/* $NetBSD: mkfs.c,v 1.65 2002/09/28 20:11:07 dbj Exp $ */ /* * Copyright (c) 1980, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #ifndef lint #if 0 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; #else __RCSID("$NetBSD: mkfs.c,v 1.65 2002/09/28 20:11:07 dbj Exp $"); #endif #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef STANDALONE #include #endif #include "extern.h" static void initcg(int, time_t); static int fsinit(time_t, mode_t, uid_t, gid_t); static int makedir(struct direct *, int); static daddr_t alloc(int, int); static void iput(struct dinode *, ino_t); static void rdfs(daddr_t, int, void *); static void wtfs(daddr_t, int, void *); static int isblock(struct fs *, unsigned char *, int); static void clrblock(struct fs *, unsigned char *, int); static void setblock(struct fs *, unsigned char *, int); static int32_t calcipg(int32_t, int32_t, off_t *); static void swap_cg(struct cg *, struct cg *); #ifdef MFS static void calc_memfree(void); static void *mkfs_malloc(size_t size); #endif static int count_digits(int); /* * make file system for cylinder-group style file systems */ /* * We limit the size of the inode map to be no more than a * third of the cylinder group space, since we must leave at * least an equal amount of space for the block map. * * N.B.: MAXIPG must be a multiple of INOPB(fs). */ #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) #define UMASK 0755 #define MAXINOPB (MAXBSIZE / DINODE_SIZE) #define POWEROF2(num) (((num) & ((num) - 1)) == 0) union { struct fs fs; char pad[SBSIZE]; } fsun; #define sblock fsun.fs struct csum *fscs; union { struct cg cg; char pad[MAXBSIZE]; } cgun; #define acg cgun.cg struct dinode zino[MAXBSIZE / DINODE_SIZE]; char writebuf[MAXBSIZE]; int fsi, fso; void mkfs(struct partition *pp, const char *fsys, int fi, int fo, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid) { int32_t i, mincpc, mincpg, inospercg; int32_t cylno, rpos, blk, j, warning = 0; int32_t used, mincpgcnt, bpcg; off_t usedb; int32_t mapcramped, inodecramped; int32_t postblsize, rotblsize, totalsbsize; time_t utime; long long sizepb; char *writebuf2; /* dynamic buffer */ int nprintcols, printcolwidth; #ifndef STANDALONE time(&utime); #endif #ifdef MFS if (mfs) { calc_memfree(); if (fssize * sectorsize > memleft) fssize = memleft / sectorsize; if ((membase = mkfs_malloc(fssize * sectorsize)) == 0) exit(12); } #endif fsi = fi; fso = fo; if (Oflag) { sblock.fs_inodefmt = FS_42INODEFMT; sblock.fs_maxsymlinklen = 0; } else { sblock.fs_inodefmt = FS_44INODEFMT; sblock.fs_maxsymlinklen = MAXSYMLINKLEN; } /* * Validate the given file system size. * Verify that its last block can actually be accessed. */ if (fssize <= 0) printf("preposterous size %d\n", fssize), exit(13); wtfs(fssize - 1, sectorsize, (char *)&sblock); if (isappleufs) { struct appleufslabel appleufs; ffs_appleufs_set(&appleufs,appleufs_volname,utime); wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,APPLEUFS_LABEL_SIZE,&appleufs); } /* * collect and verify the sector and track info */ sblock.fs_nsect = nsectors; sblock.fs_ntrak = ntracks; if (sblock.fs_ntrak <= 0) printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); if (sblock.fs_nsect <= 0) printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); /* * collect and verify the filesystem density info */ sblock.fs_avgfilesize = avgfilesize; sblock.fs_avgfpdir = avgfpdir; if (sblock.fs_avgfilesize <= 0) printf("illegal expected average file size %d\n", sblock.fs_avgfilesize), exit(14); if (sblock.fs_avgfpdir <= 0) printf("illegal expected number of files per directory %d\n", sblock.fs_avgfpdir), exit(15); /* * collect and verify the block and fragment sizes */ sblock.fs_bsize = bsize; sblock.fs_fsize = fsize; if (!POWEROF2(sblock.fs_bsize)) { printf("block size must be a power of 2, not %d\n", sblock.fs_bsize); exit(16); } if (!POWEROF2(sblock.fs_fsize)) { printf("fragment size must be a power of 2, not %d\n", sblock.fs_fsize); exit(17); } if (sblock.fs_fsize < sectorsize) { printf("fragment size %d is too small, minimum is %d\n", sblock.fs_fsize, sectorsize); exit(18); } if (sblock.fs_bsize < MINBSIZE) { printf("block size %d is too small, minimum is %d\n", sblock.fs_bsize, MINBSIZE); exit(19); } if (sblock.fs_bsize > MAXBSIZE) { printf("block size %d is too large, maximum is %d\n", sblock.fs_bsize, MAXBSIZE); exit(19); } if (sblock.fs_bsize < sblock.fs_fsize) { printf("block size (%d) cannot be smaller than fragment size (%d)\n", sblock.fs_bsize, sblock.fs_fsize); exit(20); } sblock.fs_bmask = ~(sblock.fs_bsize - 1); sblock.fs_fmask = ~(sblock.fs_fsize - 1); sblock.fs_qbmask = ~sblock.fs_bmask; sblock.fs_qfmask = ~sblock.fs_fmask; for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) sblock.fs_bshift++; for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) sblock.fs_fshift++; sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) sblock.fs_fragshift++; if (sblock.fs_frag > MAXFRAG) { printf("fragment size %d is too small, " "minimum with block size %d is %d\n", sblock.fs_fsize, sblock.fs_bsize, sblock.fs_bsize / MAXFRAG); exit(21); } sblock.fs_nrpos = nrpos; sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE; sblock.fs_nspf = sblock.fs_fsize / sectorsize; for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) sblock.fs_fsbtodb++; sblock.fs_sblkno = roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; sblock.fs_cgoffset = roundup( howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) sblock.fs_cgmask <<= 1; if (!POWEROF2(sblock.fs_ntrak)) sblock.fs_cgmask <<= 1; sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { sizepb *= NINDIR(&sblock); sblock.fs_maxfilesize += sizepb; } /* * Validate specified/determined secpercyl * and calculate minimum cylinders per group. */ sblock.fs_spc = secpercyl; for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; sblock.fs_cpc > 1 && (i & 1) == 0; sblock.fs_cpc >>= 1, i >>= 1) /* void */; mincpc = sblock.fs_cpc; bpcg = sblock.fs_spc * sectorsize; inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock)); if (inospercg > MAXIPG(&sblock)) inospercg = MAXIPG(&sblock); used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, sblock.fs_spc); mincpg = roundup(mincpgcnt, mincpc); /* * Ensure that cylinder group with mincpg has enough space * for block maps. */ sblock.fs_cpg = mincpg; sblock.fs_ipg = inospercg; if (maxcontig > 1) sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); mapcramped = 0; while (CGSIZE(&sblock) > sblock.fs_bsize) { mapcramped = 1; if (sblock.fs_bsize < MAXBSIZE) { sblock.fs_bsize <<= 1; if ((i & 1) == 0) { i >>= 1; } else { sblock.fs_cpc <<= 1; mincpc <<= 1; mincpg = roundup(mincpgcnt, mincpc); sblock.fs_cpg = mincpg; } sblock.fs_frag <<= 1; sblock.fs_fragshift += 1; if (sblock.fs_frag <= MAXFRAG) continue; } if (sblock.fs_fsize == sblock.fs_bsize) { printf("There is no block size that"); printf(" can support this disk\n"); exit(22); } sblock.fs_frag >>= 1; sblock.fs_fragshift -= 1; sblock.fs_fsize <<= 1; sblock.fs_nspf <<= 1; } /* * Ensure that cylinder group with mincpg has enough space for inodes. */ inodecramped = 0; inospercg = calcipg(mincpg, bpcg, &usedb); sblock.fs_ipg = inospercg; while (inospercg > MAXIPG(&sblock)) { inodecramped = 1; if (mincpc == 1 || sblock.fs_frag == 1 || sblock.fs_bsize == MINBSIZE) break; printf("With a block size of %d %s %d\n", sblock.fs_bsize, "minimum bytes per inode is", (int)((mincpg * (off_t)bpcg - usedb) / MAXIPG(&sblock) + 1)); sblock.fs_bsize >>= 1; sblock.fs_frag >>= 1; sblock.fs_fragshift -= 1; mincpc >>= 1; sblock.fs_cpg = roundup(mincpgcnt, mincpc); if (CGSIZE(&sblock) > sblock.fs_bsize) { sblock.fs_bsize <<= 1; break; } mincpg = sblock.fs_cpg; inospercg = calcipg(mincpg, bpcg, &usedb); sblock.fs_ipg = inospercg; } if (inodecramped) { if (inospercg > MAXIPG(&sblock)) { printf("Minimum bytes per inode is %d\n", (int)((mincpg * (off_t)bpcg - usedb) / MAXIPG(&sblock) + 1)); } else if (!mapcramped) { printf("With %d bytes per inode, ", density); printf("minimum cylinders per group is %d\n", mincpg); } } if (mapcramped) { printf("With %d sectors per cylinder, ", sblock.fs_spc); printf("minimum cylinders per group is %d\n", mincpg); } if (inodecramped || mapcramped) { if (sblock.fs_bsize != bsize) printf("%s to be changed from %d to %d\n", "This requires the block size", bsize, sblock.fs_bsize); if (sblock.fs_fsize != fsize) printf("\t%s to be changed from %d to %d\n", "and the fragment size", fsize, sblock.fs_fsize); exit(23); } /* * Calculate the number of cylinders per group */ sblock.fs_cpg = cpg; if (sblock.fs_cpg % mincpc != 0) { printf("%s groups must have a multiple of %d cylinders\n", cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); if (!cpgflg) cpg = sblock.fs_cpg; } /* * Must ensure there is enough space for inodes. */ sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); while (sblock.fs_ipg > MAXIPG(&sblock)) { inodecramped = 1; sblock.fs_cpg -= mincpc; sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); } /* * Must ensure there is enough space to hold block map. */ while (CGSIZE(&sblock) > sblock.fs_bsize) { mapcramped = 1; sblock.fs_cpg -= mincpc; sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); } sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); exit(24); } if (sblock.fs_cpg < mincpg) { printf("cylinder groups must have at least %d cylinders\n", mincpg); exit(25); } else if (sblock.fs_cpg != cpg && cpgflg) { if (!mapcramped && !inodecramped) exit(26); if (mapcramped && inodecramped) printf("Block size and bytes per inode restrict"); else if (mapcramped) printf("Block size restricts"); else printf("Bytes per inode restrict"); printf(" cylinders per group to %d.\n", sblock.fs_cpg); exit(27); } sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); /* * Now have size for file system and nsect and ntrak. * Determine number of cylinders and blocks in the file system. */ sblock.fs_size = fssize = dbtofsb(&sblock, fssize); sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { sblock.fs_ncyl++; warning = 1; } if (sblock.fs_ncyl < 1) { printf("file systems must have at least one cylinder\n"); exit(28); } /* * Determine feasability/values of rotational layout tables. * * The size of the rotational layout tables is limited by the * size of the superblock, SBSIZE. The amount of space available * for tables is calculated as (SBSIZE - sizeof (struct fs)). * The size of these tables is inversely proportional to the block * size of the file system. The size increases if sectors per track * are not powers of two, because more cylinders must be described * by the tables before the rotational pattern repeats (fs_cpc). */ sblock.fs_interleave = interleave; sblock.fs_trackskew = trackskew; sblock.fs_npsect = nphyssectors; sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); if (sblock.fs_ntrak == 1) { sblock.fs_cpc = 0; goto next; } postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); totalsbsize = sizeof(struct fs) + rotblsize; if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { /* use old static table space */ sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - (char *)(&sblock.fs_firstfield); sblock.fs_rotbloff = &sblock.fs_space[0] - (u_char *)(&sblock.fs_firstfield); } else { /* use dynamic table space */ sblock.fs_postbloff = &sblock.fs_space[0] - (u_char *)(&sblock.fs_firstfield); sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; totalsbsize += postblsize; } if (totalsbsize > SBSIZE || sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { printf("%s %s %d %s %d.%s", "Warning: insufficient space in super block for\n", "rotational layout tables with nsect", sblock.fs_nsect, "and ntrak", sblock.fs_ntrak, "\nFile system performance may be impaired.\n"); sblock.fs_cpc = 0; goto next; } sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); /* * calculate the available blocks for each rotational position */ for (cylno = 0; cylno < sblock.fs_cpc; cylno++) for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) fs_postbl(&sblock, cylno)[rpos] = -1; for (i = (rotblsize - 1) << sblock.fs_fragshift; i >= 0; i -= sblock.fs_frag) { cylno = cbtocylno(&sblock, i); rpos = cbtorpos(&sblock, i); blk = fragstoblks(&sblock, i); if (fs_postbl(&sblock, cylno)[rpos] == -1) fs_rotbl(&sblock)[blk] = 0; else fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk; fs_postbl(&sblock, cylno)[rpos] = blk; } next: /* * Compute/validate number of cylinder groups. */ sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; if (sblock.fs_ncyl % sblock.fs_cpg) sblock.fs_ncg++; sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", cgdmin(&sblock, i) - (cgbase(&sblock, i) >> sblock.fs_fragshift), sblock.fs_fpg >> sblock.fs_fragshift); printf("number of cylinders per cylinder group (%d) %s.