This is Info file standards.info, produced by Makeinfo-1.64 from the input file ./standards.texi. START-INFO-DIR-ENTRY * Standards: (standards). GNU coding standards. END-INFO-DIR-ENTRY GNU Coding Standards Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.  File: standards.info, Node: Top, Next: Preface, Prev: (dir), Up: (dir) Version ******* Last updated 16 January 1997. * Menu: * Preface:: About the GNU Coding Standards * Intellectual Property:: Keeping Free Software Free * Design Advice:: General Program Design * Program Behavior:: Program Behavior for All Programs * Writing C:: Making The Best Use of C * Documentation:: Documenting Programs * Managing Releases:: The Release Process  File: standards.info, Node: Preface, Next: Intellectual Property, Prev: Top, Up: Top About the GNU Coding Standards ****************************** The GNU Coding Standards were written by Richard Stallman and other GNU Project volunteers. Their purpose is to make the GNU system clean, consistent, and easy to install. This document can also be read as a guide to writing portable, robust and reliable programs. It focuses on programs written in C, but many of the rules and principles are useful even if you write in another programming language. The rules often state reasons for writing in a certain way. Corrections or suggestions regarding this document should be sent to `gnu@prep.ai.mit.edu'. If you make a suggestion, please include a suggested new wording for it; our time is limited. We prefer a context diff to the `standards.texi' or `make-stds.texi' files, but if you don't have those files, please mail your suggestion anyway. This release of the GNU Coding Standards was last updated 16 January 1997.  File: standards.info, Node: Intellectual Property, Next: Design Advice, Prev: Preface, Up: Top Keeping Free Software Free ************************** This node discusses how you can make sure that GNU software remains unencumbered. * Menu: * Reading Non-Free Code:: Referring to Proprietary Programs * Contributions:: Accepting Contributions  File: standards.info, Node: Reading Non-Free Code, Next: Contributions, Up: Intellectual Property Referring to Proprietary Programs ================================= Don't in any circumstances refer to Unix source code for or during your work on GNU! (Or to any other proprietary programs.) If you have a vague recollection of the internals of a Unix program, this does not absolutely mean you can't write an imitation of it, but do try to organize the imitation internally along different lines, because this is likely to make the details of the Unix version irrelevant and dissimilar to your results. For example, Unix utilities were generally optimized to minimize memory use; if you go for speed instead, your program will be very different. You could keep the entire input file in core and scan it there instead of using stdio. Use a smarter algorithm discovered more recently than the Unix program. Eliminate use of temporary files. Do it in one pass instead of two (we did this in the assembler). Or, on the contrary, emphasize simplicity instead of speed. For some applications, the speed of today's computers makes simpler algorithms adequate. Or go for generality. For example, Unix programs often have static tables or fixed-size strings, which make for arbitrary limits; use dynamic allocation instead. Make sure your program handles NULs and other funny characters in the input files. Add a programming language for extensibility and write part of the program in that language. Or turn some parts of the program into independently usable libraries. Or use a simple garbage collector instead of tracking precisely when to free memory, or use a new GNU facility such as obstacks.  File: standards.info, Node: Contributions, Prev: Reading Non-Free Code, Up: Intellectual Property Accepting Contributions ======================= If someone else sends you a piece of code to add to the program you are working on, we need legal papers to use it--the same sort of legal papers we will need to get from you. *Each* significant contributor to a program must sign some sort of legal papers in order for us to have clear title to the program. The main author alone is not enough. So, before adding in any contributions from other people, tell us so we can arrange to get the papers. Then wait until we tell you that we have received the signed papers, before you actually use the contribution. This applies both before you release the program and afterward. If you receive diffs to fix a bug, and they make significant changes, we need legal papers for it. You don't need papers for changes of a few lines here or there, since they are not significant for copyright purposes. Also, you don't need papers if all you get from the suggestion is some ideas, not actual code which you use. For example, if you write a different solution to the problem, you don't need to get papers. We know this is frustrating; it's frustrating for us as well. But if you don't wait, you are going out on a limb--for example, what if the contributor's employer won't sign a disclaimer? You might have to take that code out again! The very worst thing is if you forget to tell us about the other contributor. We could be very embarrassed in court some day as a result.  