/* * Copyright (c) 1982, 1986, 1989, 1991 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)kern_proc.c 7.16 (Berkeley) 6/28/91 * $Id: kern_proc.c,v 1.6 1994/05/04 03:41:56 cgd Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* static */ void pgdelete __P((struct pgrp *pgrp)); /* * Is p an inferior of the current process? */ int inferior(p) register struct proc *p; { for (; p != curproc; p = p->p_pptr) if (p->p_pid == 0) return (0); return (1); } /* * Locate a process by number */ struct proc * pfind(pid) register pid_t pid; { register struct proc *p = pidhash[PIDHASH(pid)]; for (; p; p = p->p_hash) if (p->p_pid == pid) return (p); return ((struct proc *)0); } /* * Locate a process group by number */ struct pgrp * pgfind(pgid) register pid_t pgid; { register struct pgrp *pgrp = pgrphash[PIDHASH(pgid)]; for (; pgrp; pgrp = pgrp->pg_hforw) if (pgrp->pg_id == pgid) return (pgrp); return ((struct pgrp *)0); } /* * Move p to a new or existing process group (and session) */ void enterpgrp(p, pgid, mksess) register struct proc *p; pid_t pgid; int mksess; { register struct pgrp *pgrp = pgfind(pgid); register struct proc **pp; int n; #ifdef DIAGNOSTIC if (pgrp && mksess) /* firewalls */ panic("enterpgrp: setsid into non-empty pgrp"); if (SESS_LEADER(p)) panic("enterpgrp: session leader attempted setpgrp"); #endif if (pgrp == NULL) { /* * new process group */ #ifdef DIAGNOSTIC if (p->p_pid != pgid) panic("enterpgrp: new pgrp and pid != pgid"); #endif MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK); if (mksess) { register struct session *sess; /* * new session */ MALLOC(sess, struct session *, sizeof(struct session), M_SESSION, M_WAITOK); sess->s_leader = p; sess->s_count = 1; sess->s_ttyvp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); p->p_flag &= ~P_CONTROLT; pgrp->pg_session = sess; #ifdef DIAGNOSTIC if (p != curproc) panic("enterpgrp: mksession and p != curproc"); #endif } else { pgrp->pg_session = p->p_session; pgrp->pg_session->s_count++; } pgrp->pg_id = pgid; pgrp->pg_hforw = pgrphash[n = PIDHASH(pgid)]; pgrphash[n] = pgrp; pgrp->pg_jobc = 0; pgrp->pg_mem = NULL; } else if (pgrp == p->p_pgrp) return; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); /* * unlink p from old process group */ for (pp = &p->p_pgrp->pg_mem; *pp; pp = &(*pp)->p_pgrpnxt) if (*pp == p) { *pp = p->p_pgrpnxt; goto done; } panic("enterpgrp: can't find p on old pgrp"); done: /* * delete old if empty */ if (p->p_pgrp->pg_mem == 0) pgdelete(p->p_pgrp); /* * link into new one */ p->p_pgrp = pgrp; p->p_pgrpnxt = pgrp->pg_mem; pgrp->pg_mem = p; } /* * remove process from process group */ void leavepgrp(p) register struct proc *p; { register struct proc **pp = &p->p_pgrp->pg_mem; for (; *pp; pp = &(*pp)->p_pgrpnxt) if (*pp == p) { *pp = p->p_pgrpnxt; goto done; } panic("leavepgrp: can't find p in pgrp"); done: if (!p->p_pgrp->pg_mem) pgdelete(p->p_pgrp); p->p_pgrp = 0; } /* * delete a process group [internal] */ void pgdelete(pgrp) register struct pgrp *pgrp; { register struct pgrp **pgp = &pgrphash[PIDHASH(pgrp->pg_id)]; if (pgrp->pg_session->s_ttyp != NULL && pgrp->pg_session->s_ttyp->t_pgrp == pgrp) pgrp->pg_session->s_ttyp->t_pgrp = NULL; for (; *pgp; pgp = &(*pgp)->pg_hforw) if (*pgp == pgrp) { *pgp = pgrp->pg_hforw; goto done; } panic("pgdelete: can't find pgrp on hash chain"); done: if (--pgrp->pg_session->s_count == 0) FREE(pgrp->pg_session, M_SESSION); FREE(pgrp, M_PGRP); } static void orphanpg(); /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(p, pgrp, entering) register struct proc *p; register struct pgrp *pgrp; int entering; { register struct pgrp *hispgrp; register struct session *mysession = pgrp->pg_session; /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) if (entering) pgrp->pg_jobc++; else if (--pgrp->pg_jobc == 0) orphanpg(pgrp); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ for (p = p->p_cptr; p; p = p->p_osptr) if ((hispgrp = p->p_pgrp) != pgrp && hispgrp->pg_session == mysession && p->p_stat != SZOMB) if (entering) hispgrp->pg_jobc++; else if (--hispgrp->pg_jobc == 0) orphanpg(hispgrp); } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(pg) struct pgrp *pg; { register struct proc *p; for (p = pg->pg_mem; p; p = p->p_pgrpnxt) { if (p->p_stat == SSTOP) { for (p = pg->pg_mem; p; p = p->p_pgrpnxt) { psignal(p, SIGHUP); psignal(p, SIGCONT); } return; } } } #ifdef debug /* DEBUG */ void pgrpdump() { register struct pgrp *pgrp; register struct proc *p; register i; for (i=0; ipg_hforw) { printf("\tpgrp %x, pgid %d, sess %x, sesscnt %d, mem %x\n", pgrp, pgrp->pg_id, pgrp->pg_session, pgrp->pg_session->s_count, pgrp->pg_mem); for (p=pgrp->pg_mem; p; p=p->p_pgrpnxt) { printf("\t\tpid %d addr %x pgrp %x\n", p->p_pid, p, p->p_pgrp); } } } } } #endif /* debug */