\n", sblock.fs_cpg, "must be increased"); exit(29); } j = sblock.fs_ncg - 1; if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { if (j == 0) { printf("File system must have at least %d sectors\n", NSPF(&sblock) * (cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift))); exit(30); } printf("Warning: inode blocks/cyl group (%d) >= " "data blocks (%d) in last\n", (cgdmin(&sblock, j) - cgbase(&sblock, j)) >> sblock.fs_fragshift, i >> sblock.fs_fragshift); printf(" cylinder group. This implies %d sector(s) " "cannot be allocated.\n", i * NSPF(&sblock)); sblock.fs_ncg--; sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock); warning = 0; } if (warning && !mfs) { printf("Warning: %d sector(s) in last cylinder unallocated\n", sblock.fs_spc - (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) * sblock.fs_spc)); } /* * fill in remaining fields of the super block */ sblock.fs_csaddr = cgdmin(&sblock, 0); sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); /* * The superblock fields 'fs_csmask' and 'fs_csshift' are no * longer used. However, we still initialise them so that the * filesystem remains compatible with old kernels. */ i = sblock.fs_bsize / sizeof(struct csum); sblock.fs_csmask = ~(i - 1); for (sblock.fs_csshift = 0; i > 1; i >>= 1) sblock.fs_csshift++; fscs = (struct csum *)calloc(1, sblock.fs_cssize); if (fscs == NULL) exit(39); sblock.fs_magic = FS_MAGIC; sblock.fs_rotdelay = rotdelay; sblock.fs_minfree = minfree; sblock.fs_maxcontig = maxcontig; sblock.fs_maxbpg = maxbpg; sblock.fs_rps = rpm / 60; sblock.fs_optim = opt; sblock.fs_cgrotor = 0; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_cstotal.cs_nbfree = 0; sblock.fs_cstotal.cs_nifree = 0; sblock.fs_cstotal.cs_nffree = 0; sblock.fs_fmod = 0; sblock.fs_clean = FS_ISCLEAN; sblock.fs_ronly = 0; /* * Dump out summary information about file system. */ if (!mfs) { printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, "cylinders", sblock.fs_ntrak, sblock.fs_nsect); #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, sblock.fs_ncg, sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_ipg); #undef B2MBFACTOR } /* * Now determine how wide each column will be, and calculate how * many columns will fit in a 76 char line. 76 is the width of the * subwindows in sysinst. */ printcolwidth = count_digits( fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); nprintcols = 76 / (printcolwidth + 2); /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ if (!mfs) printf("super-block backups (for fsck -b #) at:"); for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { initcg(cylno, utime); if (mfs) continue; if (cylno % nprintcols == 0) printf("\n"); printf(" %*d,", printcolwidth, fsbtodb(&sblock, cgsblock(&sblock, cylno))); fflush(stdout); } if (!mfs) printf("\n"); if (Nflag && !mfs) exit(0); /* * Now construct the initial file system, * then write out the super-block. */ if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs) errx(1, "Error making filesystem"); sblock.fs_time = utime; memcpy(writebuf, &sblock, sbsize); if (needswap) ffs_sb_swap(&sblock, (struct fs*)writebuf); wtfs((int)SBOFF / sectorsize, sbsize, writebuf); /* * Write out the duplicate super blocks */ for (cylno = 0; cylno < sblock.fs_ncg; cylno++) wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), sbsize, writebuf); /* * if we need to swap, create a buffer for the cylinder summaries * to get swapped to. */ if (needswap) { if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL) exit(12); ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize); } else writebuf2 = (char *)fscs; for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), sblock.fs_cssize - i < sblock.fs_bsize ? sblock.fs_cssize - i : sblock.fs_bsize, ((char *)writebuf2) + i); if (writebuf2 != (char *)fscs) free(writebuf2); /* * Update information about this partion in pack * label, to that it may be updated on disk. */ if (isappleufs) pp->p_fstype = FS_APPLEUFS; else pp->p_fstype = FS_BSDFFS; pp->p_fsize = sblock.fs_fsize; pp->p_frag = sblock.fs_frag; pp->p_cpg = sblock.fs_cpg; } /* * Initialize a cylinder group. */ void initcg(int cylno, time_t utime) { daddr_t cbase, d, dlower, dupper, dmax, blkno; int32_t i; struct csum *cs; int cn; /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); cs = fscs + cylno; memset(&acg, 0, sblock.fs_cgsize); acg.cg_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; if (cylno == sblock.fs_ncg - 1) acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; else acg.cg_ncyl = sblock.fs_cpg; acg.cg_niblk = sblock.fs_ipg; acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_boff + sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t); acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); if (sblock.fs_contigsumsize <= 0) { acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, NBBY); } else { acg.cg_clustersumoff = acg.cg_freeoff + howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t); if (isappleufs) { /* Apple PR2216969 gives rationale for this change. * I believe they were mistaken, but we need to * duplicate it for compatibility. -- dbj@netbsd.org */ acg.cg_clustersumoff += sizeof(int32_t); } acg.cg_clustersumoff = roundup(acg.cg_clustersumoff, sizeof(int32_t)); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY); } if (acg.cg_nextfreeoff > sblock.fs_cgsize) { printf("Panic: cylinder group too big\n"); exit(37); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (i = 0; i < ROOTINO; i++) { setbit(cg_inosused(&acg, 0), i); acg.cg_cs.cs_nifree--; } for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, (char *)zino); if (cylno > 0) { /* * In cylno 0, beginning space is reserved * for boot and super blocks. */ for (d = 0, blkno = 0; d < dlower; ) { setblock(&sblock, cg_blksfree(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg, 0), blkno); acg.cg_cs.cs_nbfree++; cn = cbtocylno(&sblock, d); cg_blktot(&acg, 0)[cn]++; cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++; d += sblock.fs_frag; blkno++; } sblock.fs_dsize += dlower; } sblock.fs_dsize += acg.cg_ndblk - dupper; if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg, 0), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper, blkno = dupper >> sblock.fs_fragshift; d + sblock.fs_frag <= dmax - cbase; ) { setblock(&sblock, cg_blksfree(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg, 0), blkno); acg.cg_cs.cs_nbfree++; cn = cbtocylno(&sblock, d); cg_blktot(&acg, 0)[cn]++; cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++; d += sblock.fs_frag; blkno++; } if (d < dmax - cbase) { acg.cg_frsum[dmax - cbase - d]++; for (; d < dmax - cbase; d++) { setbit(cg_blksfree(&acg, 0), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg, 0); u_char *mapp = cg_clustersfree(&acg, 0); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) { run++; } else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; *cs = acg.cg_cs; memcpy(writebuf, &acg, sblock.fs_bsize); if (needswap) swap_cg(&acg, (struct cg*)writebuf); wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_bsize, writebuf); } /* * initialize the file system */ struct dinode node; #ifdef LOSTDIR #define PREDEFDIR 3 #else #define PREDEFDIR 2 #endif struct direct root_dir[] = { { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, #ifdef LOSTDIR { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, #endif }; struct odirect { u_int32_t d_ino; u_int16_t d_reclen; u_int16_t d_namlen; u_char d_name[MAXNAMLEN + 1]; } oroot_dir[] = { { ROOTINO, sizeof(struct direct), 1, "." }, { ROOTINO, sizeof(struct direct), 2, ".." }, #ifdef LOSTDIR { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, #endif }; #ifdef LOSTDIR struct direct lost_found_dir[] = { { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, { 0, DIRBLKSIZ, 