File: standards.info, Node: Design Advice, Next: Program Behavior, Prev: Intellectual Property, Up: Top General Program Design ********************** This node discusses some of the issues you should take into account when designing your program. * Menu: * Compatibility:: Compatibility with other implementations * Using Extensions:: Using non-standard features * ANSI C:: Using ANSI C features * Source Language:: Using languages other than C  File: standards.info, Node: Compatibility, Next: Using Extensions, Up: Design Advice Compatibility with Other Implementations ======================================== With occasional exceptions, utility programs and libraries for GNU should be upward compatible with those in Berkeley Unix, and upward compatible with ANSI C if ANSI C specifies their behavior, and upward compatible with POSIX if POSIX specifies their behavior. When these standards conflict, it is useful to offer compatibility modes for each of them. ANSI C and POSIX prohibit many kinds of extensions. Feel free to make the extensions anyway, and include a `--ansi', `--posix', or `--compatible' option to turn them off. However, if the extension has a significant chance of breaking any real programs or scripts, then it is not really upward compatible. Try to redesign its interface. Many GNU programs suppress extensions that conflict with POSIX if the environment variable `POSIXLY_CORRECT' is defined (even if it is defined with a null value). Please make your program recognize this variable if appropriate. When a feature is used only by users (not by programs or command files), and it is done poorly in Unix, feel free to replace it completely with something totally different and better. (For example, `vi' is replaced with Emacs.) But it is nice to offer a compatible feature as well. (There is a free `vi' clone, so we offer it.) Additional useful features not in Berkeley Unix are welcome. Additional programs with no counterpart in Unix may be useful, but our first priority is usually to duplicate what Unix already has.  File: standards.info, Node: Using Extensions, Next: ANSI C, Prev: Compatibility, Up: Design Advice Using Non-standard Features =========================== Many GNU facilities that already exist support a number of convenient extensions over the comparable Unix facilities. Whether to use these extensions in implementing your program is a difficult question. On the one hand, using the extensions can make a cleaner program. On the other hand, people will not be able to build the program unless the other GNU tools are available. This might cause the program to work on fewer kinds of machines. With some extensions, it might be easy to provide both alternatives. For example, you can define functions with a "keyword" `INLINE' and define that as a macro to expand into either `inline' or nothing, depending on the compiler. In general, perhaps it is best not to use the extensions if you can straightforwardly do without them, but to use the extensions if they are a big improvement. An exception to this rule are the large, established programs (such as Emacs) which run on a great variety of systems. Such programs would be broken by use of GNU extensions. Another exception is for programs that are used as part of compilation: anything that must be compiled with other compilers in order to bootstrap the GNU compilation facilities. If these require the GNU compiler, then no one can compile them without having them installed already. That would be no good.  File: standards.info, Node: ANSI C, Next: Source Language, Prev: Using Extensions, Up: Design Advice ANSI C and pre-ANSI C ===================== Do not ever use the "trigraph" feature of ANSI C. ANSI C is widespread enough now that it is ok to write new programs that use ANSI C features (and therefore will not work in non-ANSI compilers). And if a program is already written in ANSI C, there's no need to convert it to support non-ANSI compilers. However, it is easy to support non-ANSI compilers in most programs, so you might still consider doing so when you write a program. Instead of writing function definitions in ANSI prototype form, int foo (int x, int y) ... write the definition in pre-ANSI style like this, int foo (x, y) int x, y; ... and use a separate declaration to specify the argument prototype: int foo (int, int); You need such a declaration anyway, in a header file, to get the benefit of ANSI C prototypes in all the files where the function is called. And once you have it, you lose nothing by writing the function definition in the pre-ANSI style. If you don't know non-ANSI C, there's no need to learn it; just write in ANSI C.  File: standards.info, Node: Source Language, Prev: ANSI C, Up: Design Advice Using Languages Other Than C ============================ Using a language other than C is like using a non-standard feature: it will cause trouble for users. Even if GCC supports the other language, users may find it inconvenient to have to install the compiler for that other language in order to build your program. So please write in C. There are three exceptions for this rule: * It is okay to use a special language if the same program contains an interpreter for that language. For example, if your program links with GUILE, it is ok to write part of the program in Scheme or another language supported by GUILE. * It is okay to use another language in a tool specifically intended for use with that language. This is okay because the only people who want to build the tool will be those who have installed the other language anyway. * If an application is not of extremely widespread interest, then perhaps it's not important if the application is inconvenient to install.  