/* $NetBSD: sbus.c,v 1.67 2004/03/17 17:04:59 pk Exp $ */ /* * Copyright (c) 1999-2002 Eduardo Horvath * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Sbus stuff. */ #include __KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.67 2004/03/17 17:04:59 pk Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define SDB_DVMA 0x1 #define SDB_INTR 0x2 int sbus_debug = 0; #define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0) #else #define DPRINTF(l, s) #endif void sbusreset __P((int)); static bus_space_tag_t sbus_alloc_bustag __P((struct sbus_softc *)); static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *)); static int sbus_get_intr __P((struct sbus_softc *, int, struct openprom_intr **, int *, int)); static int sbus_overtemp __P((void *)); static int _sbus_bus_map __P(( bus_space_tag_t, bus_addr_t, /*offset*/ bus_size_t, /*size*/ int, /*flags*/ vaddr_t, /* XXX unused -- compat w/sparc */ bus_space_handle_t *)); static void *sbus_intr_establish __P(( bus_space_tag_t, int, /*Sbus interrupt level*/ int, /*`device class' priority*/ int (*) __P((void *)), /*handler*/ void *, /*handler arg*/ void (*) __P((void)))); /*optional fast trap*/ /* autoconfiguration driver */ int sbus_match __P((struct device *, struct cfdata *, void *)); void sbus_attach __P((struct device *, struct device *, void *)); CFATTACH_DECL(sbus, sizeof(struct sbus_softc), sbus_match, sbus_attach, NULL, NULL); extern struct cfdriver sbus_cd; /* * DVMA routines */ int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t)); int sbus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)); void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs)); int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, size_t size, caddr_t *kvap, int flags)); void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva, size_t size)); /* * Child devices receive the Sbus interrupt level in their attach * arguments. We translate these to CPU IPLs using the following * tables. Note: obio bus interrupt levels are identical to the * processor IPL. * * The second set of tables is used when the Sbus interrupt level * cannot be had from the PROM as an `interrupt' property. We then * fall back on the `intr' property which contains the CPU IPL. */ /* * This value is or'ed into the attach args' interrupt level cookie * if the interrupt level comes from an `intr' property, i.e. it is * not an Sbus interrupt level. */ #define SBUS_INTR_COMPAT 0x80000000 /* * Print the location of some sbus-attached device (called just * before attaching that device). If `sbus' is not NULL, the * device was found but not configured; print the sbus as well. * Return UNCONF (config_find ignores this if the device was configured). */ int sbus_print(args, busname) void *args; const char *busname; { struct sbus_attach_args *sa = args; int i; if (busname) aprint_normal("%s at %s", sa->sa_name, busname); aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot, (u_long)sa->sa_offset); for (i = 0; i < sa->sa_nintr; i++) { struct openprom_intr *sbi = &sa->sa_intr[i]; aprint_normal(" vector %lx ipl %ld", (u_long)sbi->oi_vec, (long)INTLEV(sbi->oi_pri)); } return (UNCONF); } int sbus_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct mainbus_attach_args *ma = aux; return (strcmp(cf->cf_name, ma->ma_name) == 0); } /* * Attach an Sbus. */ void sbus_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct sbus_softc *sc = (struct sbus_softc *)self; struct mainbus_attach_args *ma = aux; struct intrhand *ih; int ipl; char *name; int node = ma->ma_node; int node0, error; bus_space_tag_t sbt; struct sbus_attach_args sa; sc->sc_bustag = ma->ma_bustag; sc->sc_dmatag = ma->ma_dmatag; sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN; /* XXXX Use sysio PROM mappings for interrupt vector regs. */ sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh); sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag, sc->sc_bh); #ifdef _LP64 /* * 32-bit kernels use virtual addresses for bus space operations * so we may as well use the prom VA. * * 64-bit kernels use physical addresses for bus space operations * so mapping this in again will reduce TLB thrashing. */ if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr, ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) { printf("%s: cannot map registers\n", self->dv_xname); return; } #endif /* * Record clock frequency for synchronous SCSI. * IS THIS THE CORRECT DEFAULT?? */ sc->sc_clockfreq = prom_getpropint(node, "clock-frequency", 25*1000*1000); printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq)); sbt = sbus_alloc_bustag(sc); sc->sc_dmatag = sbus_alloc_dmatag(sc); /* * Get the SBus burst transfer size if burst transfers are supported */ sc->sc_burst = prom_getpropint(node, "burst-sizes", 0); /* * Collect address translations from the OBP. */ error = prom_getprop(node, "ranges", sizeof(struct openprom_range), &sc->sc_nrange, &sc->sc_range); if (error) panic("%s: error getting ranges property", sc->sc_dev.dv_xname); /* initialize the IOMMU */ /* punch in our copies */ sc->sc_is.is_bustag = sc->sc_bustag; bus_space_subregion(sc->sc_bustag, sc->sc_bh, (vaddr_t)&((struct sysioreg *)NULL)->sys_iommu, sizeof (struct iommureg), &sc->sc_is.is_iommu); /* initialize our strbuf_ctl */ sc->sc_is.is_sb[0] = &sc->sc_sb; sc->sc_sb.sb_is = &sc->sc_is; bus_space_subregion(sc->sc_bustag, sc->sc_bh, (vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf, sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb); /* Point sb_flush to our flush buffer. */ sc->sc_sb.sb_flush = &sc->sc_flush; /* give us a nice name.. */ name = (char *)malloc(32, M_DEVBUF, M_NOWAIT); if (name == 0) panic("couldn't malloc iommu name"); snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname); iommu_init(name, &sc->sc_is, 0, -1); /* Enable the over temp intr */ ih = (struct intrhand *) malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT); ih->ih_map = &sc->sc_sysio->therm_int_map; ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */ ih->ih_fun = sbus_overtemp; ipl = 1; ih->ih_pil = (1<ih_number = INTVEC(*(ih->ih_map)); intr_establish(ipl, ih); *(ih->ih_map) |= INTMAP_V; /* * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a * NULL DMA pointer will be translated by the first page of the IOTSB. * To avoid bugs we'll alloc and ignore the first entry in the IOTSB. */ { u_long dummy; if (extent_alloc_subregion(sc->sc_is.is_dvmamap, sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE, PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO, (u_long *)&dummy) != 0) panic("sbus iommu: can't toss first dvma page"); } /* * Loop through ROM children, fixing any relative addresses * and then configuring each device. * `specials' is an array of device names that are treated * specially: */ node0 = OF_child(node); for (node = node0; node; node = OF_peer(node)) { char *name = prom_getpropstring(node, "name"); if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag, node, &sa) != 0) { printf("sbus_attach: %s: incomplete\n", name); continue; } (void) config_found(&sc->sc_dev, (void *)&sa, sbus_print); sbus_destroy_attach_args(&sa); } } int sbus_setup_attach_args(sc, bustag, dmatag, node, sa) struct sbus_softc *sc; bus_space_tag_t bustag; bus_dma_tag_t dmatag; int node; struct sbus_attach_args *sa; { /*struct openprom_addr sbusreg;*/ /*int base;*/ int error; int n; memset(sa, 