0, 0, 0 }, }; struct odirect olost_found_dir[] = { { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, { ROOTINO, sizeof(struct direct), 2, ".." }, { 0, DIRBLKSIZ, 0, 0 }, }; #endif char buf[MAXBSIZE]; static void copy_dir(struct direct *, struct direct *); int fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid) { #ifdef LOSTDIR int i; int dirblksiz = DIRBLKSIZ; if (isappleufs) dirblksiz = APPLEUFS_DIRBLKSIZ; #endif /* * initialize the node */ memset(&node, 0, sizeof(node)); node.di_atime = utime; node.di_mtime = utime; node.di_ctime = utime; #ifdef LOSTDIR /* * create the lost+found directory */ if (Oflag) { (void)makedir((struct direct *)olost_found_dir, 2); for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz) copy_dir((struct direct*)&olost_found_dir[2], (struct direct*)&buf[i]); } else { (void)makedir(lost_found_dir, 2); for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz) copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]); } node.di_mode = IFDIR | UMASK; node.di_nlink = 2; node.di_size = sblock.fs_bsize; node.di_db[0] = alloc(node.di_size, node.di_mode); node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); node.di_uid = geteuid(); node.di_gid = getegid(); wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); iput(&node, LOSTFOUNDINO); #endif /* * create the root directory */ if (mfs) { node.di_mode = IFDIR | mfsmode; node.di_uid = mfsuid; node.di_gid = mfsgid; } else { node.di_mode = IFDIR | UMASK; node.di_uid = geteuid(); node.di_gid = getegid(); } node.di_nlink = PREDEFDIR; if (Oflag) node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); else node.di_size = makedir(root_dir, PREDEFDIR); node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); if (node.di_db[0] == 0) return (0); node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); iput(&node, ROOTINO); return (1); } /* * construct a set of directory entries in "buf". * return size of directory. */ int makedir(struct direct *protodir, int entries) { char *cp; int i, spcleft; int dirblksiz = DIRBLKSIZ; if (isappleufs) dirblksiz = APPLEUFS_DIRBLKSIZ; spcleft = dirblksiz; for (cp = buf, i = 0; i < entries - 1; i++) { protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0); copy_dir(&protodir[i], (struct direct*)cp); cp += protodir[i].d_reclen; spcleft -= protodir[i].d_reclen; } protodir[i].d_reclen = spcleft; copy_dir(&protodir[i], (struct direct*)cp); return (dirblksiz); } /* * allocate a block or frag */ daddr_t alloc(int size, int mode) { int i, frag; daddr_t d, blkno; rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); /* fs -> host byte order */ if (needswap) swap_cg(&acg, &acg); if (acg.cg_magic != CG_MAGIC) { printf("cg 0: bad magic number\n"); return (0); } if (acg.cg_cs.cs_nbfree == 0) { printf("first cylinder group ran out of space\n"); return (0); } for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) if (isblock(&sblock, cg_blksfree(&acg, 0), d >> sblock.fs_fragshift)) goto goth; printf("internal error: can't find block in cyl 0\n"); return (0); goth: blkno = fragstoblks(&sblock, d); clrblock(&sblock, cg_blksfree(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) clrbit(cg_clustersfree(&acg, 0), blkno); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; fscs[0].cs_nbfree--; if (mode & IFDIR) { acg.cg_cs.cs_ndir++; sblock.fs_cstotal.cs_ndir++; fscs[0].cs_ndir++; } cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--; cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--; if (size != sblock.fs_bsize) { frag = howmany(size, sblock.fs_fsize); fscs[0].cs_nffree += sblock.fs_frag - frag; sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; acg.cg_cs.cs_nffree += sblock.fs_frag - frag; acg.cg_frsum[sblock.fs_frag - frag]++; for (i = frag; i < sblock.fs_frag; i++) setbit(cg_blksfree(&acg, 0), d + i); } /* host -> fs byte order */ if (needswap) swap_cg(&acg, &acg); wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); return (d); } /* * Calculate number of inodes per group. */ int32_t calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp) { int i; int32_t ipg, new_ipg, ncg, ncyl; off_t