File: standards.info, Node: Program Behavior, Next: Writing C, Prev: Design Advice, Up: Top Program Behavior for All Programs ********************************* This node describes how to write robust software. It also describes general standards for error messages, the command line interface, and how libraries should behave. * Menu: * Semantics:: Writing robust programs * Libraries:: Library behavior * Errors:: Formatting error messages * User Interfaces:: Standards for command line interfaces * Option Table:: Table of long options. * Memory Usage:: When and how to care about memory needs  File: standards.info, Node: Semantics, Next: Libraries, Up: Program Behavior Writing Robust Programs ======================= Avoid arbitrary limits on the length or number of *any* data structure, including file names, lines, files, and symbols, by allocating all data structures dynamically. In most Unix utilities, "long lines are silently truncated". This is not acceptable in a GNU utility. Utilities reading files should not drop NUL characters, or any other nonprinting characters *including those with codes above 0177*. The only sensible exceptions would be utilities specifically intended for interface to certain types of printers that can't handle those characters. Check every system call for an error return, unless you know you wish to ignore errors. Include the system error text (from `perror' or equivalent) in *every* error message resulting from a failing system call, as well as the name of the file if any and the name of the utility. Just "cannot open foo.c" or "stat failed" is not sufficient. Check every call to `malloc' or `realloc' to see if it returned zero. Check `realloc' even if you are making the block smaller; in a system that rounds block sizes to a power of 2, `realloc' may get a different block if you ask for less space. In Unix, `realloc' can destroy the storage block if it returns zero. GNU `realloc' does not have this bug: if it fails, the original block is unchanged. Feel free to assume the bug is fixed. If you wish to run your program on Unix, and wish to avoid lossage in this case, you can use the GNU `malloc'. You must expect `free' to alter the contents of the block that was freed. Anything you want to fetch from the block, you must fetch before calling `free'. If `malloc' fails in a noninteractive program, make that a fatal error. In an interactive program (one that reads commands from the user), it is better to abort the command and return to the command reader loop. This allows the user to kill other processes to free up virtual memory, and then try the command again. Use `getopt_long' to decode arguments, unless the argument syntax makes this unreasonable. When static storage is to be written in during program execution, use explicit C code to initialize it. Reserve C initialized declarations for data that will not be changed. Try to avoid low-level interfaces to obscure Unix data structures (such as file directories, utmp, or the layout of kernel memory), since these are less likely to work compatibly. If you need to find all the files in a directory, use `readdir' or some other high-level interface. These will be supported compatibly by GNU. By default, the GNU system will provide the signal handling functions of BSD and of POSIX. So GNU software should be written to use these. In error checks that detect "impossible" conditions, just abort. There is usually no point in printing any message. These checks indicate the existence of bugs. Whoever wants to fix the bugs will have to read the source code and run a debugger. So explain the problem with comments in the source. The relevant data will be in variables, which are easy to examine with the debugger, so there is no point moving them elsewhere. Do not use a count of errors as the exit status for a program. *That does not work*, because exit status values are limited to 8 bits (0 through 255). A single run of the program might have 256 errors; if you try to return 256 as the exit status, the parent process will see 0 as the status, and it will appear that the program succeeded. If you make temporary files, check the `TMPDIR' environment variable; if that variable is defined, use the specified directory instead of `/tmp'.  File: standards.info, Node: Libraries, Next: Errors, Prev: Semantics, Up: Program Behavior Library Behavior ================ Try to make library functions reentrant. If they need to do dynamic storage allocation, at least try to avoid any nonreentrancy aside from that of `malloc' itself. Here are certain name conventions for libraries, to avoid name conflicts. Choose a name prefix for the library, more than two characters long. All external function and variable names should start with this prefix. In addition, there should only be one of these in any given library member. This usually means putting each one in a separate source file. An exception can be made when two external symbols are always used together, so that no reasonable program could use one without the other; then they can both go in the same file. External symbols that are not documented entry points for the user should have names beginning with `_'. They should also contain the chosen name prefix for the library, to prevent collisions with other libraries. These can go in the same files with user entry points if you like. Static functions and variables can be used as you like and need not fit any naming convention.  