FAIL) { /* Three operand format not allowed for TST, CMN, NEG and MVN. (It isn't allowed for CMP either, but that isn't handled by this function.) */ if (inst.instruction == T_OPCODE_TST || inst.instruction == T_OPCODE_CMN || inst.instruction == T_OPCODE_NEG || inst.instruction == T_OPCODE_MVN) { inst.error = bad_args; return; } if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (Rs != Rd) { inst.error = "dest and source1 one must be the same register"; return; } Rs = Rn; } if (inst.instruction == T_OPCODE_MUL && Rs == Rd) as_tsktsk ("Rs and Rd must be different in MUL"); inst.instruction |= Rd | (Rs << 3); end_of_line (str); } static void do_t_add (str) char *str; { thumb_add_sub (str, 0); } static void do_t_asr (str) char *str; { thumb_shift (str, THUMB_ASR); } static void do_t_branch (str) char *str; { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH; inst.reloc.pc_rel = 1; end_of_line (str); } static void do_t_bx (str) char *str; { int reg; while (*str == ' ') str++; if ((reg = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; /* This sets THUMB_H2 from the top bit of reg. */ inst.instruction |= reg << 3; /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc should cause the alignment to be checked once it is known. This is because BX PC only works if the instruction is word aligned. */ end_of_line (str); } static void do_t_compare (str) char *str; { thumb_mov_compare (str, THUMB_COMPARE); } static void do_t_ldmstm (str) char *str; { int Rb; long range; while (*str == ' ') str++; if ((Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (*str != '!') as_warn ("Inserted missing '!': load/store multiple always writes back base register"); else str++; if (skip_past_comma (&str) == FAIL || (range = reg_list (&str)) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (inst.reloc.type != BFD_RELOC_NONE) { /* This really doesn't seem worth it. */ inst.reloc.type = BFD_RELOC_NONE; inst.error = "Expression too complex"; return; } if (range & ~0xff) { inst.error = "only lo-regs valid in load/store multiple"; return; } inst.instruction |= (Rb << 8) | range; end_of_line (str); } static void do_t_ldr (str) char *str; { thumb_load_store (str, THUMB_LOAD, THUMB_WORD); } static void do_t_ldrb (str) char *str; { thumb_load_store (str, THUMB_LOAD, THUMB_BYTE); } static void do_t_ldrh (str) char *str; { thumb_load_store (str, THUMB_LOAD, THUMB_HALFWORD); } static void do_t_lds (str) char *str; { int Rd, Rb, Ro; while (*str == ' ') str++; if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL || *str++ != '[' || (Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL || (Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL || *str++ != ']') { if (! inst.error) inst.error = "Syntax: ldrs[b] Rd, [Rb, Ro]"; return; } inst.instruction |= Rd | (Rb << 3) | (Ro << 6); end_of_line (str); } static void do_t_lsl (str) char *str; { thumb_shift (str, THUMB_LSL); } static void do_t_lsr (str) char *str; { thumb_shift (str, THUMB_LSR); } static void do_t_mov (str) char *str; { thumb_mov_compare (str, THUMB_MOVE); } static void do_t_push_pop (str) char *str; { long range; while (*str == ' ') str++; if ((range = reg_list (&str)) == FAIL) { if (! inst.error) inst.error = bad_args; return; } if (inst.reloc.type != BFD_RELOC_NONE) { /* This really doesn't seem worth it. */ inst.reloc.type = BFD_RELOC_NONE; inst.error = "Expression too complex"; return; } if (range & ~0xff) { if ((inst.instruction == T_OPCODE_PUSH && (range & ~0xff) == 1 << REG_LR) || (inst.instruction == T_OPCODE_POP && (range & ~0xff) == 1 << REG_PC)) { inst.instruction |= THUMB_PP_PC_LR; range &= 0xff; } else { inst.error = "invalid register list to push/pop instruction"; return; } } inst.instruction |= range; end_of_line (str); } static void do_t_str (str) char *str; { thumb_load_store (str, THUMB_STORE, THUMB_WORD); } static void do_t_strb (str) char *str; { thumb_load_store (str, THUMB_STORE, THUMB_BYTE); } static