usedb; /* * Prepare to scale by fssize / (number of sectors in cylinder groups). * Note that fssize is still in sectors, not file system blocks. */ ncyl = howmany(fssize, secpercyl); ncg = howmany(ncyl, cylpg); /* * Iterate a few times to allow for ipg depending on itself. */ ipg = 0; for (i = 0; i < 10; i++) { usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) * NSPF(&sblock) * (off_t)sectorsize; new_ipg = (cylpg * (long long)bpcg - usedb) / (long long)density * fssize / (ncg * secpercyl * cylpg); if (new_ipg <= 0) new_ipg = 1; /* ensure ipg > 0 */ new_ipg = roundup(new_ipg, INOPB(&sblock)); if (new_ipg == ipg) break; ipg = new_ipg; } *usedbp = usedb; return (ipg); } /* * Allocate an inode on the disk */ static void iput(struct dinode *ip, ino_t ino) { struct dinode ibuf[MAXINOPB]; daddr_t d; int c, i; c = ino_to_cg(&sblock, ino); rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg); /* fs -> host byte order */ if (needswap) swap_cg(&acg, &acg); if (acg.cg_magic != CG_MAGIC) { printf("cg 0: bad magic number\n"); exit(31); } acg.cg_cs.cs_nifree--; setbit(cg_inosused(&acg, 0), ino); /* host -> fs byte order */ if (needswap) swap_cg(&acg, &acg); wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); sblock.fs_cstotal.cs_nifree--; fscs[0].cs_nifree--; if (ino >= sblock.fs_ipg * sblock.fs_ncg) { printf("fsinit: inode value out of range (%d).\n", ino); exit(32); } d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); rdfs(d, sblock.fs_bsize, ibuf); if (needswap) { ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]); /* ffs_dinode_swap() doesn't swap blocks addrs */ for (i=0; idi_db[i] = bswap32(ip->di_db[i]); } else ibuf[ino_to_fsbo(&sblock, ino)] = *ip; wtfs(d, sblock.fs_bsize, ibuf); } /* * read a block from the file system */ void rdfs(daddr_t bno, int size, void *bf) { int n; off_t offset; #ifdef MFS if (mfs) { memmove(bf, membase + bno * sectorsize, size); return; } #endif offset = bno; offset *= sectorsize; if (lseek(fsi, offset, SEEK_SET) < 0) { printf("rdfs: seek error for sector %d: %s\n", bno, strerror(errno)); exit(33); } n = read(fsi, bf, size); if (n != size) { printf("rdfs: read error for sector %d: %s\n", bno, strerror(errno)); exit(34); } } /* * write a block to the file system */ void wtfs(daddr_t bno, int size, void *bf) { int n; off_t offset; #ifdef MFS if (mfs) { memmove(membase + bno * sectorsize, bf, size); return; } #endif if (Nflag) return; offset = bno; offset *= sectorsize; if (lseek(fso, offset, SEEK_SET) < 0) { printf("wtfs: seek error for sector %d: %s\n", bno, strerror(errno)); exit(35); } n = write(fso, bf, size); if (n != size) { printf("wtfs: write error for sector %d: %s\n", bno, strerror(errno)); exit(36); } } /* * check if a block is available */ int isblock(struct fs *fs, unsigned char *cp, int h) { unsigned char mask; switch (fs->fs_fragshift) { case 3: return (cp[h] == 0xff); case 2: mask = 0x0f << ((h & 0x1) << 2); return ((cp[h >> 1] & mask) == mask); case 1: mask = 0x03 << ((h & 0x3) << 1); return ((cp[h >> 2] & mask) == mask); case 0: mask = 0x01 << (h & 0x7); return ((cp[h >> 3] & mask) == mask); default: #ifdef STANDALONE printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift); #else fprintf(stderr, "isblock bad fs_fragshift %d\n", fs->fs_fragshift); #endif return (0); } } /* * take a block out of the map */ void clrblock(struct fs *fs, unsigned char *cp, int h) { switch ((fs)->fs_fragshift) { case 3: cp[h] = 0; return; case 2: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); return; case 1: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); return; case 0: cp[h >> 3] &= ~(0x01 << (h & 0x7)); return; default: #ifdef STANDALONE printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift); #else fprintf(stderr, "clrblock bad fs_fragshift %d\n", fs->fs_fragshift); #endif return; } } /* * put a block into the map */ void setblock(struct fs *fs, unsigned char *cp, int h) { switch (fs->fs_fragshift) { case 3: cp[h] = 0xff; return; case 2: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); return; case 1: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); return; case 