File: standards.info, Node: Errors, Next: User Interfaces, Prev: Libraries, Up: Program Behavior Formatting Error Messages ========================= Error messages from compilers should look like this: SOURCE-FILE-NAME:LINENO: MESSAGE Error messages from other noninteractive programs should look like this: PROGRAM:SOURCE-FILE-NAME:LINENO: MESSAGE when there is an appropriate source file, or like this: PROGRAM: MESSAGE when there is no relevant source file. In an interactive program (one that is reading commands from a terminal), it is better not to include the program name in an error message. The place to indicate which program is running is in the prompt or with the screen layout. (When the same program runs with input from a source other than a terminal, it is not interactive and would do best to print error messages using the noninteractive style.) The string MESSAGE should not begin with a capital letter when it follows a program name and/or file name. Also, it should not end with a period. Error messages from interactive programs, and other messages such as usage messages, should start with a capital letter. But they should not end with a period.  File: standards.info, Node: User Interfaces, Next: Option Table, Prev: Errors, Up: Program Behavior Standards for Command Line Interfaces ===================================== Please don't make the behavior of a utility depend on the name used to invoke it. It is useful sometimes to make a link to a utility with a different name, and that should not change what it does. Instead, use a run time option or a compilation switch or both to select among the alternate behaviors. Likewise, please don't make the behavior of the program depend on the type of output device it is used with. Device independence is an important principle of the system's design; do not compromise it merely to save someone from typing an option now and then. If you think one behavior is most useful when the output is to a terminal, and another is most useful when the output is a file or a pipe, then it is usually best to make the default behavior the one that is useful with output to a terminal, and have an option for the other behavior. Compatibility requires certain programs to depend on the type of output device. It would be disastrous if `ls' or `sh' did not do so in the way all users expect. In some of these cases, we supplement the program with a preferred alternate version that does not depend on the output device type. For example, we provide a `dir' program much like `ls' except that its default output format is always multi-column format. It is a good idea to follow the POSIX guidelines for the command-line options of a program. The easiest way to do this is to use `getopt' to parse them. Note that the GNU version of `getopt' will normally permit options anywhere among the arguments unless the special argument `--' is used. This is not what POSIX specifies; it is a GNU extension. Please define long-named options that are equivalent to the single-letter Unix-style options. We hope to make GNU more user friendly this way. This is easy to do with the GNU function `getopt_long'. One of the advantages of long-named options is that they can be consistent from program to program. For example, users should be able to expect the "verbose" option of any GNU program which has one, to be spelled precisely `--verbose'. To achieve this uniformity, look at the table of common long-option names when you choose the option names for your program (*note Option Table::.). It is usually a good idea for file names given as ordinary arguments to be input files only; any output files would be specified using options (preferably `-o' or `--output'). Even if you allow an output file name as an ordinary argument for compatibility, try to provide an option as another way to specify it. This will lead to more consistency among GNU utilities, and fewer idiosyncracies for users to remember. All programs should support two standard options: `--version' and `--help'. `--version' This option should direct the program to information about its name, version, origin and legal status, all on standard output, and then exit successfully. Other options and arguments should be ignored once this is seen, and the program should not perform its normal function. The first line is meant to be easy for a program to parse; the version number proper starts after the last space. In addition, it contains the canonical name for this program, in this format: GNU Emacs 19.30 The program's name should be a constant string; *don't* compute it from `argv[0]'. The idea is to state the standard or canonical name for the program, not its file name. There are other ways to find out the precise file name where a command is found in `PATH'. If the program is a subsidiary part of a larger package, mention the package name in parentheses, like this: emacsserver (GNU Emacs) 19.30 If the package has a version number which is different from this program's version number, you can mention the package version number just before the close-parenthesis. If you *need* to mention the version numbers of libraries which are distributed separately from the package which contains this program, you can