/* $NetBSD: rfcomm_upper.c,v 1.10 2007/11/20 20:25:57 plunky Exp $ */ /*- * Copyright (c) 2006 Itronix Inc. * All rights reserved. * * Written by Iain Hibbert for Itronix Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of Itronix Inc. may not be used to endorse * or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.10 2007/11/20 20:25:57 plunky Exp $"); #include #include #include #include #include #include #include #include #include /**************************************************************************** * * RFCOMM DLC - Upper Protocol API * * Currently the only 'Port Emulation Entity' is the RFCOMM socket code * but it is should be possible to provide a pseudo-device for a direct * tty interface. */ /* * rfcomm_attach(handle, proto, upper) * * attach a new RFCOMM DLC to handle, populate with reasonable defaults */ int rfcomm_attach(struct rfcomm_dlc **handle, const struct btproto *proto, void *upper) { struct rfcomm_dlc *dlc; KASSERT(handle != NULL); KASSERT(proto != NULL); KASSERT(upper != NULL); dlc = malloc(sizeof(struct rfcomm_dlc), M_BLUETOOTH, M_NOWAIT | M_ZERO); if (dlc == NULL) return ENOMEM; dlc->rd_state = RFCOMM_DLC_CLOSED; dlc->rd_mtu = rfcomm_mtu_default; dlc->rd_proto = proto; dlc->rd_upper = upper; dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); dlc->rd_laddr.bt_family = AF_BLUETOOTH; dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); dlc->rd_raddr.bt_family = AF_BLUETOOTH; dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; callout_init(&dlc->rd_timeout, 0); callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); *handle = dlc; return 0; } /* * rfcomm_bind(dlc, sockaddr) * * bind DLC to local address */ int rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) { memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); return 0; } /* * rfcomm_sockaddr(dlc, sockaddr) * * return local address */ int rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) { memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); return 0; } /* * rfcomm_connect(dlc, sockaddr) * * Initiate connection of RFCOMM DLC to remote address. */ int rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) { struct rfcomm_session *rs; int err = 0; if (dlc->rd_state != RFCOMM_DLC_CLOSED) return EISCONN; memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) return EDESTADDRREQ; if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM && (dlc->rd_raddr.bt_psm < 0x1001 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) return EINVAL; /* * We are allowed only one RFCOMM session between any 2 Bluetooth * devices, so see if there is a session already otherwise create * one and set it connecting. */ rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); if (rs == NULL) { rs = rfcomm_session_alloc(&rfcomm_session_active, &dlc->rd_laddr); if (rs == NULL) return ENOMEM; rs->rs_flags |= RFCOMM_SESSION_INITIATOR; rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr); if (err) { rfcomm_session_free(rs); return err; } /* * This session will start up automatically when its * L2CAP channel is connected. */ } /* construct DLC */ dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) return EBUSY; l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr); /* * attach the DLC to the session and start it off */ dlc->rd_session = rs; dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); if (rs->rs_state == RFCOMM_SESSION_OPEN) err = rfcomm_dlc_connect(dlc); return err; } /* * rfcomm_peeraddr(dlc, sockaddr) * * return remote address */ int rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) { memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); return 0; } /* * rfcomm_disconnect(dlc, linger) * * disconnect RFCOMM DLC */ int rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger) { struct rfcomm_session *rs = dlc->rd_session; int err = 0; KASSERT(dlc != NULL); switch (dlc->rd_state) { case RFCOMM_DLC_CLOSED: case RFCOMM_DLC_LISTEN: return EINVAL; case RFCOMM_DLC_WAIT_SEND_UA: err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DM, dlc->rd_dlci); /* fall through */ case RFCOMM_DLC_WAIT_SESSION: case RFCOMM_DLC_WAIT_CONNECT: case RFCOMM_DLC_WAIT_SEND_SABM: rfcomm_dlc_close(dlc, 0); break; case RFCOMM_DLC_OPEN: if (dlc->rd_txbuf != NULL && linger != 0) { dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; break; } /* else fall through */ case RFCOMM_DLC_WAIT_RECV_UA: dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, dlc->rd_dlci); callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); break; case RFCOMM_DLC_WAIT_DISCONNECT: err = EALREADY; break; default: UNKNOWN(dlc->rd_state); break; } return