void do_t_strh (str) char *str; { thumb_load_store (str, THUMB_STORE, THUMB_HALFWORD); } static void do_t_sub (str) char *str; { thumb_add_sub (str, 1); } static void do_t_swi (str) char *str; { while (*str == ' ') str++; if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_ARM_SWI; end_of_line (str); return; } static void do_t_adr (str) char *str; { /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-8" */ while (*str == ' ') str++; if (reg_required_here (&str, 8) == FAIL || skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (!inst.error) inst.error = bad_args; return; } inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */ inst.reloc.pc_rel = 1; inst.instruction |= REG_PC; /* Rd is already placed into the instruction */ end_of_line (str); } static void insert_reg (entry) int entry; { int len = strlen (reg_table[entry].name) + 2; char *buf = (char *) xmalloc (len); char *buf2 = (char *) xmalloc (len); int i = 0; #ifdef REGISTER_PREFIX buf[i++] = REGISTER_PREFIX; #endif strcpy (buf + i, reg_table[entry].name); for (i = 0; buf[i]; i++) buf2[i] = islower (buf[i]) ? toupper (buf[i]) : buf[i]; buf2[i] = '\0'; hash_insert (arm_reg_hsh, buf, (PTR) ®_table[entry]); hash_insert (arm_reg_hsh, buf2, (PTR) ®_table[entry]); } static void insert_reg_alias (str, regnum) char *str; int regnum; { struct reg_entry *new = (struct reg_entry *)xmalloc (sizeof (struct reg_entry)); char *name = xmalloc (strlen (str) + 1); strcpy (name, str); new->name = name; new->number = regnum; hash_insert (arm_reg_hsh, name, (PTR) new); } static void set_constant_flonums () { int i; for (i = 0; i < NUM_FLOAT_VALS; i++) if (atof_ieee ((char *)fp_const[i], 'x', fp_values[i]) == NULL) abort (); } void md_begin () { int i; if ((arm_ops_hsh = hash_new ()) == NULL || (arm_tops_hsh = hash_new ()) == NULL || (arm_cond_hsh = hash_new ()) == NULL || (arm_shift_hsh = hash_new ()) == NULL || (arm_reg_hsh = hash_new ()) == NULL || (arm_psr_hsh = hash_new ()) == NULL) as_fatal ("Virtual memory exhausted"); for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++) hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i)); for (i = 0; i < sizeof (tinsns) / sizeof (struct thumb_opcode); i++) hash_insert (arm_tops_hsh, tinsns[i].template, (PTR) (tinsns + i)); for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++) hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i)); for (i = 0; i < sizeof (shift) / sizeof (struct asm_shift); i++) hash_insert (arm_shift_hsh, shift[i].template, (PTR) (shift + i)); for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++) hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i)); for (i = 0; reg_table[i].name; i++) insert_reg (i); set_constant_flonums (); } /* Turn an integer of n bytes (in val) into a stream of bytes appropriate for use in the a.out file, and stores them in the array pointed to by buf. This knows about the endian-ness of the target machine and does THE RIGHT THING, whatever it is. Possible values for n are 1 (byte) 2 (short) and 4 (long) Floating numbers are put out as a series of LITTLENUMS (shorts, here at least) */ void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } static valueT md_chars_to_number (buf, n) char *buf; int n; { valueT result = 0; unsigned char *where = (unsigned char *) buf; if (target_big_endian) { while (n--) { result <<= 8; result |= (*where++ & 255); } } else { while (n--) { result <<= 8; result |= (where[n] & 255); } } return result; } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. Note that fp constants aren't represent in the normal way on the ARM. In big endian mode, things are as expected. However, in little endian mode fp constants are big-endian word-wise, and little-endian byte-wise within the words. For example, (double) 1.1 in big endian mode is the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is the byte sequence 99 99 f1 3f 9a 99 99 99. ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */ char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *t; int i; switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return "Bad call to MD_ATOF()"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * 2; if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } } else { /* For a 4 byte float the order of elements in `words' is 1 0. For an 8 byte float the order is 1 0 3 2. */ for (i = 0; i < prec; i += 2) { md_number_to_chars (litP, (valueT) words[i + 1], 2); md_number_to_chars (litP + 2, (valueT) words[i], 2); litP += 4; } } return 0; } /* We have already put the pipeline compensation in the instruction */ long md_pcrel_from (fixP) fixS *fixP; { if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section && fixP->fx_subsy == NULL) return 0; /* HACK */ return fixP->fx_where + fixP->fx_frag->fr_address; } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segment, size) segT segment; valueT size; { /* Round all sects to multiple of 4 */ return (size + 3) & ~3; } /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* arm_reg_parse () := if it looks like a register, return its token and advance the pointer. */ static int arm_reg_parse (ccp) register char **ccp; { char *start = *ccp; char c; char *p; struct reg_entry *reg; #ifdef REGISTER_PREFIX if (*start != REGISTER_PREFIX) return FAIL; p = start + 1; #else p = start; #ifdef OPTIONAL_REGISTER_PREFIX if (*p == OPTIONAL_REGISTER_PREFIX) p++, start++; #endif #endif if (!isalpha (*p) || !is_name_beginner (*p)) return FAIL; c = *p++; while (isalpha (c) || isdigit (c) || c == '_') c = *p++; *--p = 0; reg = (struct reg_entry *) hash_find (arm_reg_hsh, start); *p = c; if (reg) { *ccp = p; return reg->number; } return FAIL; } static int arm_psr_parse (ccp) register char **ccp; { char *start = *ccp; char c, *p; CONST struct asm_psr *psr; p = start; c = *p++; while (isalpha (c) || c == '_') c = *p++; *--p = 0; psr = (CONST struct asm_psr *) hash_find (arm_psr_hsh, start); *p = c; if (psr) { *ccp = p; return psr->number; } return FAIL; } int md_apply_fix3 (fixP, val, seg) fixS *fixP; valueT *val; segT seg; { offsetT value = *val; offsetT newval, temp; int sign; char *buf = fixP->fx_where + fixP->fx_frag->fr_literal; arm_fix_data *arm_data = (arm_fix_data *) fixP->tc_fix_data; assert (fixP->fx_r_type < BFD_RELOC_UNUSED); /* Note whether this will delete the relocation. */ if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) fixP->fx_done = 1; /* If this symbol is in a different section then we need to leave it for the linker to deal with. Unfortunately, md_pcrel_from can't tell, so we have to undo it's effects here. */ if (fixP->fx_pcrel) { if (S_IS_DEFINED (fixP->fx_addsy) && S_GET_SEGMENT (fixP->fx_addsy) != seg) value += md_pcrel_from (fixP); } fixP->fx_addnumber = value; /* Remember value for emit_reloc */ switch (fixP->fx_r_type) { case BFD_RELOC_ARM_IMMEDIATE: newval = validate_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newval == FAIL && (newval = negate_data_op (&temp, value)) == FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, "invalid constant after fixup\n"); break; } newval |= (temp & 0xfffff000); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_OFFSET_IMM: sign = value >= 0; if ((value = validate_offset_imm (value, 0)) == FAIL) { as_bad ("bad immediate value for offset (%d)", val); break; } if (value < 0) value = -value; newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: sign = value >= 0; if ((value = validate_offset_imm (value, 1)) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, "invalid literal constant: pool needs to be closer\n"); else as_bad ("bad immediate value for offset (%d)", value); break; } if (value < 0) value = -value; newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff0f0; newval |= ((value >> 4) << 8) | value & 0xf | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_LITERAL: sign = value >= 0; if (value < 0) value = -value; if ((value = validate_offset_imm (value, 0)) == FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, "invalid literal constant: pool needs to be closer\n"); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_SHIFT_IMM: newval = md_chars_to_number (buf, INSN_SIZE); if (((unsigned long) value) > 32 || (value == 32 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60))) { as_bad_where (fixP->fx_file, fixP->fx_line, "shift expression is too large"); break; } if (value == 0) newval &= ~0x60; /* Shifts of zero must be done as lsl */ else if (value == 32) value = 0; newval &= 0xfffff07f; newval |= (value & 0x1f) << 7; md_number_to_chars (buf, newval , INSN_SIZE); break; case BFD_RELOC_ARM_SWI: if (arm_data->thumb_mode) { if (((unsigned long) value) > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid swi expression"); newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00; newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); } else { if (((unsigned long) value) > 0x00ffffff) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid swi expression"); newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000; newval |= value; md_number_to_chars (buf, newval , INSN_SIZE); } break; case BFD_RELOC_ARM_MULTI: if (((unsigned long) value) > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid expression in load/store multiple"); newval = value | md_chars_to_number (buf, INSN_SIZE); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_PCREL_BRANCH: if (arm_data->thumb_mode) { unsigned long newval2; newval = md_chars_to_number (buf, THUMB_SIZE); if (fixP->fx_size == 4) { unsigned long diff; newval2 = md_chars_to_number (buf, THUMB_SIZE); diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1); if (diff & 0x400000) diff |= ~0x3fffff; value += diff; if ((value & 0x400000) && ((value & ~0x3fffff) != ~0x3fffff)) as_bad_where (fixP->fx_file, fixP->fx_line, "Branch with link out of range"); newval = (newval & 0xf800) | ((value & 0x7fffff) >> 12); newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1); md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf, newval2, THUMB_SIZE); } else { if (newval == T_OPCODE_BRANCH) { unsigned long diff = (newval & 0x7ff) << 1; if (diff & 0x800) diff |= ~0x7ff; value += diff; if ((value & 0x800) && ((value & ~0x7ff) != ~0x7ff)) as_bad_where (fixP->fx_file, fixP->fx_line, "Branch out of range"); newval = (newval & 0xf800) | ((value & 0xfff) >> 1); } else { unsigned long diff = (newval & 0xff) << 1; if (diff & 0x100) diff |= ~0xff; value += diff; if ((value & 0x100) && ((value & ~0xff) != ~0xff)) as_bad_where (fixP->fx_file, fixP->fx_line, "Branch out of range"); newval = (newval & 0xff00) | ((value & 0x1ff) >> 1); } md_number_to_chars (buf, newval, THUMB_SIZE); } } else { value = (value >> 2) & 0x00ffffff; newval = md_chars_to_number (buf, INSN_SIZE); value = (value + (newval & 0x00ffffff)) & 0x00ffffff; newval = value | (newval & 0xff000000); md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_8: if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 1); break; case BFD_RELOC_16: if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 2); break; case BFD_RELOC_RVA: case BFD_RELOC_32: if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 4); break; case BFD_RELOC_ARM_CP_OFF_IMM: sign = value >= 0; if (value < -1023 || value > 1023 || (value & 3)) as_bad_where (fixP->fx_file, fixP->fx_line, "Illegal value for co-processor offset"); if (value < 0) value = -value; newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00; newval |= (value >> 2) | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval , INSN_SIZE); break; case BFD_RELOC_ARM_THUMB_OFFSET: newval = md_chars_to_number (buf, THUMB_SIZE); /* Exactly what ranges, and where the offset is inserted depends on the type of instruction, we can establish this from the top 4 bits */ switch (newval >> 12) { case 4: /* PC load */ /* PC loads are somewhat odd, bit 2 of the PC is forced to zero for