do so by printing an additional line of version info for each library you want to mention. Use the same format for these lines as for the first line. Please don't mention all the libraries that the program uses "just for completeness"--that would produce a lot of unhelpful clutter. Please mention library version numbers only if you find in practice that they are very important to you in debugging. The following line, after the version number line or lines, should be a copyright notice. If more than one copyright notice is called for, put each on a separate line. Next should follow a brief statement that the program is free software, and that users are free to copy and change it on certain conditions. If the program is covered by the GNU GPL, say so here. Also mention that there is no warranty, to the extent permitted by law. It is ok to finish the output with a list of the major authors of the program, as a way of giving credit. Here's an example of output that follows these rules: GNU Emacs 19.34.5 Copyright (C) 1996 Free Software Foundation, Inc. GNU Emacs comes with NO WARRANTY, to the extent permitted by law. You may redistribute copies of GNU Emacs under the terms of the GNU General Public License. For more information about these matters, see the files named COPYING. You should adapt this to your program, of course, filling in the proper year, copyright holder, name of program, and the references to distribution terms, and changing the rest of the wording as necessary. This copyright notice only needs to mention the most recent year in which changes were made--there's no need to list the years for previous versions' changes. You don't have to mention the name of the program in these notices, if that is inconvenient, since it appeared in the first line. `--help' This option should output brief documentation for how to invoke the program, on standard output, then exit successfully. Other options and arguments should be ignored once this is seen, and the program should not perform its normal function. Near the end of the `--help' option's output there should be a line that says where to mail bug reports. It should have this format: Report bugs to MAILING-ADDRESS.  File: standards.info, Node: Option Table, Next: Memory Usage, Prev: User Interfaces, Up: Program Behavior Table of Long Options ===================== Here is a table of long options used by GNU programs. It is surely incomplete, but we aim to list all the options that a new program might want to be compatible with. If you use names not already in the table, please send `gnu@prep.ai.mit.edu' a list of them, with their meanings, so we can update the table. `after-date' `-N' in `tar'. `all' `-a' in `du', `ls', `nm', `stty', `uname', and `unexpand'. `all-text' `-a' in `diff'. `almost-all' `-A' in `ls'. `append' `-a' in `etags', `tee', `time'; `-r' in `tar'. `archive' `-a' in `cp'. `archive-name' `-n' in `shar'. `arglength' `-l' in `m4'. `ascii' `-a' in `diff'. `assign' `-v' in `gawk'. `assume-new' `-W' in Make. `assume-old' `-o' in Make. `auto-check' `-a' in `recode'. `auto-pager' `-a' in `wdiff'. `auto-reference' `-A' in `ptx'. `avoid-wraps' `-n' in `wdiff'. `backward-search' `-B' in `ctags'. `basename' `-f' in `shar'. `batch' Used in GDB. `baud' Used in GDB. `before' `-b' in `tac'. `binary' `-b' in `cpio' and `diff'. `bits-per-code' `-b' in `shar'. `block-size' Used in `cpio' and `tar'. `blocks' `-b' in `head' and `tail'. `break-file' `-b' in `ptx'. `brief' Used in various programs to make output shorter. `bytes' `-c' in `head', `split', and `tail'. `c++' `-C' in `etags'. `catenate' `-A' in `tar'. `cd' Used in various programs to specify the directory to use. `changes' `-c' in `chgrp' and `chown'. `classify' `-F' in `ls'. `colons' `-c' in `recode'. `command' `-c' in `su'; `-x' in GDB. `compare' `-d' in `tar'. `compat' Used in `gawk'. `compress' `-Z' in `tar' and `shar'. `concatenate' `-A' in `tar'. `confirmation' `-w' in `tar'. `context' Used in `diff'. `copyleft' `-W copyleft' in `gawk'. `copyright' `-C' in `ptx', `recode', and `wdiff'; `-W copyright' in `gawk'. `core' Used in GDB. `count' `-q' in `who'. `count-links' `-l' in `du'. `create' Used in `tar' and `cpio'. `cut-mark' `-c' in `shar'. `cxref' `-x' in `ctags'. `date' `-d' in `touch'. `debug' `-d' in Make and `m4'; `-t' in Bison. `define' `-D' in `m4'. `defines' `-d' in Bison and `ctags'. `delete' `-D' in `tar'. `dereference' `-L' in `chgrp', `chown', `cpio', `du', `ls', and `tar'. `dereference-args' `-D' in `du'. `diacritics' `-d' in `recode'. `dictionary-order' `-d' in `look'. `diff' `-d' in `tar'. `digits' `-n' in `csplit'. `directory' Specify the directory to use, in various programs. In `ls', it means to show directories themselves rather than their contents. In `rm' and `ln', it means to not treat links to directories specially. `discard-all' `-x' in `strip'. `discard-locals' `-X' in `strip'. `dry-run' `-n' in Make. `ed' `-e' in `diff'. `elide-empty-files' `-z' in `csplit'. `end-delete' `-x' in `wdiff'. `end-insert' `-z' in `wdiff'. `entire-new-file' `-N' in `diff'. `environment-overrides' `-e' in Make. `eof' `-e' in `xargs'. `epoch' Used in GDB. `error-limit' Used in `makeinfo'. `error-output' `-o' in `m4'. `escape' `-b' in `ls'. `exclude-from' `-X' in `tar'. `exec' Used in GDB. `exit' `-x' in `xargs'. `exit-0' `-e' in `unshar'. `expand-tabs' `-t' in `diff'. `expression' `-e' in `sed'. `extern-only' `-g' in `nm'. `extract' `-i' in `cpio'; `-x' in `tar'. `faces' `-f' in `finger'. `fast' `-f' in `su'. `fatal-warnings' `-E' in `m4'. `file' `-f' in `info', `gawk', Make, `mt', and `tar'; `-n' in `sed'; `-r' in `touch'. `field-separator' `-F' in `gawk'. `file-prefix' `-b' in Bison. `file-type' `-F' in `ls'. `files-from' `-T' in `tar'. `fill-column' Used in `makeinfo'. `flag-truncation' `-F' in `ptx'. `fixed-output-files' `-y' in Bison. `follow' `-f' in `tail'. `footnote-style' Used in `makeinfo'. `force' `-f' in `cp', `ln', `mv', and `rm'. `force-prefix' `-F' in `shar'. `format' Used in `ls', `time', and `ptx'. `freeze-state' `-F' in `m4'. `fullname' Used in GDB. `gap-size' `-g' in `ptx'. `get' `-x' in `tar'. `graphic' `-i' in `ul'. `graphics' `-g' in `recode'. `group' `-g' in `install'. `gzip' `-z' in `tar' and `shar'. `hashsize' `-H' in `m4'. `header' `-h' in `objdump' and `recode' `heading' `-H' in `who'. `help' Used to ask for brief usage information. `here-delimiter' `-d' in `shar'. `hide-control-chars' `-q' in `ls'. `idle' `-u' in `who'. `ifdef' `-D' in `diff'. `ignore' `-I' in `ls'; `-x' in `recode'. `ignore-all-space' `-w' in `diff'. `ignore-backups' `-B' in `ls'. `ignore-blank-lines' `-B' in `diff'. `ignore-case' `-f' in `look' and `ptx'; `-i' in `diff' and `wdiff'. `ignore-errors' `-i' in Make. `ignore-file' `-i' in `ptx'. `ignore-indentation' `-I' in `etags'. `ignore-init-file' `-f' in Oleo. `ignore-interrupts' `-i' in `tee'. `ignore-matching-lines' `-I' in `diff'. `ignore-space-change' `-b' in `diff'. `ignore-zeros' `-i' in `tar'. `include' `-i' in `etags'; `-I' in `m4'. `include-dir' `-I' in Make. `incremental' `-G' in `tar'. `info' `-i', `-l', and `-m' in Finger. `initial' `-i' in `expand'. `initial-tab' `-T' in `diff'. `inode' `-i' in `ls'. `interactive' `-i' in `cp', `ln', `mv', `rm'; `-e' in `m4'; `-p' in `xargs'; `-w' in `tar'. `intermix-type' `-p' in `shar'. `jobs' `-j' in Make. `just-print' `-n' in Make. `keep-going' `-k' in Make. `keep-files' `-k' in `csplit'. `kilobytes' `-k' in `du' and `ls'. `language' `-l' in `etags'. `less-mode' `-l' in `wdiff'. `level-for-gzip' `-g' in `shar'. `line-bytes' `-C' in `split'. `lines' Used in `split', `head', and `tail'. `link' `-l' in `cpio'. `lint' `lint-old' Used in `gawk'. `list' `-t' in `cpio'; `-l' in `recode'. `list' `-t' in `tar'. `literal' `-N' in `ls'. `load-average' `-l' in Make. `login' Used in `su'. `machine' No listing of which programs already use this; someone should check to see if any actually do and tell `gnu@prep.ai.mit.edu'. `macro-name' `-M' in `ptx'. `mail' `-m' in `hello' and `uname'. `make-directories' `-d' in `cpio'. `makefile' `-f' in Make. `mapped' Used in GDB. `max-args' `-n' in `xargs'. `max-chars' `-n' in `xargs'. `max-lines' `-l' in `xargs'. `max-load' `-l' in Make. `max-procs' `-P' in `xargs'. `mesg' `-T' in `who'. `message' `-T' in `who'. `minimal' `-d' in `diff'. `mixed-uuencode' `-M' in `shar'. `mode' `-m' in `install', `mkdir', and `mkfifo'. `modification-time' `-m' in `tar'. `multi-volume' `-M' in `tar'. `name-prefix' `-a' in Bison. `nesting-limit' `-L' in `m4'. `net-headers' `-a' in `shar'. `new-file' `-W' in Make. `no-builtin-rules' `-r' in Make. `no-character-count' `-w' in `shar'. `no-check-existing' `-x' in `shar'. `no-common' `-3' in `wdiff'. `no-create' `-c' in `touch'. `no-defines' `-D' in `etags'. `no-deleted' `-1' in `wdiff'. `no-dereference' `-d' in `cp'. `no-inserted' `-2' in `wdiff'. `no-keep-going' `-S' in Make. `no-lines' `-l' in Bison. `no-piping' `-P' in `shar'. `no-prof' `-e' in `gprof'. `no-regex' `-R' in `etags'. `no-sort' `-p' in `nm'. `no-split' Used in `makeinfo'. `no-static' `-a' in `gprof'. `no-time' `-E' in `gprof'. `no-timestamp' `-m' in `shar'. `no-validate' Used in `makeinfo'. `no-wait' Used in `emacsclient'. `no-warn' Used in various programs to inhibit warnings. `node' `-n' in `info'. `nodename' `-n' in `uname'. `nonmatching' `-f' in `cpio'. `nstuff' `-n' in `objdump'. `null' `-0' in `xargs'. `number' `-n' in `cat'. `number-nonblank' `-b' in `cat'. `numeric-sort' `-n' in `nm'. `numeric-uid-gid' `-n' in `cpio' and `ls'. `nx' Used in GDB. `old-archive' `-o' in `tar'. `old-file' `-o' in Make. `one-file-system' `-l' in `tar', `cp', and `du'. `only-file' `-o' in `ptx'. `only-prof' `-f' in `gprof'. `only-time' `-F' in `gprof'. `output' In various programs, specify the output file name. `output-prefix' `-o' in `shar'. `override' `-o' in `rm'. `overwrite' `-c' in `unshar'. `owner' `-o' in `install'. `paginate' `-l' in `diff'. `paragraph-indent' Used in `makeinfo'. `parents' `-p' in `mkdir' and `rmdir'. `pass-all' `-p' in `ul'. `pass-through' `-p' in `cpio'. `port' `-P' in `finger'. `portability' `-c' in `cpio' and `tar'. `posix' Used in `gawk'. `prefix-builtins' `-P' in `m4'. `prefix' `-f' in `csplit'. `preserve' Used in `tar' and `cp'. `preserve-environment' `-p' in `su'. `preserve-modification-time' `-m' in `cpio'. `preserve-order' `-s' in `tar'. `preserve-permissions' `-p' in `tar'. `print' `-l' in `diff'. `print-chars' `-L' in `cmp'. `print-data-base' `-p' in Make. `print-directory' `-w' in Make. `print-file-name' `-o' in `nm'. `print-symdefs' `-s' in `nm'. `printer' `-p' in `wdiff'. `prompt' `-p' in `ed'. `query-user' `-X' in `shar'. `question' `-q' in Make. `quiet' Used in many programs to inhibit the usual output. *Note:* every program accepting `--quiet' should accept `--silent' as a synonym. `quiet-unshar' `-Q' in `shar' `quote-name' `-Q' in `ls'. `rcs' `-n' in `diff'. `re-interval' Used in `gawk'. `read-full-blocks' `-B' in `tar'. `readnow' Used in GDB. `recon' `-n' in Make. `record-number' `-R' in `tar'. `recursive' Used in `chgrp', `chown', `cp', `ls', `diff', and `rm'. `reference-limit' Used in `makeinfo'. `references' `-r' in `ptx'. `regex' `-r' in `tac' and `etags'. `release' `-r' in `uname'. `reload-state' `-R' in `m4'. `relocation' `-r' in `objdump'. `rename' `-r' in `cpio'. `replace' `-i' in `xargs'. `report-identical-files' `-s' in `diff'. `reset-access-time' `-a' in `cpio'. `reverse' `-r' in `ls' and `nm'. `reversed-ed' `-f' in `diff'. `right-side-defs' `-R' in `ptx'. `same-order' `-s' in `tar'. `same-permissions' `-p' in `tar'. `save' `-g' in `stty'. `se' Used in GDB. `sentence-regexp' `-S' in `ptx'. `separate-dirs' `-S' in `du'. `separator' `-s' in `tac'. `sequence' Used by `recode' to chose files or pipes for sequencing passes. `shell' `-s' in `su'. `show-all' `-A' in `cat'. `show-c-function' `-p' in `diff'. `show-ends' `-E' in `cat'. `show-function-line' `-F' in `diff'. `show-tabs' `-T' in `cat'. `silent' Used in many programs to inhibit the usual output. *Note:* every program accepting `--silent' should accept `--quiet' as a synonym. `size' `-s' in `ls'. `sort' Used in `ls'. `source' `-W source' in `gawk'. `sparse' `-S' in `tar'. `speed-large-files' `-H' in `diff'. `split-at' `-E' in `unshar'. `split-size-limit' `-L' in `shar'. `squeeze-blank' `-s' in `cat'. `start-delete' `-w' in `wdiff'. `start-insert' `-y' in `wdiff'. `starting-file' Used in `tar' and `diff' to specify which file within a directory to start processing with. `statistics' `-s' in `wdiff'. `stdin-file-list' `-S' in `shar'. `stop' `-S' in Make. `strict' `-s' in `recode'. `strip' `-s' in `install'. `strip-all' `-s' in `strip'. `strip-debug' `-S' in `strip'. `submitter' `-s' in `shar'. `suffix' `-S' in `cp', `ln', `mv'. `suffix-format' `-b' in `csplit'. `sum' `-s' in `gprof'. `summarize' `-s' in `du'. `symbolic' `-s' in `ln'. `symbols' Used in GDB and `objdump'. `synclines' `-s' in `m4'. `sysname' `-s' in `uname'. `tabs' `-t' in `expand' and `unexpand'. `tabsize' `-T' in `ls'. `terminal' `-T' in `tput' and `ul'. `-t' in `wdiff'. `text' `-a' in `diff'. `text-files' `-T' in `shar'. `time' Used in `ls' and `touch'. `to-stdout' `-O' in `tar'. `total' `-c' in `du'. `touch' `-t' in Make, `ranlib', and `recode'. `trace' `-t' in `m4'. `traditional' `-t' in `hello'; `-W traditional' in `gawk'; `-G' in `ed', `m4', and `ptx'. `tty' Used in GDB. `typedefs' `-t' in `ctags'. `typedefs-and-c++' `-T' in `ctags'. `typeset-mode' `-t' in `ptx'. `uncompress' `-z' in `tar'. `unconditional' `-u' in `cpio'. `undefine' `-U' in `m4'. `undefined-only' `-u' in `nm'. `update' `-u' in `cp', `ctags', `mv', `tar'. `usage' Used in `gawk'; same as `--help'. `uuencode' `-B' in `shar'. `vanilla-operation' `-V' in `shar'. `verbose' Print more information about progress. Many programs support this. `verify' `-W' in `tar'. `version' Print the version number. `version-control' `-V' in `cp', `ln', `mv'. `vgrind' `-v' in `ctags'. `volume' `-V' in `tar'. `what-if' `-W' in Make. `whole-size-limit' `-l' in `shar'. `width' `-w' in `ls' and `ptx'. `word-regexp' `-W' in `ptx'. `writable' `-T' in `who'. `zeros' `-z' in `gprof'.  File: standards.info, Node: Memory Usage, Prev: Option Table, Up: Program Behavior Memory Usage ============ If it typically uses just a few meg of memory, don't bother making any effort to reduce memory usage. For example, if it is impractical for other reasons to operate on files more than a few meg long, it is reasonable to read entire input files into core to operate on them. However, for programs such as `cat' or `tail', that can usefully operate on very large files, it is important to avoid using a technique that would artificially limit the size of files it can handle. If a program works by lines and could be applied to arbitrary user-supplied input files, it should keep only a line in memory, because this is not very hard and users will want to be able to operate on input files that are bigger than will fit in core all at once. If your program creates complicated data structures, just make them in core and give a fatal error if `malloc' returns zero.  File: standards.info, Node: Writing C, Next: Documentation, Prev: Program Behavior, Up: Top Making The Best Use of C ************************ This node provides advice on how best to use the C language when writing GNU software. * Menu: * Formatting:: Formatting Your Source Code * Comments:: Commenting Your Work * Syntactic Conventions:: Clean Use of C Constructs * Names:: Naming Variables and Functions * System Portability:: Portability between different operating systems * CPU Portability:: Supporting the range of CPU types * System Functions:: Portability and "standard" library functions * Internationalization:: Techniques for internationalization * Mmap:: How you can safely use `mmap'.  