err; } /* * rfcomm_detach(handle) * * detach RFCOMM DLC from handle */ int rfcomm_detach(struct rfcomm_dlc **handle) { struct rfcomm_dlc *dlc = *handle; if (dlc->rd_state != RFCOMM_DLC_CLOSED) rfcomm_dlc_close(dlc, 0); if (dlc->rd_txbuf != NULL) { m_freem(dlc->rd_txbuf); dlc->rd_txbuf = NULL; } dlc->rd_upper = NULL; *handle = NULL; /* * If callout is invoking we can't free the DLC so * mark it and let the callout release it. */ if (callout_invoking(&dlc->rd_timeout)) dlc->rd_flags |= RFCOMM_DLC_DETACH; else { callout_destroy(&dlc->rd_timeout); free(dlc, M_BLUETOOTH); } return 0; } /* * rfcomm_listen(dlc) * * This DLC is a listener. We look for an existing listening session * with a matching address to attach to or else create a new one on * the listeners list. If the ANY channel is given, allocate the first * available for the session. */ int rfcomm_listen(struct rfcomm_dlc *dlc) { struct rfcomm_session *rs; struct rfcomm_dlc *used; struct sockaddr_bt addr; int err, channel; if (dlc->rd_state != RFCOMM_DLC_CLOSED) return EISCONN; if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)) return EADDRNOTAVAIL; if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM && (dlc->rd_laddr.bt_psm < 0x1001 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) return EADDRNOTAVAIL; LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { l2cap_sockaddr(rs->rs_l2cap, &addr); if (addr.bt_psm != dlc->rd_laddr.bt_psm) continue; if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) break; } if (rs == NULL) { rs = rfcomm_session_alloc(&rfcomm_session_listen, &dlc->rd_laddr); if (rs == NULL) return ENOMEM; rs->rs_state = RFCOMM_SESSION_LISTEN; err = l2cap_listen(rs->rs_l2cap); if (err) { rfcomm_session_free(rs); return err; } } if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) { channel = RFCOMM_CHANNEL_MIN; used = LIST_FIRST(&rs->rs_dlcs); while (used != NULL) { if (used->rd_laddr.bt_channel == channel) { if (channel++ == RFCOMM_CHANNEL_MAX) return EADDRNOTAVAIL; used = LIST_FIRST(&rs->rs_dlcs); } else { used = LIST_NEXT(used, rd_next); } } dlc->rd_laddr.bt_channel = channel; } dlc->rd_session = rs; dlc->rd_state = RFCOMM_DLC_LISTEN; LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); return 0; } /* * rfcomm_send(dlc, mbuf) * * Output data on DLC. This is streamed data, so we add it * to our buffer and start the the DLC, which will assemble * packets and send them if it can. */ int rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m) { if (dlc->rd_txbuf != NULL) { dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; m_cat(dlc->rd_txbuf, m); } else { dlc->rd_txbuf = m; } if (dlc->rd_state == RFCOMM_DLC_OPEN) rfcomm_dlc_start(dlc); return 0; } /* * rfcomm_rcvd(dlc, space) * * Indicate space now available in receive buffer * * This should be used to give an initial value of the receive buffer * size when the DLC is attached and anytime data is cleared from the * buffer after that. */ int rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space) { KASSERT(dlc != NULL); dlc->rd_rxsize = space; /* * if we are using credit based flow control, we may * want to send some credits.. */ if (dlc->rd_state == RFCOMM_DLC_OPEN && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) rfcomm_dlc_start(dlc); return 0; } /* * rfcomm_setopt(dlc, option, addr) * * set DLC options */ int rfcomm_setopt(struct rfcomm_dlc *dlc, int opt, void *addr) { int mode, err = 0; uint16_t mtu; switch (opt) { case SO_RFCOMM_MTU: mtu = *(uint16_t *)addr; if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX) err = EINVAL; else if (dlc->rd_state == RFCOMM_DLC_CLOSED) dlc->rd_mtu = mtu; else err = EBUSY; break; case SO_RFCOMM_LM: mode = *(int *)addr; mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH); if (mode & RFCOMM_LM_SECURE) mode |= RFCOMM_LM_ENCRYPT; if (mode & RFCOMM_LM_ENCRYPT) mode |= RFCOMM_LM_AUTH; dlc->rd_mode = mode; if (dlc->rd_state == RFCOMM_DLC_OPEN) err = rfcomm_dlc_setmode(dlc); break; default: err = ENOPROTOOPT; break; } return err; } /* * rfcomm_getopt(dlc, option, addr) * * get DLC options */ int rfcomm_getopt(struct rfcomm_dlc *dlc, int opt, void *addr) { struct rfcomm_fc_info *fc; switch (opt) { case SO_RFCOMM_MTU: *(uint16_t *)addr = dlc->rd_mtu; return sizeof(uint16_t); case SO_RFCOMM_FC_INFO: fc = addr; memset(fc, 0, sizeof(*fc)); fc->lmodem = dlc->rd_lmodem; fc->rmodem = dlc->rd_rmodem; fc->tx_cred = max(dlc->rd_txcred, 0xff); fc->rx_cred = max(dlc->rd_rxcred, 0xff); if (dlc->rd_session && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) fc->cfc = 1; return sizeof(*fc); case SO_RFCOMM_LM: *(int *)addr = dlc->rd_mode; return sizeof(int); default: break; } return 0; }