/* $NetBSD: esp.c,v 1.58 1996/10/11 00:46:35 christos Exp $ */ #ifdef __sparc__ #define SPARC_DRIVER #endif /* * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles M. Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994 Peter Galbavy * Copyright (c) 1995 Paul Kranenburg * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Peter Galbavy * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Based on aic6360 by Jarle Greipsland * * Acknowledgements: Many of the algorithms used in this driver are * inspired by the work of Julian Elischer (julian@tfs.com) and * Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million! */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SPARC_DRIVER #include #include #include #include #include #include #else #include #include #include #include #endif int esp_debug = 0; /*ESP_SHOWPHASE|ESP_SHOWMISC|ESP_SHOWTRAC|ESP_SHOWCMDS;*/ /*static*/ void espattach __P((struct device *, struct device *, void *)); /*static*/ int espmatch __P((struct device *, void *, void *)); /*static*/ u_int esp_adapter_info __P((struct esp_softc *)); /*static*/ void espreadregs __P((struct esp_softc *)); /*static*/ void esp_select __P((struct esp_softc *, struct esp_ecb *)); /*static*/ int esp_reselect __P((struct esp_softc *, int)); /*static*/ void esp_scsi_reset __P((struct esp_softc *)); /*static*/ void esp_reset __P((struct esp_softc *)); /*static*/ void esp_init __P((struct esp_softc *, int)); /*static*/ int esp_scsi_cmd __P((struct scsi_xfer *)); /*static*/ int esp_poll __P((struct esp_softc *, struct scsi_xfer *, int)); /*static*/ void esp_sched __P((struct esp_softc *)); /*static*/ void esp_done __P((struct esp_softc *, struct esp_ecb *)); /*static*/ void esp_msgin __P((struct esp_softc *)); /*static*/ void esp_msgout __P((struct esp_softc *)); /*static*/ int espintr __P((struct esp_softc *)); /*static*/ void esp_timeout __P((void *arg)); /*static*/ void esp_abort __P((struct esp_softc *, struct esp_ecb *)); /*static*/ void esp_dequeue __P((struct esp_softc *, struct esp_ecb *)); void esp_sense __P((struct esp_softc *, struct esp_ecb *)); void esp_free_ecb __P((struct esp_softc *, struct esp_ecb *, int)); struct esp_ecb *esp_get_ecb __P((struct esp_softc *, int)); static inline int esp_stp2cpb __P((struct esp_softc *, int)); static inline int esp_cpb2stp __P((struct esp_softc *, int)); static inline void esp_setsync __P((struct esp_softc *, struct esp_tinfo *)); /* Linkup to the rest of the kernel */ struct cfattach esp_ca = { sizeof(struct esp_softc), espmatch, espattach }; struct cfdriver esp_cd = { NULL, "esp", DV_DULL }; struct scsi_adapter esp_switch = { esp_scsi_cmd, minphys, /* no max at this level; handled by DMA code */ NULL, NULL, }; struct scsi_device esp_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; int espmatch(parent, vcf, aux) struct device *parent; void *vcf, *aux; { struct cfdata *cf = vcf; #ifdef SPARC_DRIVER register struct confargs *ca = aux; register struct romaux *ra = &ca->ca_ra; if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) return (0); if (ca->ca_bustype == BUS_SBUS) return (1); ra->ra_len = NBPG; return (probeget(ra->ra_vaddr, 1) != -1); #else struct tcdsdev_attach_args *tcdsdev = aux; if (strncmp(tcdsdev->tcdsda_modname, "PMAZ-AA ", TC_ROM_LLEN)) return (0); return (!tc_badaddr(tcdsdev->tcdsda_addr)); #endif } /* * Attach this instance, and then all the sub-devices */ void espattach(parent, self, aux) struct device *parent, *self; void *aux; { #ifdef SPARC_DRIVER register struct confargs *ca = aux; #else register struct tcdsdev_attach_args *tcdsdev = aux; #endif struct esp_softc *sc = (void *)self; #ifdef SPARC_DRIVER struct bootpath *bp; int dmachild = strncmp(parent->dv_xname, "dma", 3) == 0; #endif #ifdef SPARC_DRIVER /* * Make sure things are sane. I don't know if this is ever * necessary, but it seem to be in all of Torek's code. */ if (ca->ca_ra.ra_nintr != 1) { kprintf(": expected 1 interrupt, got %d\n", ca->ca_ra.ra_nintr); return; } sc->sc_pri = ca->ca_ra.ra_intr[0].int_pri; kprintf(" pri %d", sc->sc_pri); /* * Map my registers in, if they aren't already in virtual * address space. */ if (ca->ca_ra.ra_vaddr) sc->sc_reg = (volatile u_char *) ca->ca_ra.ra_vaddr; else { sc->sc_reg = (volatile u_char *) mapiodev(ca->ca_ra.ra_reg, 0, ca->ca_ra.ra_len, ca->ca_bustype); } #else sc->sc_reg = (volatile u_int32_t *)tcdsdev->tcdsda_addr; sc->sc_cookie = tcdsdev->tcdsda_cookie; sc->sc_dma = tcdsdev->tcdsda_sc; kprintf(": address %x", sc->sc_reg); tcds_intr_establish(parent, sc->sc_cookie, TC_IPL_BIO, (int (*)(void *))espintr, sc); #endif #ifdef SPARC_DRIVER /* Other settings */ sc->sc_node = ca->ca_ra.ra_node; if (ca->ca_bustype == BUS_SBUS) { sc->sc_id = getpropint(sc->sc_node, "initiator-id", 7); sc->sc_freq = getpropint(sc->sc_node, "clock-frequency", -1); } else { sc->sc_id = 7; sc->sc_freq = 24000000; } if (sc->sc_freq < 0) sc->sc_freq = ((struct sbus_softc *) sc->sc_dev.dv_parent)->sc_clockfreq; #else if (parent->dv_cfdata->cf_driver == &tcds_cd) { sc->sc_id = tcdsdev->tcdsda_id; sc->sc_freq = tcdsdev->tcdsda_freq; } else { /* XXX */ sc->sc_id = 7; sc->sc_freq = 24000000; } #endif /* gimme Mhz */ sc->sc_freq /= 1000000; #ifdef SPARC_DRIVER if (dmachild) { sc->sc_dma = (struct dma_softc *)parent; sc->sc_dma->sc_esp = sc; } else { /* * find the DMA by poking around the dma device structures * * What happens here is that if the dma driver has not been * configured, then this returns a NULL pointer. Then when the * dma actually gets configured, it does the opposing test, and * if the sc->sc_esp field in it's softc is NULL, then tries to * find the matching esp driver. * */ sc->sc_dma = (struct dma_softc *) getdevunit("dma", sc->sc_dev.dv_unit); /* * and a back pointer to us, for DMA */ if (sc->sc_dma) sc->sc_dma->sc_esp = sc; else panic("espattach: no dma found"); } #else sc->sc_dma->sc_esp = sc; /* XXX */ #endif /* * It is necessary to try to load the 2nd config register here, * to find out what rev the esp chip is, else the esp_reset * will not set up the defaults correctly. */ sc->sc_cfg1 = sc->sc_id | ESPCFG1_PARENB; #ifdef SPARC_DRIVER sc->sc_cfg2 = ESPCFG2_SCSI2 | ESPCFG2_RPE; sc->sc_cfg3 = ESPCFG3_CDB; ESP_WRITE_REG(sc, ESP_CFG2, sc->sc_cfg2); if ((ESP_READ_REG(sc, ESP_CFG2) & ~ESPCFG2_RSVD) != (ESPCFG2_SCSI2 | ESPCFG2_RPE)) { kprintf(": ESP100"); sc->sc_rev = ESP100; } else { sc->sc_cfg2 = ESPCFG2_SCSI2; ESP_WRITE_REG(sc, ESP_CFG2, sc->sc_cfg2); sc->sc_cfg3 = 0; ESP_WRITE_REG(sc, ESP_CFG3, sc->sc_cfg3); sc->sc_cfg3 = (ESPCFG3_CDB | ESPCFG3_FCLK); ESP_WRITE_REG(sc, ESP_CFG3, sc->sc_cfg3); if (ESP_READ_REG(sc, ESP_CFG3) != (ESPCFG3_CDB | ESPCFG3_FCLK)) { kprintf(": ESP100A"); sc->sc_rev = ESP100A; } else { /* ESPCFG2_FE enables > 64K transfers */ sc->sc_cfg2 |= ESPCFG2_FE; sc->sc_cfg3 = 0; ESP_WRITE_REG(sc, ESP_CFG3, sc->sc_cfg3); kprintf(": ESP200"); sc->sc_rev = ESP200; } } #else sc->sc_cfg2 = ESPCFG2_SCSI2; sc->sc_cfg3 = 0x4; /* Save residual byte. XXX??? */ kprintf(": NCR53C94"); sc->sc_rev = NCR53C94; #endif /* * This is the value used to start sync negotiations * Note that the ESP register "SYNCTP" is programmed * in "clocks per byte", and has a minimum value of 4. * The SCSI period used in negotiation is one-fourth * of the time (in nanoseconds) needed to transfer one byte. * Since the chip's clock is given in MHz, we have the following * formula: 4 * period = (1000 / freq) * 4 */ sc->sc_minsync = 1000 / sc->sc_freq; #ifdef SPARC_DRIVER /* * Alas, we must now modify the value a bit, because it's * only valid when can switch on FASTCLK and FASTSCSI bits * in config register 3... */ switch (sc->sc_rev) { case ESP100: sc->sc_maxxfer = 64 * 1024; sc->sc_minsync = 0; /* No synch on old chip? */ break; case ESP100A: sc->sc_maxxfer = 64 * 1024; sc->sc_minsync = esp_cpb2stp(sc, 5); /* Min clocks/byte is 5 */ break; case ESP200: sc->sc_maxxfer = 16 * 1024 * 1024; /* XXX - do actually set FAST* bits */ } #else sc->sc_maxxfer = 64 * 1024; #endif sc->sc_ccf = FREQTOCCF(sc->sc_freq); /* The value *must not* be == 1. Make it 2 */ if (sc->sc_ccf == 1) sc->sc_ccf = 2; /* * The recommended timeout is 250ms. This register is loaded * with a value calculated as follows, from the docs: * * (timout period) x (CLK frequency) * reg = ------------------------------------- * 8192 x (Clock Conversion Factor) * * Since CCF has a linear relation to CLK, this generally computes * to the constant of 153. */ sc->sc_timeout = ((250 * 1000) * sc->sc_freq) / (8192 * sc->sc_ccf); /* CCF register only has 3 bits; 0 is actually 8 */ sc->sc_ccf &= 7; /* Reset state & bus */ sc->sc_state = 0; esp_init(sc, 1); kprintf(" %dMhz, target %d\n", sc->sc_freq, sc->sc_id); #ifdef SPARC_DRIVER /* add me to the sbus structures */ sc->sc_sd.sd_reset = (void *) esp_reset; #if defined(SUN4C) || defined(SUN4M) if (ca->ca_bustype == BUS_SBUS) { if (dmachild) sbus_establish(&sc->sc_sd, sc->sc_dev.dv_parent); else sbus_establish(&sc->sc_sd, &sc->sc_dev); } #endif /* SUN4C || SUN4M */ #endif #ifdef SPARC_DRIVER /* and the interuppts */ sc->sc_ih.ih_fun = (void *) espintr; sc->sc_ih.ih_arg = sc; intr_establish(sc->sc_pri, &sc->sc_ih); evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt); #endif /* * fill in the prototype scsi_link. */ sc->sc_link.channel = SCSI_CHANNEL_ONLY_ONE; sc->sc_link.adapter_softc = sc; sc->sc_link.adapter_target = sc->sc_id; sc->sc_link.adapter = &esp_switch; sc->sc_link.device = &esp_dev; sc->sc_link.openings = 2; /* * If the boot path is "esp" at the moment and it's me, then * walk our pointer to the sub-device, ready for the config * below. */ #ifdef SPARC_DRIVER bp = ca->ca_ra.ra_bp; switch (ca->ca_bustype) { case BUS_SBUS: if (bp != NULL && strcmp(bp->name, "esp") == 0 && SAME_ESP(sc, bp, ca)) bootpath_store(1, bp + 1); break; default: if (bp != NULL && strcmp(bp->name, "esp") == 0 && bp->val[0] == -1 && bp->val[1] == sc->sc_dev.dv_unit) bootpath_store(1, bp + 1); break; } #endif /* * Now try to attach all the sub-devices */ config_found(self, &sc->sc_link, scsiprint); #ifdef SPARC_DRIVER bootpath_store(1, NULL); #endif } /* * This is the generic esp reset function. It does not reset the SCSI bus, * only this controllers, but kills any on-going commands, and also stops * and resets the DMA. * * After reset, registers are loaded with the defaults from the attach * routine above. */ void esp_reset(sc) struct esp_softc *sc; { /* reset DMA first */ DMA_RESET(sc->sc_dma); /* reset SCSI chip */ ESPCMD(sc, ESPCMD_RSTCHIP); ESPCMD(sc, ESPCMD_NOP); DELAY(500); /* do these backwards, and fall through */ switch (sc->sc_rev) { #ifndef SPARC_DRIVER case NCR53C94: #endif case ESP200: ESP_WRITE_REG(sc, ESP_CFG3, sc->sc_cfg3); case ESP100A: ESP_WRITE_REG(sc, ESP_CFG2, sc->sc_cfg2); case ESP100: ESP_WRITE_REG(sc, ESP_CFG1, sc->sc_cfg1); ESP_WRITE_REG(sc, ESP_CCF, sc->sc_ccf); ESP_WRITE_REG(sc, ESP_SYNCOFF, 0); ESP_WRITE_REG(sc, ESP_TIMEOUT, sc->sc_timeout); break; default: kprintf("%s: unknown revision code, assuming ESP100\n", sc->sc_dev.dv_xname); ESP_WRITE_REG(sc, ESP_CFG1, sc->sc_cfg1); ESP_WRITE_REG(sc, ESP_CCF, sc->sc_ccf); ESP_WRITE_REG(sc, ESP_SYNCOFF, 0); ESP_WRITE_REG(sc, ESP_TIMEOUT, sc->sc_timeout); } } /* * Reset the SCSI bus, but not the chip */ void esp_scsi_reset(sc) struct esp_softc *sc; { #ifdef SPARC_DRIVER /* stop DMA first, as the chip will return to Bus Free phase */ DMACSR(sc->sc_dma) &= ~D_EN_DMA; #else /* * XXX STOP DMA FIRST */ #endif kprintf("esp: resetting SCSI bus\n"); ESPCMD(sc, ESPCMD_RSTSCSI); } /* * Initialize esp state machine */ void esp_init(sc, doreset) struct esp_softc *sc; int doreset; { struct esp_ecb *ecb; int r; ESP_TRACE(("[ESP_INIT(%d)] ", doreset)); if (sc->sc_state == 0) { /* First time through; initialize. */ TAILQ_INIT(&sc->ready_list); TAILQ_INIT(&sc->nexus_list); TAILQ_INIT(&sc->free_list); sc->sc_nexus = NULL; ecb = sc->sc_ecb; bzero(ecb, sizeof(sc->sc_ecb)); for (r = 0; r < sizeof(sc->sc_ecb) / sizeof(*ecb); r++) { TAILQ_INSERT_TAIL(&sc->free_list, ecb, chain); ecb++; } bzero(sc->sc_tinfo, sizeof(sc->sc_tinfo)); } else { /* Cancel any active commands. */ sc->sc_state = ESP_CLEANING; if ((ecb = sc->sc_nexus) != NULL) { ecb->xs->error = XS_DRIVER_STUFFUP; untimeout(esp_timeout, ecb); esp_done(sc, ecb); } while ((ecb = sc->nexus_list.tqh_first) != NULL) { ecb->xs->error = XS_DRIVER_STUFFUP; untimeout(esp_timeout, ecb); esp_done(sc, ecb); } } /* * reset the chip to a known state */ esp_reset(sc); sc->sc_phase = sc->sc_prevphase = INVALID_PHASE; for (r = 0; r < 8; r++) { struct esp_tinfo *ti = &sc->sc_tinfo[r]; /* XXX - config flags per target: low bits: no reselect; high bits: no synch */ int fl = sc->sc_dev.dv_cfdata->cf_flags; ti->flags = ((sc->sc_minsync && !(fl & (1<<(r+8)))) ? T_NEGOTIATE : 0) | ((fl & (1<period = sc->sc_minsync; ti->offset = 0; } if (doreset) { sc->sc_state = ESP_SBR; ESPCMD(sc, ESPCMD_RSTSCSI); } else { sc->sc_state = ESP_IDLE; } } /* * Read the ESP registers, and save their contents for later use. * ESP_STAT, ESP_STEP & ESP_INTR are mostly zeroed out when reading * ESP_INTR - so make sure it is the last read. * * I think that (from reading the docs) most bits in these registers * only make sense when he DMA CSR has an interrupt showing. Call only * if an interrupt is pending. */ void espreadregs(sc) struct esp_softc *sc; { sc->sc_espstat = ESP_READ_REG(sc, ESP_STAT); /* Only the stepo bits are of interest */ sc->sc_espstep = ESP_READ_REG(sc, ESP_STEP) & ESPSTEP_MASK; sc->sc_espintr = ESP_READ_REG(sc, ESP_INTR); #ifndef SPARC_DRIVER /* Clear the TCDS interrupt bit. */ (void)tcds_scsi_isintr(sc->sc_dma, 1); #endif /* * Determine the SCSI bus phase, return either a real SCSI bus phase * or some pseudo phase we use to detect certain exceptions. */ sc->sc_phase = (sc->sc_espintr & ESPINTR_DIS) ? /* Disconnected */ BUSFREE_PHASE : sc->sc_espstat & ESPSTAT_PHASE; ESP_MISC(("regs[intr=%02x,stat=%02x,step=%02x] ", sc->sc_espintr, sc->sc_espstat, sc->sc_espstep)); } /* * Convert chip register Clock Per Byte value to Synchronous Transfer Period. */ static inline int esp_cpb2stp(sc, cpb) struct esp_softc *sc; int cpb; { return ((250 * cpb) / sc->sc_freq); } /* * Convert Synchronous Transfer Period to chip register Clock Per Byte value. */ static inline int esp_stp2cpb(sc, period) struct esp_softc *sc; int period; { int v; v = (sc->sc_freq * period) / 250; if (esp_cpb2stp(sc, v) < period) /* Correct round-down error */ v++; return v; } static inline void esp_setsync(sc, ti) struct esp_softc *sc; struct esp_tinfo *ti; { if (ti->flags & T_SYNCMODE) { ESP_WRITE_REG(sc, ESP_SYNCOFF, ti->offset); ESP_WRITE_REG(sc, ESP_SYNCTP, esp_stp2cpb(sc, ti->period)); } else { ESP_WRITE_REG(sc, ESP_SYNCOFF, 0); ESP_WRITE_REG(sc, ESP_SYNCTP, 0); } } /* * Send a command to a target, set the driver state to ESP_SELECTING * and let the caller take care of the rest. * * Keeping this as a function allows me to say that this may be done * by DMA instead of programmed I/O soon. */ void esp_select(sc, ecb) struct esp_softc *sc; struct esp_ecb *ecb; { struct scsi_link *sc_link = ecb->xs->sc_link; int target = sc_link->target; struct esp_tinfo *ti = &sc->sc_tinfo[target]; u_char *cmd; int clen; ESP_TRACE(("[esp_select(t%d,l%d,cmd:%x)] ", sc_link->target, sc_link->lun, ecb->cmd.opcode)); /* new state ESP_SELECTING */ sc->sc_state = ESP_SELECTING; ESPCMD(sc, ESPCMD_FLUSH); /* * The docs say the target register is never reset, and I * can't think of a better place to set it */ ESP_WRITE_REG(sc, ESP_SELID, target); esp_setsync(sc, ti); /* * Who am I. This is where we tell the target that we are * happy for it to disconnect etc. */ ESP_WRITE_REG(sc, ESP_FIFO, MSG_IDENTIFY(sc_link->lun, (ti->flags & T_RSELECTOFF)?0:1)); if (ti->flags & T_NEGOTIATE) { /* Arbitrate, select and stop after IDENTIFY message */ ESPCMD(sc, ESPCMD_SELATNS); return; } /* Now the command into the FIFO */ cmd = (u_char *)&ecb->cmd; clen = ecb->clen; while (clen--) ESP_WRITE_REG(sc, ESP_FIFO, *cmd++); /* And get the targets attention */ ESPCMD(sc, ESPCMD_SELATN); } void esp_free_ecb(sc, ecb, flags) struct esp_softc *sc; struct esp_ecb *ecb; int flags; { int s; s = splbio(); ecb->flags = 0; TAILQ_INSERT_HEAD(&sc->free_list, ecb, chain); /* * If there were none, wake anybody waiting for one to come free, * starting with queued entries. */ if (ecb->chain.tqe_next == 0) wakeup(&sc->free_list); splx(s); } struct esp_ecb * esp_get_ecb(sc, flags) struct esp_softc *sc; int flags; { struct esp_ecb *ecb; int s; s = splbio(); while ((ecb = sc->free_list.tqh_first) == NULL && (flags & SCSI_NOSLEEP) == 0) tsleep(&sc->free_list, PRIBIO, "especb", 0); if (ecb) { TAILQ_REMOVE(&sc->free_list, ecb, chain); ecb->flags |= ECB_ALLOC; } splx(s); return ecb; } /* * DRIVER FUNCTIONS CALLABLE FROM HIGHER LEVEL DRIVERS */ /* * Start a SCSI-command * This function is called by the higher level SCSI-driver to queue/run * SCSI-commands. */ int esp_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_link *sc_link = xs->sc_link; struct esp_softc *sc = sc_link->adapter_softc; struct esp_ecb *ecb; int s, flags; ESP_TRACE(("[esp_scsi_cmd] ")); ESP_CMDS(("[0x%x, %d]->%d ", (int)xs->cmd->opcode, xs->cmdlen, sc_link->target)); flags = xs->flags; if ((ecb = esp_get_ecb(sc, flags)) == NULL) { xs->error = XS_DRIVER_STUFFUP; return TRY_AGAIN_LATER; } /* Initialize ecb */ ecb->xs = xs; ecb->timeout = xs->timeout; if (xs->flags & SCSI_RESET) { ecb->flags |= ECB_RESET; ecb->clen = 0; ecb->dleft = 0; } else { bcopy(xs->cmd, &ecb->cmd, xs->cmdlen); ecb->clen = xs->cmdlen; ecb->daddr = xs->data; ecb->dleft = xs->datalen; } ecb->stat = 0; s = splbio(); TAILQ_INSERT_TAIL(&sc->ready_list, ecb, chain); if (sc->sc_state == ESP_IDLE) esp_sched(sc); splx(s); if ((flags & SCSI_POLL) == 0) return SUCCESSFULLY_QUEUED; /* Not allowed to use interrupts, use polling instead */ if (esp_poll(sc, xs, ecb->timeout)) { esp_timeout(ecb); if (esp_poll(sc, xs, ecb->timeout)) esp_timeout(ecb); } return COMPLETE; } /* * Used when interrupt driven I/O isn't allowed, e.g. during boot. */ int esp_poll(sc, xs, count) struct esp_softc *sc; struct scsi_xfer *xs; int count; { ESP_TRACE(("[esp_poll] ")); while (count) { if (DMA_ISINTR(sc->sc_dma)) { espintr(sc); } #if alternatively if (ESP_READ_REG(sc, ESP_STAT) & ESPSTAT_INT) espintr(sc); #endif if ((xs->flags & ITSDONE) != 0) return 0; if (sc->sc_state == ESP_IDLE) { ESP_TRACE(("[esp_poll: rescheduling] ")); esp_sched(sc); } DELAY(1000); count--; } return 1; } /* * LOW LEVEL SCSI UTILITIES */ /* * Schedule a scsi operation. This has now been pulled out of the interrupt * handler so that we may call it from esp_scsi_cmd and esp_done. This may * save us an unecessary interrupt just to get things going. Should only be * called when state == ESP_IDLE and at bio pl. */ void esp_sched(sc) struct esp_softc *sc; { struct esp_ecb *ecb; struct scsi_link *sc_link; struct esp_tinfo *ti; ESP_TRACE(("[esp_sched] ")); if (sc->sc_state != ESP_IDLE) panic("esp_sched: not IDLE (state=%d)", sc->sc_state); /* * Find first ecb in ready queue that is for a target/lunit * combinations that is not busy. */ for (ecb = sc->ready_list.tqh_first; ecb; ecb = ecb->chain.tqe_next) { sc_link = ecb->xs->sc_link; ti = &sc->sc_tinfo[sc_link->target]; if ((ti->lubusy & (1 << sc_link->lun)) == 0) { TAILQ_REMOVE(&sc->ready_list, ecb, chain); sc->sc_nexus = ecb; esp_select(sc, ecb); break; } else ESP_MISC(("%d:%d busy\n", sc_link->target, sc_link->lun)); } } void esp_sense(sc, ecb) struct esp_softc *sc; struct esp_ecb *ecb; { struct scsi_xfer *xs = ecb->xs; struct scsi_link *sc_link = xs->sc_link; struct esp_tinfo *ti = &sc->sc_tinfo[sc_link->target]; struct scsi_sense *ss = (void *)&ecb->cmd; ESP_MISC(("requesting sense ")); /* Next, setup a request sense command block */ bzero(ss, sizeof(*ss)); ss->opcode = REQUEST_SENSE; ss->byte2 = sc_link->lun << 5; ss->length = sizeof(struct scsi_sense_data); ecb->clen = sizeof(*ss); ecb->daddr = (char *)&xs->sense; ecb->dleft = sizeof(struct scsi_sense_data); ecb->flags |= ECB_SENSE; ti->senses++; if (ecb->flags & ECB_NEXUS) ti->lubusy &= ~(1 << sc_link->lun); if (ecb == sc->sc_nexus) { esp_select(sc, ecb); } else { esp_dequeue(sc, ecb); TAILQ_INSERT_HEAD(&sc->ready_list, ecb, chain); if (sc->sc_state == ESP_IDLE) esp_sched(sc); } } /* * POST PROCESSING OF SCSI_CMD (usually current) */ void esp_done(sc, ecb) struct esp_softc *sc; struct esp_ecb *ecb; { struct scsi_xfer *xs = ecb->xs; struct scsi_link *sc_link = xs->sc_link; struct esp_tinfo *ti = &sc->sc_tinfo[sc_link->target]; ESP_TRACE(("[esp_done(error:%x)] ", xs->error)); /* * Now, if we've come here with no error code, i.e. we've kept the * initial XS_NOERROR, and the status code signals that we should * check sense, we'll need to set up a request sense cmd block and * push the command back into the ready queue *before* any other * commands for this target/lunit, else we lose the sense info. * We don't support chk sense conditions for the request sense cmd. */ if (xs->error == XS_NOERROR) { if ((ecb->flags & ECB_ABORT) != 0) { xs->error = XS_DRIVER_STUFFUP; } else if ((ecb->flags & ECB_SENSE) != 0) { xs->error = XS_SENSE; } else if ((ecb->stat & ST_MASK) == SCSI_CHECK) { /* First, save the return values */ xs->resid = ecb->dleft; xs->status = ecb->stat; esp_sense(sc, ecb); return; } else { xs->resid = ecb->dleft; } } xs->flags |= ITSDONE; #ifdef ESP_DEBUG if (esp_debug & ESP_SHOWMISC) { if (xs->resid != 0) kprintf("resid=%d ", xs->resid); if (xs->error == XS_SENSE) kprintf("sense=0x%02x\n", xs->sense.error_code); else kprintf("error=%d\n", xs->error); } #endif /* * Remove the ECB from whatever queue it's on. */ if (ecb->flags & ECB_NEXUS) ti->lubusy &= ~(1 << sc_link->lun); if (ecb == sc->sc_nexus) { sc->sc_nexus = NULL; sc->sc_state = ESP_IDLE; esp_sched(sc); } else esp_dequeue(sc, ecb); esp_free_ecb(sc, ecb, xs->flags); ti->cmds++; scsi_done(xs); } void esp_dequeue(sc, ecb) struct esp_softc *sc; struct esp_ecb *ecb; { if (ecb->flags & ECB_NEXUS) { TAILQ_REMOVE(&sc->nexus_list, ecb, chain); } else { TAILQ_REMOVE(&sc->ready_list, ecb, chain); } } /* * INTERRUPT/PROTOCOL ENGINE */ /* * Schedule an outgoing message by prioritizing it, and asserting * attention on the bus. We can only do this when we are the initiator * else there will be an illegal command interrupt. */ #define esp_sched_msgout(m) \ do { \ ESP_MISC(("esp_sched_msgout %d ", m)); \ ESPCMD(sc, ESPCMD_SETATN); \ sc->sc_flags |= ESP_ATN; \ sc->sc_msgpriq |= (m); \ } while (0) int esp_reselect(sc, message) struct esp_softc *sc; int message; { u_char selid, target, lun; struct esp_ecb *ecb; struct scsi_link *sc_link; struct esp_tinfo *ti; /* * The SCSI chip made a snapshot of the data bus while the reselection * was being negotiated. This enables us to determine which target did * the reselect. */ selid = sc->sc_selid & ~(1 << sc->sc_id); if (selid & (selid - 1)) { kprintf("%s: reselect with invalid selid %02x; sending DEVICE RESET\n", sc->sc_dev.dv_xname, selid); goto reset; } /* * Search wait queue for disconnected cmd * The list should be short, so I haven't bothered with * any more sophisticated structures than a simple * singly linked list. */ target = ffs(selid) - 1; lun = message & 0x07; for (ecb = sc->nexus_list.tqh_first; ecb != NULL; ecb = ecb->chain.tqe_next) { sc_link = ecb->xs->sc_link; if (sc_link->target == target && sc_link->lun == lun) break; } if (ecb == NULL) { kprintf("%s: reselect from target %d lun %d with no nexus; sending ABORT\n", sc->sc_dev.dv_xname, target, lun); goto abort; } /* Make this nexus active again. */ TAILQ_REMOVE(&sc->nexus_list, ecb, chain); sc->sc_state = ESP_CONNECTED; sc->sc_nexus = ecb; ti = &sc->sc_tinfo[target]; ti->lubusy |= (1 << lun); esp_setsync(sc, ti); if (ecb->flags & ECB_RESET) esp_sched_msgout(SEND_DEV_RESET); else if (ecb->flags & ECB_ABORT) esp_sched_msgout(SEND_ABORT); /* Do an implicit RESTORE POINTERS. */ sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; return (0); reset: esp_sched_msgout(SEND_DEV_RESET); return (1); abort: esp_sched_msgout(SEND_ABORT); return (1); } #define IS1BYTEMSG(m) (((m) != 1 && (m) < 0x20) || (m) & 0x80) #define IS2BYTEMSG(m) (((m) & 0xf0) == 0x20) #define ISEXTMSG(m) ((m) == 1) /* * Get an incoming message as initiator. * * The SCSI bus must already be in MESSAGE_IN_PHASE and there is a * byte in the FIFO */ void esp_msgin(sc) register struct esp_softc *sc; { register int v; ESP_TRACE(("[esp_msgin(curmsglen:%d)] ", sc->sc_imlen)); if ((ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) == 0) { kprintf("%s: msgin: no msg byte available\n", sc->sc_dev.dv_xname); return; } /* * Prepare for a new message. A message should (according * to the SCSI standard) be transmitted in one single * MESSAGE_IN_PHASE. If we have been in some other phase, * then this is a new message. */ if (sc->sc_prevphase != MESSAGE_IN_PHASE) { sc->sc_flags &= ~ESP_DROP_MSGI; sc->sc_imlen = 0; } v = ESP_READ_REG(sc, ESP_FIFO); ESP_MISC(("", v)); #if 0 if (sc->sc_state == ESP_RESELECTED && sc->sc_imlen == 0) { /* * Which target is reselecting us? (The ID bit really) */ sc->sc_selid = v; ESP_MISC(("selid=0x%2x ", sc->sc_selid)); return; } #endif sc->sc_imess[sc->sc_imlen] = v; /* * If we're going to reject the message, don't bother storing * the incoming bytes. But still, we need to ACK them. */ if ((sc->sc_flags & ESP_DROP_MSGI)) { ESPCMD(sc, ESPCMD_MSGOK); kprintf("", sc->sc_imess[sc->sc_imlen]); return; } if (sc->sc_imlen >= ESP_MAX_MSG_LEN) { esp_sched_msgout(SEND_REJECT); sc->sc_flags |= ESP_DROP_MSGI; } else { sc->sc_imlen++; /* * This testing is suboptimal, but most * messages will be of the one byte variety, so * it should not effect performance * significantly. */ if (sc->sc_imlen == 1 && IS1BYTEMSG(sc->sc_imess[0])) goto gotit; if (sc->sc_imlen == 2 && IS2BYTEMSG(sc->sc_imess[0])) goto gotit; if (sc->sc_imlen >= 3 && ISEXTMSG(sc->sc_imess[0]) && sc->sc_imlen == sc->sc_imess[1] + 2) goto gotit; } /* Ack what we have so far */ ESPCMD(sc, ESPCMD_MSGOK); return; gotit: ESP_MSGS(("gotmsg(%x)", sc->sc_imess[0])); /* * Now we should have a complete message (1 byte, 2 byte * and moderately long extended messages). We only handle * extended messages which total length is shorter than * ESP_MAX_MSG_LEN. Longer messages will be amputated. */ switch (sc->sc_state) { struct esp_ecb *ecb; struct esp_tinfo *ti; case ESP_CONNECTED: ecb = sc->sc_nexus; ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; switch (sc->sc_imess[0]) { case MSG_CMDCOMPLETE: ESP_MSGS(("cmdcomplete ")); if (sc->sc_dleft < 0) { struct scsi_link *sc_link = ecb->xs->sc_link; kprintf("%s: %d extra bytes from %d:%d\n", sc->sc_dev.dv_xname, -sc->sc_dleft, sc_link->target, sc_link->lun); sc->sc_dleft = 0; } ecb->xs->resid = ecb->dleft = sc->sc_dleft; sc->sc_state = ESP_CMDCOMPLETE; break; case MSG_MESSAGE_REJECT: if (esp_debug & ESP_SHOWMSGS) kprintf("%s: our msg rejected by target\n", sc->sc_dev.dv_xname); switch (sc->sc_msgout) { case SEND_SDTR: sc->sc_flags &= ~ESP_SYNCHNEGO; ti->flags &= ~(T_NEGOTIATE | T_SYNCMODE); esp_setsync(sc, ti); break; case SEND_INIT_DET_ERR: goto abort; } break; case MSG_NOOP: ESP_MSGS(("noop ")); break; case MSG_DISCONNECT: ESP_MSGS(("disconnect ")); ti->dconns++; sc->sc_state = ESP_DISCONNECT; if ((ecb->xs->sc_link->quirks & SDEV_AUTOSAVE) == 0) break; /*FALLTHROUGH*/ case MSG_SAVEDATAPOINTER: ESP_MSGS(("save datapointer ")); ecb->daddr = sc->sc_dp; ecb->dleft = sc->sc_dleft; break; case MSG_RESTOREPOINTERS: ESP_MSGS(("restore datapointer ")); sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; break; case MSG_EXTENDED: ESP_MSGS(("extended(%x) ", sc->sc_imess[2])); switch (sc->sc_imess[2]) { case MSG_EXT_SDTR: ESP_MSGS(("SDTR period %d, offset %d ", sc->sc_imess[3], sc->sc_imess[4])); if (sc->sc_imess[1] != 3) goto reject; ti->period = sc->sc_imess[3]; ti->offset = sc->sc_imess[4]; ti->flags &= ~T_NEGOTIATE; if (sc->sc_minsync == 0 || ti->offset == 0 || ti->period > 124) { kprintf("%s:%d: async\n", "esp", ecb->xs->sc_link->target); if ((sc->sc_flags&ESP_SYNCHNEGO) == 0) { /* target initiated negotiation */ ti->offset = 0; ti->flags &= ~T_SYNCMODE; esp_sched_msgout(SEND_SDTR); } else { /* we are async */ ti->flags &= ~T_SYNCMODE; } } else { int r = 250/ti->period; int s = (100*250)/ti->period - 100*r; int p; p = esp_stp2cpb(sc, ti->period); ti->period = esp_cpb2stp(sc, p); #ifdef ESP_DEBUG sc_print_addr(ecb->xs->sc_link); kprintf("max sync rate %d.%02dMb/s\n", r, s); #endif if ((sc->sc_flags&ESP_SYNCHNEGO) == 0) { /* target initiated negotiation */ if (ti->period < sc->sc_minsync) ti->period = sc->sc_minsync; if (ti->offset > 15) ti->offset = 15; ti->flags &= ~T_SYNCMODE; esp_sched_msgout(SEND_SDTR); } else { /* we are sync */ ti->flags |= T_SYNCMODE; } } sc->sc_flags &= ~ESP_SYNCHNEGO; esp_setsync(sc, ti); break; default: kprintf("%s: unrecognized MESSAGE EXTENDED; sending REJECT\n", sc->sc_dev.dv_xname); goto reject; } break; default: ESP_MSGS(("ident ")); kprintf("%s: unrecognized MESSAGE; sending REJECT\n", sc->sc_dev.dv_xname); reject: esp_sched_msgout(SEND_REJECT); break; } break; case ESP_RESELECTED: if (!MSG_ISIDENTIFY(sc->sc_imess[0])) { kprintf("%s: reselect without IDENTIFY; sending DEVICE RESET\n", sc->sc_dev.dv_xname); goto reset; } (void) esp_reselect(sc, sc->sc_imess[0]); break; default: kprintf("%s: unexpected MESSAGE IN; sending DEVICE RESET\n", sc->sc_dev.dv_xname); reset: esp_sched_msgout(SEND_DEV_RESET); break; abort: esp_sched_msgout(SEND_ABORT); break; } /* Ack last message byte */ ESPCMD(sc, ESPCMD_MSGOK); /* Done, reset message pointer. */ sc->sc_flags &= ~ESP_DROP_MSGI; sc->sc_imlen = 0; } /* * Send the highest priority, scheduled message */ void esp_msgout(sc) register struct esp_softc *sc; { struct esp_tinfo *ti; struct esp_ecb *ecb; size_t size; ESP_TRACE(("[esp_msgout(priq:%x, prevphase:%x)]", sc->sc_msgpriq, sc->sc_prevphase)); if (sc->sc_flags & ESP_ATN) { if (sc->sc_prevphase != MESSAGE_OUT_PHASE) { new: ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); sc->sc_msgoutq = 0; sc->sc_omlen = 0; } } else { if (sc->sc_prevphase == MESSAGE_OUT_PHASE) { esp_sched_msgout(sc->sc_msgoutq); goto new; } else { kprintf("esp at line %d: unexpected MESSAGE OUT phase\n", __LINE__); } } if (sc->sc_omlen == 0) { /* Pick up highest priority message */ sc->sc_msgout = sc->sc_msgpriq & -sc->sc_msgpriq; sc->sc_msgoutq |= sc->sc_msgout; sc->sc_msgpriq &= ~sc->sc_msgout; sc->sc_omlen = 1; /* "Default" message len */ switch (sc->sc_msgout) { case SEND_SDTR: ecb = sc->sc_nexus; ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; sc->sc_omess[0] = MSG_EXTENDED; sc->sc_omess[1] = 3; sc->sc_omess[2] = MSG_EXT_SDTR; sc->sc_omess[3] = ti->period; sc->sc_omess[4] = ti->offset; sc->sc_omlen = 5; if ((sc->sc_flags & ESP_SYNCHNEGO) == 0) { ti->flags |= T_SYNCMODE; esp_setsync(sc, ti); } break; case SEND_IDENTIFY: if (sc->sc_state != ESP_CONNECTED) { kprintf("esp at line %d: no nexus\n", __LINE__); } ecb = sc->sc_nexus; sc->sc_omess[0] = MSG_IDENTIFY(ecb->xs->sc_link->lun,0); break; case SEND_DEV_RESET: sc->sc_flags |= ESP_ABORTING; sc->sc_omess[0] = MSG_BUS_DEV_RESET; ecb = sc->sc_nexus; ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; ti->flags &= ~T_SYNCMODE; ti->flags |= T_NEGOTIATE; break; case SEND_PARITY_ERROR: sc->sc_omess[0] = MSG_PARITY_ERROR; break; case SEND_ABORT: sc->sc_flags |= ESP_ABORTING; sc->sc_omess[0] = MSG_ABORT; break; case SEND_INIT_DET_ERR: sc->sc_omess[0] = MSG_INITIATOR_DET_ERR; break; case SEND_REJECT: sc->sc_omess[0] = MSG_MESSAGE_REJECT; break; default: ESPCMD(sc, ESPCMD_RSTATN); sc->sc_flags &= ~ESP_ATN; sc->sc_omess[0] = MSG_NOOP; break; } sc->sc_omp = sc->sc_omess; } #if 1 /* (re)send the message */ size = min(sc->sc_omlen, sc->sc_maxxfer); DMA_SETUP(sc->sc_dma, &sc->sc_omp, &sc->sc_omlen, 0, &size); /* Program the SCSI counter */ ESP_WRITE_REG(sc, ESP_TCL, size); ESP_WRITE_REG(sc, ESP_TCM, size >> 8); if (sc->sc_cfg2 & ESPCFG2_FE) { ESP_WRITE_REG(sc, ESP_TCH, size >> 16); } /* load the count in */ ESPCMD(sc, ESPCMD_NOP|ESPCMD_DMA); ESPCMD(sc, ESPCMD_TRANS|ESPCMD_DMA); DMA_GO(sc->sc_dma); #else { int i; for (i = 0; i < sc->sc_omlen; i++) ESP_WRITE_REG(sc, FIFO, sc->sc_omess[i]); ESPCMD(sc, ESPCMD_TRANS); sc->sc_omlen = 0; } #endif } /* * This is the most critical part of the driver, and has to know * how to deal with *all* error conditions and phases from the SCSI * bus. If there are no errors and the DMA was active, then call the * DMA pseudo-interrupt handler. If this returns 1, then that was it * and we can return from here without further processing. * * Most of this needs verifying. */ int espintr(sc) register struct esp_softc *sc; { register struct esp_ecb *ecb; register struct scsi_link *sc_link; struct esp_tinfo *ti; int loop; size_t size; ESP_TRACE(("[espintr]")); /* * I have made some (maybe seriously flawed) assumptions here, * but basic testing (uncomment the kprintf() below), show that * certainly something happens when this loop is here. * * The idea is that many of the SCSI operations take very little * time, and going away and getting interrupted is too high an * overhead to pay. For example, selecting, sending a message * and command and then doing some work can be done in one "pass". * * The DELAY is not variable because I do not understand that the * DELAY loop should be fixed-time regardless of CPU speed, but * I am *assuming* that the faster SCSI processors get things done * quicker (sending a command byte etc), and so there is no * need to be too slow. * * This is a heuristic. It is 2 when at 20Mhz, 2 at 25Mhz and 1 * at 40Mhz. This needs testing. */ for (loop = 0; 1;loop++, DELAY(50/sc->sc_freq)) { /* a feeling of deja-vu */ if (!DMA_ISINTR(sc->sc_dma)) return (loop != 0); #if 0 if (loop) kprintf("*"); #endif /* and what do the registers say... */ espreadregs(sc); sc->sc_intrcnt.ev_count++; /* * At the moment, only a SCSI Bus Reset or Illegal * Command are classed as errors. A disconnect is a * valid condition, and we let the code check is the * "ESP_BUSFREE_OK" flag was set before declaring it * and error. * * Also, the status register tells us about "Gross * Errors" and "Parity errors". Only the Gross Error * is really bad, and the parity errors are dealt * with later * * TODO * If there are too many parity error, go to slow * cable mode ? */ /* SCSI Reset */ if (sc->sc_espintr & ESPINTR_SBR) { if (ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } if (sc->sc_state != ESP_SBR) { kprintf("%s: SCSI bus reset\n", sc->sc_dev.dv_xname); esp_init(sc, 0); /* Restart everything */ return 1; } #if 0 /*XXX*/ kprintf("\n", sc->sc_espintr, sc->sc_espstat, sc->sc_espstep); #endif if (sc->sc_nexus) panic("%s: nexus in reset state", sc->sc_dev.dv_xname); goto sched; } ecb = sc->sc_nexus; #define ESPINTR_ERR (ESPINTR_SBR|ESPINTR_ILL) if (sc->sc_espintr & ESPINTR_ERR || sc->sc_espstat & ESPSTAT_GE) { if (sc->sc_espstat & ESPSTAT_GE) { /* no target ? */ if (ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } if (sc->sc_state == ESP_CONNECTED || sc->sc_state == ESP_SELECTING) { ecb->xs->error = XS_DRIVER_STUFFUP; esp_done(sc, ecb); } return 1; } if (sc->sc_espintr & ESPINTR_ILL) { /* illegal command, out of sync ? */ kprintf("%s: illegal command: 0x%x (state %d, phase %x, prevphase %x)\n", sc->sc_dev.dv_xname, sc->sc_lastcmd, sc->sc_state, sc->sc_phase, sc->sc_prevphase); if (ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } esp_init(sc, 0); /* Restart everything */ return 1; } } /* * Call if DMA is active. * * If DMA_INTR returns true, then maybe go 'round the loop * again in case there is no more DMA queued, but a phase * change is expected. */ if (DMA_ISACTIVE(sc->sc_dma)) { DMA_INTR(sc->sc_dma); /* If DMA active here, then go back to work... */ if (DMA_ISACTIVE(sc->sc_dma)) return 1; if (sc->sc_dleft == 0 && (sc->sc_espstat & ESPSTAT_TC) == 0) kprintf("%s: !TC [intr %x, stat %x, step %d]" " prevphase %x, resid %x\n", sc->sc_dev.dv_xname, sc->sc_espintr, sc->sc_espstat, sc->sc_espstep, sc->sc_prevphase, ecb?ecb->dleft:-1); } #if 0 /* Unreliable on some ESP revisions? */ if ((sc->sc_espstat & ESPSTAT_INT) == 0) { kprintf("%s: spurious interrupt\n", sc->sc_dev.dv_xname); return 1; } #endif /* * check for less serious errors */ if (sc->sc_espstat & ESPSTAT_PE) { kprintf("%s: SCSI bus parity error\n", sc->sc_dev.dv_xname); if (sc->sc_prevphase == MESSAGE_IN_PHASE) esp_sched_msgout(SEND_PARITY_ERROR); else esp_sched_msgout(SEND_INIT_DET_ERR); } if (sc->sc_espintr & ESPINTR_DIS) { ESP_MISC(("", sc->sc_espintr,sc->sc_espstat,sc->sc_espstep)); if (ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } /* * This command must (apparently) be issued within * 250mS of a disconnect. So here you are... */ ESPCMD(sc, ESPCMD_ENSEL); switch (sc->sc_state) { case ESP_RESELECTED: goto sched; case ESP_SELECTING: ecb->xs->error = XS_SELTIMEOUT; goto finish; case ESP_CONNECTED: if ((sc->sc_flags & ESP_SYNCHNEGO)) { #ifdef ESP_DEBUG if (ecb) sc_print_addr(ecb->xs->sc_link); kprintf("sync nego not completed!\n"); #endif ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; sc->sc_flags &= ~ESP_SYNCHNEGO; ti->flags &= ~(T_NEGOTIATE | T_SYNCMODE); } /* it may be OK to disconnect */ if ((sc->sc_flags & ESP_ABORTING) == 0) { /* * Section 5.1.1 of the SCSI 2 spec * suggests issuing a REQUEST SENSE * following an unexpected disconnect. * Some devices go into a contingent * allegiance condition when * disconnecting, and this is necessary * to clean up their state. */ kprintf("%s: unexpected disconnect; ", sc->sc_dev.dv_xname); if (ecb->flags & ECB_SENSE) { kprintf("resetting\n"); goto reset; } kprintf("sending REQUEST SENSE\n"); esp_sense(sc, ecb); goto out; } ecb->xs->error = XS_DRIVER_STUFFUP; goto finish; case ESP_DISCONNECT: TAILQ_INSERT_HEAD(&sc->nexus_list, ecb, chain); sc->sc_nexus = NULL; goto sched; case ESP_CMDCOMPLETE: goto finish; } } switch (sc->sc_state) { case ESP_SBR: kprintf("%s: waiting for SCSI Bus Reset to happen\n", sc->sc_dev.dv_xname); return 1; case ESP_RESELECTED: /* * we must be continuing a message ? */ if (sc->sc_phase != MESSAGE_IN_PHASE) { kprintf("%s: target didn't identify\n", sc->sc_dev.dv_xname); esp_init(sc, 1); return 1; } kprintf("<>"); #if XXXX esp_msgin(sc); if (sc->sc_state != ESP_CONNECTED) { /* IDENTIFY fail?! */ kprintf("%s: identify failed\n", sc->sc_dev.dv_xname); esp_init(sc, 1); return 1; } #endif break; case ESP_IDLE: if (sc->sc_flags & ESP_ICCS) kprintf("[[esp: BUMMER]]"); case ESP_SELECTING: sc->sc_msgpriq = sc->sc_msgout = sc->sc_msgoutq = 0; sc->sc_flags = 0; if (sc->sc_espintr & ESPINTR_RESEL) { /* * If we're trying to select a * target ourselves, push our command * back into the ready list. */ if (sc->sc_state == ESP_SELECTING) { ESP_MISC(("backoff selector ")); sc_link = sc->sc_nexus->xs->sc_link; ti = &sc->sc_tinfo[sc_link->target]; TAILQ_INSERT_HEAD(&sc->ready_list, sc->sc_nexus, chain); ecb = sc->sc_nexus = NULL; } sc->sc_state = ESP_RESELECTED; if (sc->sc_phase != MESSAGE_IN_PHASE) { /* * Things are seriously fucked up. * Pull the brakes, i.e. reset */ kprintf("%s: target didn't identify\n", sc->sc_dev.dv_xname); esp_init(sc, 1); return 1; } if ((ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) != 2) { kprintf("%s: RESELECT: %d bytes in FIFO!\n", sc->sc_dev.dv_xname, ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF); esp_init(sc, 1); return 1; } sc->sc_selid = ESP_READ_REG(sc, ESP_FIFO); ESP_MISC(("selid=0x%2x ", sc->sc_selid)); esp_msgin(sc); /* Handle identify message */ if (sc->sc_state != ESP_CONNECTED) { /* IDENTIFY fail?! */ kprintf("%s: identify failed\n", sc->sc_dev.dv_xname); esp_init(sc, 1); return 1; } continue; /* ie. next phase expected soon */ } #define ESPINTR_DONE (ESPINTR_FC|ESPINTR_BS) if ((sc->sc_espintr & ESPINTR_DONE) == ESPINTR_DONE) { ecb = sc->sc_nexus; if (!ecb) panic("esp: not nexus at sc->sc_nexus"); sc_link = ecb->xs->sc_link; ti = &sc->sc_tinfo[sc_link->target]; switch (sc->sc_espstep) { case 0: kprintf("%s: select timeout/no disconnect\n", sc->sc_dev.dv_xname); ecb->xs->error = XS_SELTIMEOUT; goto finish; case 1: if ((ti->flags & T_NEGOTIATE) == 0) { kprintf("%s: step 1 & !NEG\n", sc->sc_dev.dv_xname); goto reset; } if (sc->sc_phase != MESSAGE_OUT_PHASE) { kprintf("%s: !MSGOUT\n", sc->sc_dev.dv_xname); goto reset; } /* Start negotiating */ ti->period = sc->sc_minsync; ti->offset = 15; sc->sc_flags |= ESP_SYNCHNEGO; esp_sched_msgout(SEND_SDTR); break; case 3: /* * Grr, this is supposed to mean * "target left command phase * prematurely". It seems to happen * regularly when sync mode is on. * Look at FIFO to see if command * went out. * (Timing problems?) */ if ((ESP_READ_REG(sc, ESP_FFLAG)&ESPFIFO_FF) == 0) { /* Hope for the best.. */ break; } kprintf("(%s:%d:%d): selection failed;" " %d left in FIFO " "[intr %x, stat %x, step %d]\n", sc->sc_dev.dv_xname, sc_link->target, sc_link->lun, ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF, sc->sc_espintr, sc->sc_espstat, sc->sc_espstep); ESPCMD(sc, ESPCMD_FLUSH); esp_sched_msgout(SEND_ABORT); return 1; case 2: /* Select stuck at Command Phase */ ESPCMD(sc, ESPCMD_FLUSH); case 4: /* So far, everything went fine */ break; } #if 0 if (ecb->xs->flags & SCSI_RESET) esp_sched_msgout(SEND_DEV_RESET); else if (ti->flags & T_NEGOTIATE) esp_sched_msgout( SEND_IDENTIFY | SEND_SDTR); else esp_sched_msgout(SEND_IDENTIFY); #endif ecb->flags |= ECB_NEXUS; ti->lubusy |= (1 << sc_link->lun); sc->sc_prevphase = INVALID_PHASE; /* ?? */ /* Do an implicit RESTORE POINTERS. */ sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; /* On our first connection, schedule a timeout. */ if ((ecb->xs->flags & SCSI_POLL) == 0) timeout(esp_timeout, ecb, (ecb->timeout * hz) / 1000); sc->sc_state = ESP_CONNECTED; break; } else { kprintf("%s: unexpected status after select" ": [intr %x, stat %x, step %x]\n", sc->sc_dev.dv_xname, sc->sc_espintr, sc->sc_espstat, sc->sc_espstep); ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); goto reset; } if (sc->sc_state == ESP_IDLE) { kprintf("%s: stray interrupt\n", sc->sc_dev.dv_xname); return 0; } break; case ESP_CONNECTED: if (sc->sc_flags & ESP_ICCS) { u_char msg; sc->sc_flags &= ~ESP_ICCS; if (!(sc->sc_espintr & ESPINTR_DONE)) { kprintf("%s: ICCS: " ": [intr %x, stat %x, step %x]\n", sc->sc_dev.dv_xname, sc->sc_espintr, sc->sc_espstat, sc->sc_espstep); } if ((ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) != 2) { int i = (ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) - 2; while (i--) (void) ESP_READ_REG(sc, ESP_FIFO); } ecb->stat = ESP_READ_REG(sc, ESP_FIFO); msg = ESP_READ_REG(sc, ESP_FIFO); ESP_PHASE(("", ecb->stat, msg)); if (msg == MSG_CMDCOMPLETE) { ecb->xs->resid = ecb->dleft = sc->sc_dleft; sc->sc_state = ESP_CMDCOMPLETE; } else kprintf("%s: STATUS_PHASE: msg %d\n", sc->sc_dev.dv_xname, msg); ESPCMD(sc, ESPCMD_MSGOK); continue; /* ie. wait for disconnect */ } break; default: panic("%s: invalid state: %d", sc->sc_dev.dv_xname, sc->sc_state); } /* * Driver is now in state ESP_CONNECTED, i.e. we * have a current command working the SCSI bus. */ if (sc->sc_state != ESP_CONNECTED || ecb == NULL) { panic("esp no nexus"); } switch (sc->sc_phase) { case MESSAGE_OUT_PHASE: ESP_PHASE(("MESSAGE_OUT_PHASE ")); esp_msgout(sc); sc->sc_prevphase = MESSAGE_OUT_PHASE; break; case MESSAGE_IN_PHASE: ESP_PHASE(("MESSAGE_IN_PHASE ")); if (sc->sc_espintr & ESPINTR_BS) { ESPCMD(sc, ESPCMD_FLUSH); sc->sc_flags |= ESP_WAITI; ESPCMD(sc, ESPCMD_TRANS); } else if (sc->sc_espintr & ESPINTR_FC) { if ((sc->sc_flags & ESP_WAITI) == 0) { kprintf("%s: MSGIN: unexpected FC bit: " "[intr %x, stat %x, step %x]\n", sc->sc_dev.dv_xname, sc->sc_espintr, sc->sc_espstat, sc->sc_espstep); } sc->sc_flags &= ~ESP_WAITI; esp_msgin(sc); } else { kprintf("%s: MSGIN: weird bits: " "[intr %x, stat %x, step %x]\n", sc->sc_dev.dv_xname, sc->sc_espintr, sc->sc_espstat, sc->sc_espstep); } sc->sc_prevphase = MESSAGE_IN_PHASE; break; case COMMAND_PHASE: { /* well, this means send the command again */ u_char *cmd = (u_char *)&ecb->cmd; int i; ESP_PHASE(("COMMAND_PHASE 0x%02x (%d) ", ecb->cmd.opcode, ecb->clen)); if (ESP_READ_REG(sc, ESP_FFLAG) & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } /* Now the command into the FIFO */ for (i = 0; i < ecb->clen; i++) ESP_WRITE_REG(sc, ESP_FIFO, *cmd++); ESPCMD(sc, ESPCMD_TRANS); sc->sc_prevphase = COMMAND_PHASE; } break; case DATA_OUT_PHASE: ESP_PHASE(("DATA_OUT_PHASE [%d] ", sc->sc_dleft)); ESPCMD(sc, ESPCMD_FLUSH); size = min(sc->sc_dleft, sc->sc_maxxfer); DMA_SETUP(sc->sc_dma, &sc->sc_dp, &sc->sc_dleft, 0, &size); sc->sc_prevphase = DATA_OUT_PHASE; goto setup_xfer; case DATA_IN_PHASE: ESP_PHASE(("DATA_IN_PHASE ")); if (sc->sc_rev == ESP100) ESPCMD(sc, ESPCMD_FLUSH); size = min(sc->sc_dleft, sc->sc_maxxfer); DMA_SETUP(sc->sc_dma, &sc->sc_dp, &sc->sc_dleft, 1, &size); sc->sc_prevphase = DATA_IN_PHASE; setup_xfer: /* Program the SCSI counter */ ESP_WRITE_REG(sc, ESP_TCL, size); ESP_WRITE_REG(sc, ESP_TCM, size >> 8); if (sc->sc_cfg2 & ESPCFG2_FE) { ESP_WRITE_REG(sc, ESP_TCH, size >> 16); } /* load the count in */ ESPCMD(sc, ESPCMD_NOP|ESPCMD_DMA); /* * Note that if `size' is 0, we've already transceived * all the bytes we want but we're still in DATA PHASE. * Apparently, the device needs padding. Also, a * transfer size of 0 means "maximum" to the chip * DMA logic. */ ESPCMD(sc, (size==0?ESPCMD_TRPAD:ESPCMD_TRANS)|ESPCMD_DMA); DMA_GO(sc->sc_dma); return 1; case STATUS_PHASE: ESP_PHASE(("STATUS_PHASE ")); sc->sc_flags |= ESP_ICCS; ESPCMD(sc, ESPCMD_ICCS); sc->sc_prevphase = STATUS_PHASE; break; case INVALID_PHASE: break; default: kprintf("%s: unexpected bus phase; resetting\n", sc->sc_dev.dv_xname); goto reset; } } panic("esp: should not get here.."); reset: esp_init(sc, 1); return 1; finish: untimeout(esp_timeout, ecb); esp_done(sc, ecb); goto out; sched: sc->sc_state = ESP_IDLE; esp_sched(sc); goto out; out: return 1; } void esp_abort(sc, ecb) struct esp_softc *sc; struct esp_ecb *ecb; { /* 2 secs for the abort */ ecb->timeout = ESP_ABORT_TIMEOUT; ecb->flags |= ECB_ABORT; if (ecb == sc->sc_nexus) { /* * If we're still selecting, the message will be scheduled * after selection is complete. */ if (sc->sc_state == ESP_CONNECTED) esp_sched_msgout(SEND_ABORT); } else { esp_dequeue(sc, ecb); TAILQ_INSERT_HEAD(&sc->ready_list, ecb, chain); if (sc->sc_state == ESP_IDLE) esp_sched(sc); } } void esp_timeout(arg) void *arg; { struct esp_ecb *ecb = arg; struct scsi_xfer *xs = ecb->xs; struct scsi_link *sc_link = xs->sc_link; struct esp_softc *sc = sc_link->adapter_softc; int s; sc_print_addr(sc_link); kprintf("%s: timed out [ecb %p (flags 0x%x, dleft %x, stat %x)], " "", sc->sc_dev.dv_xname, ecb, ecb->flags, ecb->dleft, ecb->stat, sc->sc_state, sc->sc_nexus, sc->sc_phase, sc->sc_prevphase, sc->sc_dleft, sc->sc_msgpriq, sc->sc_msgout, DMA_ISACTIVE(sc->sc_dma) ? "DMA active" : ""); #if ESP_DEBUG > 0 kprintf("TRACE: %s.", ecb->trace); #endif s = splbio(); if (ecb->flags & ECB_ABORT) { /* abort timed out */ kprintf(" AGAIN\n"); esp_init(sc, 1); } else { /* abort the operation that has timed out */ kprintf("\n"); xs->error = XS_TIMEOUT; esp_abort(sc, ecb); } splx(s); }