these loads, so we may need to round up the offset if the instruction is not word aligned since the final address must be. */ if ((fixP->fx_frag->fr_address + fixP->fx_where + value) & 3) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid offset, target not word aligned"); if ((value + 2) & ~0x3fe) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid offset"); /* Round up, since pc will be rounded down. */ newval |= (value + 2) >> 2; break; case 9: /* SP load/store */ if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid offset"); newval |= value >> 2; break; case 6: /* Word load/store */ if (value & ~0x7c) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid offset"); newval |= value << 4; /* 6 - 2 */ break; case 7: /* Byte load/store */ if (value & ~0x1f) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid offset"); newval |= value << 6; break; case 8: /* Halfword load/store */ if (value & ~0x3e) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid offset"); newval |= value << 5; /* 6 - 1 */ break; default: abort (); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_ADD: /* This is a complicated relocation, since we use it for all of the following immediate relocations: 3bit ADD/SUB 8bit ADD/SUB 9bit ADD/SUB SP word-aligned 10bit ADD PC/SP word-aligned The type of instruction being processed is encoded in the instruction field: 0x8000 SUB 0x00F0 Rd 0x000F Rs */ newval = md_chars_to_number (buf, THUMB_SIZE); { int rd = (newval >> 4) & 0xf; int rs = newval & 0xf; int subtract = newval & 0x8000; if (rd == REG_SP) { if (value & ~0x1fc) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid immediate for stack address calculation"); newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; newval |= value >> 2; } else if (rs == REG_PC || rs == REG_SP) { if (subtract || value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid immediate for address calculation (value = 0x%08X)", value); newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); newval |= value >> 2; } else if (rs == rd) { if (value & ~0xff) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid 8bit immediate"); newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; newval |= (rd << 8) | value; } else { if (value & ~0x7) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid 3bit immediate"); newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; newval |= rd | (rs << 3) | (value << 6); } } md_number_to_chars (buf, newval , THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_IMM: newval = md_chars_to_number (buf, THUMB_SIZE); switch (newval >> 11) { case 0x04: /* 8bit immediate MOV */ case 0x05: /* 8bit immediate CMP */ if (value < 0 || value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid immediate: %d is too large", value); newval |= value; break; default: abort (); } md_number_to_chars (buf, newval , THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_SHIFT: /* 5bit shift value (0..31) */ if (value < 0 || value > 31) as_bad_where (fixP->fx_file, fixP->fx_line, "Illegal Thumb shift value: %d", value); newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf03f; newval |= value << 6; md_number_to_chars (buf, newval , THUMB_SIZE); break; case BFD_RELOC_NONE: default: as_bad_where (fixP->fx_file, fixP->fx_line, "Bad relocation fixup type (%d)\n", fixP->fx_r_type); } return 1; } /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (section, fixp) asection *section; fixS *fixp; { arelent *reloc; bfd_reloc_code_real_type code; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; /* @@ Why fx_addnumber sometimes and fx_offset other times? */ if (fixp->fx_pcrel == 0) reloc->addend = fixp->fx_offset; else reloc->addend = fixp->fx_offset = reloc->address; switch (fixp->fx_r_type) { case BFD_RELOC_8: if (fixp->fx_pcrel) { code = BFD_RELOC_8_PCREL; break; } case BFD_RELOC_16: if (fixp->fx_pcrel) { code = BFD_RELOC_16_PCREL; break; } case BFD_RELOC_32: if (fixp->fx_pcrel) { code = BFD_RELOC_32_PCREL; break; } case BFD_RELOC_ARM_PCREL_BRANCH: case BFD_RELOC_RVA: code = fixp->fx_r_type; break; case BFD_RELOC_ARM_LITERAL: case BFD_RELOC_ARM_HWLITERAL: /* If this is called then the a literal has been referenced across a section boundry - possibly due to an implicit dump */ as_bad ("Literal referenced across section boundry (Implicit dump?)"); return NULL; case BFD_RELOC_ARM_IMMEDIATE: as_bad ("Internal_relocation (type %d) not fixed up (IMMEDIATE)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_OFFSET_IMM: as_bad ("Internal_relocation (type %d) not fixed up (OFFSET_IMM)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_OFFSET_IMM8: as_bad ("Internal_relocation (type %d) not fixed up (OFFSET_IMM8)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_SHIFT_IMM: as_bad ("Internal_relocation (type %d) not fixed up (SHIFT_IMM)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_SWI: as_bad ("Internal_relocation (type %d) not fixed up (SWI)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_MULTI: as_bad ("Internal_relocation (type %d) not fixed up (MULTI)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_CP_OFF_IMM: as_bad ("Internal_relocation (type %d) not fixed up (CP_OFF_IMM)" , fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_THUMB_OFFSET: as_bad ("Internal_relocation (type %d) not fixed up (THUMB_OFFSET)" , fixp->fx_r_type); return NULL; default: abort (); } reloc->howto = bfd_reloc_type_lookup (stdoutput, code); assert (reloc->howto != 0); return reloc; } CONST int md_short_jump_size = 4; CONST int md_long_jump_size = 4; /* These should never be called on the arm */ void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { as_fatal ("md_create_long_jump\n"); } void md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { as_fatal ("md_create_short_jump\n"); } int md_estimate_size_before_relax (fragP, segtype) fragS *fragP; segT segtype; { as_fatal ("md_estimate_size_before_relax\n"); return (1); } void output_inst (str) char *str; { char *to = NULL; if (inst.error) { as_bad ("%s -- statement `%s'\n", inst.error, str); return; } to = frag_more (inst.size); if (thumb_mode && (inst.size > 2)) { md_number_to_chars (to, inst.instruction >> 16, 2); to += 2; inst.size = 2; } md_number_to_chars (to, inst.instruction, inst.size); if (inst.reloc.type != BFD_RELOC_NONE) fix_new_arm (frag_now, to - frag_now->fr_literal, inst.size, &inst.reloc.exp, inst.reloc.pc_rel, inst.reloc.type); return; } void md_assemble (str) char *str; { char c; char *p, *q, *start; /* Align the instruction */ /* this may not be the right thing to do but ... */ /* arm_align (2, 0); */ listing_prev_line (); /* Defined in listing.h */ /* Align the previous label if needed */ if (last_label_seen != NULL) { last_label_seen->sy_frag = frag_now; S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ()); S_SET_SEGMENT (last_label_seen, now_seg); } memset (&inst, '\0', sizeof (inst)); inst.reloc.type = BFD_RELOC_NONE; if (*str == ' ') str++; /* Skip leading white space */ /* scan up to the end of the op-code, which must end in white space or end of string */ for (start = p = str; *p != '\0'; p++) if (*p == ' ') break; if (p == str) { as_bad ("No operator -- statement `%s'\n", str); return; } if (thumb_mode) { CONST struct thumb_opcode *opcode; c = *p; *p = '\0'; opcode = (CONST struct thumb_opcode *) hash_find (arm_tops_hsh, str); *p = c; if (opcode) { inst.instruction = opcode->value; inst.size = opcode->size; (*opcode->parms)(p); output_inst (start); return; } } else { CONST struct asm_opcode *opcode; inst.size = INSN_SIZE; /* p now points to the end of the opcode, probably white space, but we have to break the opcode up in case it contains condionals and flags; keep trying with progressively smaller basic instructions until one matches, or we run out of opcode. */ q = (p - str > LONGEST_INST) ? str + LONGEST_INST : p; for (; q != str; q--) { c = *q; *q = '\0'; opcode = (CONST struct asm_opcode *) hash_find (arm_ops_hsh, str); *q = c; if (opcode && opcode->template) { unsigned long flag_bits = 0; char *r; /* Check that this instruction is supported for this CPU */ if ((opcode->variants & cpu_variant) == 0) goto try_shorter; inst.instruction = opcode->value; if (q == p) /* Just a simple opcode */ { if (opcode->comp_suffix != 0) as_bad ("Opcode `%s' must have suffix from <%s>\n", str, opcode->comp_suffix); else { inst.instruction |= COND_ALWAYS; (*opcode->parms)(q, 0); } output_inst (start); return; } /* Now check for a conditional */ r = q; if (p - r >= 2) { CONST struct asm_cond *cond; char d = *(r + 2); *(r + 2) = '\0'; cond = (CONST struct asm_cond *) hash_find (arm_cond_hsh, r); *(r + 2) = d; if (cond) { if (cond->value == 0xf0000000) as_tsktsk ( "Warning: Use of the 'nv' conditional is deprecated\n"); inst.instruction |= cond->value; r += 2; } else inst.instruction |= COND_ALWAYS; } else inst.instruction |= COND_ALWAYS; /* if there is a compulsory suffix, it should come here, before any optional flags. */ if (opcode->comp_suffix) { CONST char *s = opcode->comp_suffix; while (*s) { inst.suffix++; if (*r == *s) break; s++; } if (*s == '\0') { as_bad ("Opcode `%s' must have suffix from <%s>\n", str, opcode->comp_suffix); return; } r++; } /* The remainder, if any should now be flags for the instruction; Scan these checking each one found with the opcode. */ if (r != p) { char d; CONST struct asm_flg *flag = opcode->flags; if (flag) { int flagno; d = *p; *p = '\0'; for (flagno = 0; flag[flagno].template; flagno++) { if (! strcmp (r, flag[flagno].template)) { flag_bits |= flag[flagno].set_bits; break; } } *p = d; if (! flag[flagno].template) goto try_shorter; } else goto try_shorter; } (*opcode->parms) (p, flag_bits); output_inst (start); return; } try_shorter: ; } } /* It wasn't an instruction, but it might be a register alias of the form alias .req reg */ q = p; while (*q == ' ') q++; c = *p; *p = '\0'; if (*q && !strncmp (q, ".req ", 4)) { int reg; if ((reg = arm_reg_parse (&str)) == FAIL) { char *r; q += 4; while (*q == ' ') q++; for (r = q; *r != '\0'; r++) if (*r == ' ') break; if (r != q) { int regnum; char d = *r; *r = '\0'; regnum = arm_reg_parse (&q); *r = d; if (regnum != FAIL) { insert_reg_alias (str, regnum); *p = c; return; } } } else { *p = c; return; } } *p = c; as_bad ("bad instruction `%s'", start); } /* * md_parse_option * Invocation line includes a switch not recognized by the base assembler. * See if it's a processor-specific option. These are: * Cpu variants, the arm part is optional: * -m[arm]1 Currently not supported. * -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor * -m[arm]3 Arm 3 processor * -m[arm]6, Arm 6 processors * -m[arm]7[t][[d]m] Arm 7 processors * -mall All (except the ARM1) * FP variants: * -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions * -mfpe-old (No float load/store multiples) * -mno-fpu Disable all floating point instructions * Run-time endian selection: * -EB big endian cpu * -EL little endian cpu */ CONST char *md_shortopts = "m:"; struct option md_longopts[] = { #ifdef ARM_BI_ENDIAN #define OPTION_EB (OPTION_MD_BASE + 0) {"EB", no_argument, NULL, OPTION_EB}, #define OPTION_EL (OPTION_MD_BASE + 1) {"EL", no_argument, NULL, OPTION_EL}, #endif {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); int md_parse_option (c, arg) int c; char *arg; { char *str = arg; switch (c) { #ifdef ARM_BI_ENDIAN case OPTION_EB: target_big_endian = 1; break; case OPTION_EL: target_big_endian = 0; break; #endif case 'm': switch (*str) { case 'f': if (! strcmp (str, "fpa10")) cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_FPA10; else if (! strcmp (str, "fpa11")) cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_FPA11; else if (! strcmp (str, "fpe-old")) cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_CORE; else goto bad; break; case 'n': if (! strcmp (str, "no-fpu")) cpu_variant &= ~FPU_ALL; break; case 't': /* Limit assembler to generating only Thumb instructions: */ if (! strcmp (str, "thumb")) { cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_THUMB; cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_NONE; thumb_mode = 1; } else goto bad; break; default: if (! strcmp (str, "all")) { cpu_variant = ARM_ALL | FPU_ALL; return 1; } /* Strip off optional "arm" */ if (! strncmp (str, "arm", 3)) str += 3; switch (*str) { case '1': if (! strcmp (str, "1")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_1; else goto bad; break; case '2': if (! strcmp (str, "2")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_2; else if (! strcmp (str, "250")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_250; else goto bad; break; case '3': if (! strcmp (str, "3")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_3; else goto bad; break; case '6': if (! strcmp (str, "6")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_6; else goto bad; break; case '7': str++; /* eat the '7' */ cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7; for (; *str; str++) { switch (*str) { case 't': cpu_variant |= ARM_THUMB; break; case 'm': cpu_variant |= ARM_LONGMUL; break; case 'd': /* debug */ case 'i': /* embedded ice */ /* Included for completeness in ARM processor naming. */ break; default: goto bad; } } break; default: bad: as_bad ("Invalid architecture -m%s", arg); return 0; } } break; default: return 0; } return 1; } void md_show_usage (fp) FILE *fp; { fprintf (fp, "-m[arm]1, -m[arm]2, -m[arm]250,\n-m[arm]3, -m[arm]6, -m[arm]7[t][[d]m]\n\ -mthumb\t\t\tselect processor architecture\n\ -mall\t\t\tallow any instruction\n\ -mfpa10, -mfpa11\tselect floating point architecture\n\ -mfpe-old\t\tdon't allow floating-point multiple instructions\n\ -mno-fpu\t\tdon't allow any floating-point instructions.\n"); #ifdef ARM_BI_ENDIAN fprintf (fp, "-EB\t\t\tassemble code for a big endian cpu\n\ -EL\t\t\tassemble code for a little endian cpu\n"); #endif } /* We need to be able to fix up arbitrary expressions in some statements. This is so that we can handle symbols that are an arbitrary distance from the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask), which returns part of an address in a form which will be valid for a data instruction. We do this by pushing the expression into a symbol in the expr_section, and creating a fix for that. */ static void fix_new_arm (frag, where, size, exp, pc_rel, reloc) fragS *frag; int where; short int size; expressionS *exp; int pc_rel; int reloc; { fixS *new_fix; arm_fix_data *arm_data; switch (exp->X_op) { case O_constant: case O_symbol: case O_add: case O_subtract: new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc); break; default: new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0, pc_rel, reloc); break; } /* Mark whether the fix is to a THUMB instruction, or an ARM instruction */ arm_data = (arm_fix_data *) obstack_alloc (¬es, sizeof (arm_fix_data)); new_fix->tc_fix_data = (PTR) arm_data; arm_data->thumb_mode = thumb_mode; return; } /* A good place to do this, although this was probably not intended * for this kind of use. We need to dump the literal pool before * references are made to a null symbol pointer. */ void arm_after_pass_hook (ignore) asection *ignore; { if (current_poolP != NULL) { subseg_set (text_section, 0); /* Put it at the end of text section */ s_ltorg (0); listing_prev_line (); } } void arm_start_line_hook () { last_label_seen = NULL; } void arm_frob_label (sym) symbolS *sym; { last_label_seen = sym; } int arm_data_in_code () { if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5)) { *input_line_pointer = '/'; input_line_pointer += 5; *input_line_pointer = 0; return 1; } return 0; } char * arm_canonicalize_symbol_name (name) char *name; { int len; if (thumb_mode && (len = strlen (name)) > 5 && ! strcmp (name + len - 5, "/data")) { *(name + len - 5) = 0; } return name; }