File: standards.info, Node: Formatting, Next: Comments, Up: Writing C Formatting Your Source Code =========================== It is important to put the open-brace that starts the body of a C function in column zero, and avoid putting any other open-brace or open-parenthesis or open-bracket in column zero. Several tools look for open-braces in column zero to find the beginnings of C functions. These tools will not work on code not formatted that way. It is also important for function definitions to start the name of the function in column zero. This helps people to search for function definitions, and may also help certain tools recognize them. Thus, the proper format is this: static char * concat (s1, s2) /* Name starts in column zero here */ char *s1, *s2; { /* Open brace in column zero here */ ... } or, if you want to use ANSI C, format the definition like this: static char * concat (char *s1, char *s2) { ... } In ANSI C, if the arguments don't fit nicely on one line, split it like this: int lots_of_args (int an_integer, long a_long, short a_short, double a_double, float a_float) ... For the body of the function, we prefer code formatted like this: if (x < foo (y, z)) haha = bar[4] + 5; else { while (z) { haha += foo (z, z); z--; } return ++x + bar (); } We find it easier to read a program when it has spaces before the open-parentheses and after the commas. Especially after the commas. When you split an expression into multiple lines, split it before an operator, not after one. Here is the right way: if (foo_this_is_long && bar > win (x, y, z) && remaining_condition) Try to avoid having two operators of different precedence at the same level of indentation. For example, don't write this: mode = (inmode[j] == VOIDmode || GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j]) ? outmode[j] : inmode[j]); Instead, use extra parentheses so that the indentation shows the nesting: mode = ((inmode[j] == VOIDmode || (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j]))) ? outmode[j] : inmode[j]); Insert extra parentheses so that Emacs will indent the code properly. For example, the following indentation looks nice if you do it by hand, but Emacs would mess it up: v = rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000 + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000; But adding a set of parentheses solves the problem: v = (rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000 + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000); Format do-while statements like this: do { a = foo (a); } while (a > 0); Please use formfeed characters (control-L) to divide the program into pages at logical places (but not within a function). It does not matter just how long the pages are, since they do not have to fit on a printed page. The formfeeds should appear alone on lines by themselves.  File: standards.info, Node: Comments, Next: Syntactic Conventions, Prev: Formatting, Up: Writing C Commenting Your Work ==================== Every program should start with a comment saying briefly what it is for. Example: `fmt - filter for simple filling of text'. Please write the comments in a GNU program in English, because English is the one language that nearly all programmers in all countries can read. If you do not write English well, please write comments in English as well as you can, then ask other people to help rewrite them. If you can't write comments in English, please find someone to work with you and translate your comments into English. Please put a comment on each function saying what the function does, what sorts of arguments it gets, and what the possible values of arguments mean and are used for. It is not necessary to duplicate in words the meaning of the C argument declarations, if a C type is being used in its customary fashion. If there is anything nonstandard about its use (such as an argument of type `char *' which is really the address of the second character of a string, not the first), or any possible values that would not work the way one would expect (such as, that strings containing newlines are not guaranteed to work), be sure to say so. Also explain the significance of the return value, if there is one. Please put two spaces after the end of a sentence in your comments, so that the Emacs sentence commands will work. Also, please write complete sentences and capitalize the first word. If a lower-case identifier comes at the beginning of a sentence, don't capitalize it! Changing the spelling makes it a different identifier. If you don't like starting a sentence with a lower case letter, write the sentence differently (e.g., "The identifier lower-case is ..."). The comment on a function is much clearer if you use the argument names to speak about the argument values. The variable name itself should be lower case, but write it in upper case when you are speaking about the value rather than the variable itself. Thus, "the inode number NODE_NUM" rather than "an inode". There is usually no purpose in restating the name of the function in the comment before it, because the reader can see that for himself. There might be an exception when the comment is so long that the function itself would be off the bottom of the screen. There should be a comment on each static variable as well, like this: /* Nonzero means truncate lines in the display; zero means continue them. */ int truncate_lines; Every `#endif' should have a comment, except in the case of short conditionals (just a few lines) that are not nested. The comment should state the condition of the conditional that is ending, *including its sense*. `#else' should have a comment describing the condition *and sense* of the code that follows. For example: #ifdef foo ... #else /* not foo */ ... #endif /* not foo */ but, by contrast, write the comments this way for a `#ifndef': #ifndef foo ... #else /* foo */ ... #endif /* foo */