0: cp[h >> 3] |= (0x01 << (h & 0x7)); return; default: #ifdef STANDALONE printf("setblock bad fs_frag %d\n", fs->fs_fragshift); #else fprintf(stderr, "setblock bad fs_fragshift %d\n", fs->fs_fragshift); #endif return; } } /* swap byte order of cylinder group */ static void swap_cg(struct cg *o, struct cg *n) { int i, btotsize, fbsize; u_int32_t *n32, *o32; u_int16_t *n16, *o16; n->cg_firstfield = bswap32(o->cg_firstfield); n->cg_magic = bswap32(o->cg_magic); n->cg_time = bswap32(o->cg_time); n->cg_cgx = bswap32(o->cg_cgx); n->cg_ncyl = bswap16(o->cg_ncyl); n->cg_niblk = bswap16(o->cg_niblk); n->cg_ndblk = bswap32(o->cg_ndblk); n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); n->cg_rotor = bswap32(o->cg_rotor); n->cg_frotor = bswap32(o->cg_frotor); n->cg_irotor = bswap32(o->cg_irotor); n->cg_btotoff = bswap32(o->cg_btotoff); n->cg_boff = bswap32(o->cg_boff); n->cg_iusedoff = bswap32(o->cg_iusedoff); n->cg_freeoff = bswap32(o->cg_freeoff); n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); n->cg_clustersumoff = bswap32(o->cg_clustersumoff); n->cg_clusteroff = bswap32(o->cg_clusteroff); n->cg_nclusterblks = bswap32(o->cg_nclusterblks); for (i=0; i < MAXFRAG; i++) n->cg_frsum[i] = bswap32(o->cg_frsum[i]); /* alays new format */ if (n->cg_magic == CG_MAGIC) { btotsize = n->cg_boff - n->cg_btotoff; fbsize = n->cg_iusedoff - n->cg_boff; n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff); o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff); n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff); o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff); } else { btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff); fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff); n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff)); o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff)); n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff)); o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff)); } for (i=0; i < btotsize / sizeof(u_int32_t); i++) n32[i] = bswap32(o32[i]); for (i=0; i < fbsize/sizeof(u_int16_t); i++) n16[i] = bswap16(o16[i]); if (n->cg_magic == CG_MAGIC) { n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff); o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff); } else { n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff)); o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff)); } for (i = 1; i < sblock.fs_contigsumsize + 1; i++) n32[i] = bswap32(o32[i]); } /* copy a direntry to a buffer, in fs byte order */ static void copy_dir(struct direct *dir, struct direct *dbuf) { memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0)); if (needswap) { dbuf->d_ino = bswap32(dir->d_ino); dbuf->d_reclen = bswap16(dir->d_reclen); if (Oflag) ((struct odirect*)dbuf)->d_namlen = bswap16(((struct odirect*)dir)->d_namlen); } } /* Determine how many digits are needed to print a given integer */ static int count_digits(int num) { int ndig; for(ndig = 1; num > 9; num /=10, ndig++); return (ndig); } #ifdef MFS /* * XXX! * Attempt to guess how much more space is available for process data. The * heuristic we use is * * max_data_limit - (sbrk(0) - etext) - 128kB * * etext approximates that start address of the data segment, and the 128kB * allows some slop for both segment gap between text and data, and for other * (libc) malloc usage. */ static void calc_memfree(void) { extern char etext; struct rlimit rlp; u_long base; base = (u_long)sbrk(0) - (u_long)&etext; if (getrlimit(RLIMIT_DATA, &rlp) < 0) perror("getrlimit"); rlp.rlim_cur = rlp.rlim_max; if (setrlimit(RLIMIT_DATA, &rlp) < 0) perror("setrlimit"); memleft = rlp.rlim_max - base - (128 * 1024); } /* * Internal version of malloc that trims the requested size if not enough * memory is available. */ static void * mkfs_malloc(size_t size) { u_long pgsz; if (size == 0) return (NULL); if (memleft == 0) calc_memfree(); pgsz = getpagesize() - 1; size = (size + pgsz) &~ pgsz; if (size > memleft) size = memleft; memleft -= size; return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0)); } #endif /* MFS */