0, sizeof(struct sbus_attach_args)); error = prom_getprop(node, "name", 1, &n, &sa->sa_name); if (error != 0) return (error); sa->sa_name[n] = '\0'; sa->sa_bustag = bustag; sa->sa_dmatag = dmatag; sa->sa_node = node; sa->sa_frequency = sc->sc_clockfreq; error = prom_getprop(node, "reg", sizeof(struct openprom_addr), &sa->sa_nreg, &sa->sa_reg); if (error != 0) { char buf[32]; if (error != ENOENT || !node_has_property(node, "device_type") || strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf), "hierarchical") != 0) return (error); } for (n = 0; n < sa->sa_nreg; n++) { /* Convert to relative addressing, if necessary */ u_int32_t base = sa->sa_reg[n].oa_base; if (SBUS_ABS(base)) { sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base); sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base); } } if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr, sa->sa_slot)) != 0) return (error); error = prom_getprop(node, "address", sizeof(u_int32_t), &sa->sa_npromvaddrs, &sa->sa_promvaddrs); if (error != 0 && error != ENOENT) return (error); return (0); } void sbus_destroy_attach_args(sa) struct sbus_attach_args *sa; { if (sa->sa_name != NULL) free(sa->sa_name, M_DEVBUF); if (sa->sa_nreg != 0) free(sa->sa_reg, M_DEVBUF); if (sa->sa_intr) free(sa->sa_intr, M_DEVBUF); if (sa->sa_promvaddrs) free((void *)sa->sa_promvaddrs, M_DEVBUF); memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/ } int _sbus_bus_map(t, addr, size, flags, v, hp) bus_space_tag_t t; bus_addr_t addr; bus_size_t size; int flags; vaddr_t v; bus_space_handle_t *hp; { struct sbus_softc *sc = t->cookie; int64_t slot = BUS_ADDR_IOSPACE(addr); int64_t offset = BUS_ADDR_PADDR(addr); int i; for (i = 0; i < sc->sc_nrange; i++) { bus_addr_t paddr; if (sc->sc_range[i].or_child_space != slot) continue; /* We've found the connection to the parent bus */ paddr = sc->sc_range[i].or_parent_base + offset; paddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32); DPRINTF(SDB_DVMA, ("\n_sbus_bus_map: mapping paddr slot %lx offset %lx poffset %lx paddr %lx\n", (long)slot, (long)offset, (long)sc->sc_range[i].or_parent_base, (long)paddr)); return (bus_space_map(sc->sc_bustag, paddr, size, flags, hp)); } return (EINVAL); } bus_addr_t sbus_bus_addr(t, btype, offset) bus_space_tag_t t; u_int btype; u_int offset; { bus_addr_t baddr = 0; int slot = btype; struct sbus_softc *sc = t->cookie; int i; for (i = 0; i < sc->sc_nrange; i++) { if (sc->sc_range[i].or_child_space != slot) continue; baddr = sc->sc_range[i].or_parent_base + offset; baddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32); } return (baddr); } /* * Each attached device calls sbus_establish after it initializes * its sbusdev portion. */ void sbus_establish(sd, dev) register struct sbusdev *sd; register struct device *dev; { register struct sbus_softc *sc; register struct device *curdev; /* * We have to look for the sbus by name, since it is not necessarily * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp) * We don't just use the device structure of the above-attached * sbus, since we might (in the future) support multiple sbus's. */ for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) { if (!curdev || !curdev->dv_xname) panic("sbus_establish: can't find sbus parent for %s", sd->sd_dev->dv_xname ? sd->sd_dev->dv_xname : "" ); if (strncmp(curdev->dv_xname, "sbus", 4) == 0) break; } sc = (struct sbus_softc *) curdev; sd->sd_dev = dev; sd->sd_bchain = sc->sc_sbdev; sc->sc_sbdev = sd; } /* * Reset the given sbus. */ void sbusreset(sbus) int sbus; { register struct sbusdev *sd; struct sbus_softc *sc = sbus_cd.cd_devs[sbus]; struct device *dev; printf("reset %s:", sc->sc_dev.dv_xname); for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) { if (sd->sd_reset) { dev = sd->sd_dev; (*sd->sd_reset)(dev); printf(" %s", dev->dv_xname); } } /* Reload iommu regs */ iommu_reset(&sc->sc_is); } /* * Handle an overtemp situation. * * SPARCs have temperature sensors which generate interrupts * if the machine's temperature exceeds a certain threshold. * This handles the interrupt and powers off the machine. * The same needs to be done to PCI controller drivers. */ int sbus_overtemp(arg) void *arg; { /* Should try a clean shutdown first */ printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n"); delay(20); cpu_reboot(RB_POWERDOWN|RB_HALT, NULL); } /* * Get interrupt attributes for an Sbus device. */ int sbus_get_intr(sc, node, ipp, np, slot) struct sbus_softc *sc; int node; struct openprom_intr **ipp; int *np; int slot; { int *ipl; int n, i; char buf[32]; /* * The `interrupts' property contains the Sbus interrupt level. */ ipl = NULL; if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) { struct openprom_intr *ip; int pri; /* Default to interrupt level 2 -- otherwise unused */ pri = INTLEVENCODE(2); /* Change format to an `struct sbus_intr' array */ ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF, M_NOWAIT); if (ip == NULL) return (ENOMEM); /* * Now things get ugly. We need to take this value which is * the interrupt vector number and encode the IPL into it * somehow. Luckily, the interrupt vector has lots of free * space and we can easily stuff the IPL in there for a while. */ prom_getpropstringA(node, "device_type", buf, sizeof buf); if (buf[0] == '\0') prom_getpropstringA(node, "name", buf, sizeof buf); for (i = 0; intrmap[i].in_class; i++) if (strcmp(intrmap[i].in_class, buf) == 0) { pri = INTLEVENCODE(intrmap[i].in_lev); break; } /* * Sbus card devices need the slot number encoded into * the vector as this is generally not done. */ if ((ipl[0] & INTMAP_OBIO) == 0) pri |= slot << 3; for (n = 0; n < *np; n++) { /* * We encode vector and priority into sbi_pri so we * can pass them as a unit. This will go away if * sbus_establish ever takes an sbus_intr instead * of an integer level. * Stuff the real vector in sbi_vec. */ ip[n].oi_pri = pri|ipl[n]; ip[n].oi_vec = ipl[n]; } free(ipl, M_DEVBUF); *ipp = ip; } return (0); } /* * Install an interrupt handler for an Sbus device. */ void * sbus_intr_establish(t, pri, level, handler, arg, fastvec) bus_space_tag_t t; int pri; int level; int (*handler) __P((void *)); void *arg; void (*fastvec) __P((void)); /* ignored */ { struct sbus_softc *sc = t->cookie; struct intrhand *ih; int ipl; long vec = pri; ih = (struct intrhand *) malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT); if (ih == NULL) return (NULL); if ((vec & SBUS_INTR_COMPAT) != 0) ipl = vec & ~SBUS_INTR_COMPAT; else { /* Decode and remove IPL */ ipl = INTLEV(vec); vec = INTVEC(vec); DPRINTF(SDB_INTR, ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n", (long)ipl, (long)vec, (u_long)intrlev[vec])); if ((vec & INTMAP_OBIO) == 0) { /* We're in an SBUS slot */ /* Register the map and clear intr registers */ int slot = INTSLOT(pri); ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot]; ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec]; #ifdef DEBUG if (sbus_debug & SDB_INTR) { int64_t intrmap = *ih->ih_map; printf("SBUS %lx IRQ as %llx in slot %d\n", (long)vec, (long long)intrmap, slot); printf("\tmap addr %p clr addr %p\n", ih->ih_map, ih->ih_clr); } #endif /* Enable the interrupt */ vec |= INTMAP_V | sc->sc_ign | (CPU_UPAID << INTMAP_TID_SHIFT); *(ih->ih_map) = vec; } else { int64_t *intrptr = &sc->sc_sysio->scsi_int_map; int64_t intrmap = 0; int i; /* Insert IGN */ vec |= sc->sc_ign; for (i = 0; &intrptr[i] <= (int64_t *)&sc->sc_sysio->reserved_int_map && INTVEC(intrmap = intrptr[i]) != INTVEC(vec); i++) ; if (INTVEC(intrmap) == INTVEC(vec)) { DPRINTF(SDB_INTR, ("OBIO %lx IRQ as %lx in slot %d\n", vec, (long)intrmap, i)); /* Register the map and clear intr registers */ ih->ih_map = &intrptr[i]; intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int; ih->ih_clr = &intrptr[i]; /* Enable the interrupt */ intrmap |= INTMAP_V; /* XXXX */ *(ih->ih_map) = intrmap; } else panic("IRQ not found!"); } } #ifdef DEBUG if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); } #endif ih->ih_fun = handler; ih->ih_arg = arg; ih->ih_number = vec; ih->ih_pil = (1<cookie = sc; sbt->parent = sc->sc_bustag; sbt->type = SBUS_BUS_SPACE; sbt->sparc_bus_map = _sbus_bus_map; sbt->sparc_bus_mmap = sc->sc_bustag->sparc_bus_mmap; sbt->sparc_intr_establish = sbus_intr_establish; return (sbt); } static bus_dma_tag_t sbus_alloc_dmatag(sc) struct sbus_softc *sc; { bus_dma_tag_t sdt, psdt = sc->sc_dmatag; sdt = (bus_dma_tag_t) malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT); if (sdt == NULL) /* Panic? */ return (psdt); sdt->_cookie = sc; sdt->_parent = psdt; #define PCOPY(x) sdt->x = psdt->x PCOPY(_dmamap_create); PCOPY(_dmamap_destroy); sdt->_dmamap_load = sbus_dmamap_load; PCOPY(_dmamap_load_mbuf); PCOPY(_dmamap_load_uio); sdt->_dmamap_load_raw = sbus_dmamap_load_raw; sdt->_dmamap_unload = sbus_dmamap_unload; sdt->_dmamap_sync = sbus_dmamap_sync; sdt->_dmamem_alloc = sbus_dmamem_alloc; sdt->_dmamem_free = sbus_dmamem_free; sdt->_dmamem_map = sbus_dmamem_map; sdt->_dmamem_unmap = sbus_dmamem_unmap; PCOPY(_dmamem_mmap); #undef PCOPY sc->sc_dmatag = sdt; return (sdt); } int sbus_dmamap_load(tag, map, buf, buflen, p, flags) bus_dma_tag_t tag; bus_dmamap_t map; void *buf; bus_size_t buflen; struct proc *p; int flags; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags)); } int sbus_dmamap_load_raw(tag, map, segs, nsegs, size, flags) bus_dma_tag_t tag; bus_dmamap_t map; bus_dma_segment_t *segs; int nsegs; bus_size_t size; int flags; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size)); } void sbus_dmamap_unload(tag, map) bus_dma_tag_t tag; bus_dmamap_t map; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; iommu_dvmamap_unload(tag, &sc->sc_sb, map); } void sbus_dmamap_sync(tag, map, offset, len, ops) bus_dma_tag_t tag; bus_dmamap_t map; bus_addr_t offset; bus_size_t len; int ops; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) { /* Flush the CPU then the IOMMU */ bus_dmamap_sync(tag->_parent, map, offset, len, ops); iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops); } if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) { /* Flush the IOMMU then the CPU */ iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops); bus_dmamap_sync(tag->_parent, map, offset, len, ops); } } int sbus_dmamem_alloc(tag, size, alignment, boundary, segs, nsegs, rsegs, flags) bus_dma_tag_t tag; bus_size_t size; bus_size_t alignment; bus_size_t boundary; bus_dma_segment_t *segs; int nsegs; int *rsegs; int flags; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary, segs, nsegs, rsegs, flags)); } void sbus_dmamem_free(tag, segs, nsegs) bus_dma_tag_t tag; bus_dma_segment_t *segs; int nsegs; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs); } int sbus_dmamem_map(tag, segs, nsegs, size, kvap, flags) bus_dma_tag_t tag; bus_dma_segment_t *segs; int nsegs; size_t size; caddr_t *kvap; int flags; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags)); } void sbus_dmamem_unmap(tag, kva, size) bus_dma_tag_t tag; caddr_t kva; size_t size; { struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size); }