/* $NetBSD: subr_autoconf.c,v 1.83 2003/02/09 09:14:58 jdolecek Exp $ */ /* * Copyright (c) 1996, 2000 Christopher G. Demetriou * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the * NetBSD Project. See http://www.netbsd.org/ for * information about NetBSD. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratories. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) * * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 */ #include __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.83 2003/02/09 09:14:58 jdolecek Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include "opt_userconf.h" #ifdef USERCONF #include #endif /* * Autoconfiguration subroutines. */ /* * ioconf.c exports exactly two names: cfdata and cfroots. All system * devices and drivers are found via these tables. */ extern struct cfdata cfdata[]; extern short cfroots[]; /* * List of all cfdriver structures. We use this to detect duplicates * when other cfdrivers are loaded. */ struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); extern struct cfdriver * const cfdriver_list_initial[]; /* * Initial list of cfattach's. */ extern const struct cfattachinit cfattachinit[]; /* * List of cfdata tables. We always have one such list -- the one * built statically when the kernel was configured. */ struct cftablelist allcftables; static struct cftable initcftable; #define ROOT ((struct device *)NULL) struct matchinfo { cfmatch_t fn; struct device *parent; void *aux; struct cfdata *match; int pri; }; static char *number(char *, int); static void mapply(struct matchinfo *, struct cfdata *); struct deferred_config { TAILQ_ENTRY(deferred_config) dc_queue; struct device *dc_dev; void (*dc_func)(struct device *); }; TAILQ_HEAD(deferred_config_head, deferred_config); struct deferred_config_head deferred_config_queue; struct deferred_config_head interrupt_config_queue; static void config_process_deferred(struct deferred_config_head *, struct device *); /* Hooks to finalize configuration once all real devices have been found. */ struct finalize_hook { TAILQ_ENTRY(finalize_hook) f_list; int (*f_func)(struct device *); struct device *f_dev; }; static TAILQ_HEAD(, finalize_hook) config_finalize_list; static int config_finalize_done; /* list of all devices */ struct devicelist alldevs; /* list of all events */ struct evcntlist allevents = TAILQ_HEAD_INITIALIZER(allevents); __volatile int config_pending; /* semaphore for mountroot */ #define STREQ(s1, s2) \ (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) static int config_initialized; /* config_init() has been called. */ static int config_do_twiddle; /* * Initialize the autoconfiguration data structures. Normally this * is done by configure(), but some platforms need to do this very * early (to e.g. initialize the console). */ void config_init(void) { const struct cfattachinit *cfai; int i, j; if (config_initialized) return; /* allcfdrivers is statically initialized. */ for (i = 0; cfdriver_list_initial[i] != NULL; i++) { if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) panic("configure: duplicate `%s' drivers", cfdriver_list_initial[i]->cd_name); } for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { for (j = 0; cfai->cfai_list[j] != NULL; j++) { if (config_cfattach_attach(cfai->cfai_name, cfai->cfai_list[j]) != 0) panic("configure: duplicate `%s' attachment " "of `%s' driver", cfai->cfai_list[j]->ca_name, cfai->cfai_name); } } TAILQ_INIT(&allcftables); initcftable.ct_cfdata = cfdata; TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); TAILQ_INIT(&deferred_config_queue); TAILQ_INIT(&interrupt_config_queue); TAILQ_INIT(&config_finalize_list); TAILQ_INIT(&alldevs); config_initialized = 1; } /* * Configure the system's hardware. */ void configure(void) { int errcnt; /* Initialize data structures. */ config_init(); #ifdef USERCONF if (boothowto & RB_USERCONF) user_config(); #endif if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { config_do_twiddle = 1; printf_nolog("Detecting hardware..."); } /* * Do the machine-dependent portion of autoconfiguration. This * sets the configuration machinery here in motion by "finding" * the root bus. When this function returns, we expect interrupts * to be enabled. */ cpu_configure(); /* * Now that we've found all the hardware, start the real time * and statistics clocks. */ initclocks(); cold = 0; /* clocks are running, we're warm now! */ /* * Now callback to finish configuration for devices which want * to do this once interrupts are enabled. */ config_process_deferred(&interrupt_config_queue, NULL); errcnt = aprint_get_error_count(); if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && (boothowto & AB_VERBOSE) == 0) { if (config_do_twiddle) { config_do_twiddle = 0; printf_nolog("done.\n"); } if (errcnt != 0) { printf("WARNING: %d error%s while detecting hardware; " "check system log.\n", errcnt, errcnt == 1 ? "" : "s"); } } } /* * Add a cfdriver to the system. */ int config_cfdriver_attach(struct cfdriver *cd) { struct cfdriver *lcd; /* Make sure this driver isn't already in the system. */ LIST_FOREACH(lcd, &allcfdrivers, cd_list) { if (STREQ(lcd->cd_name, cd->cd_name)) return (EEXIST); } LIST_INIT(&cd->cd_attach); LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); return (0); } /* * Remove a cfdriver from the system. */ int config_cfdriver_detach(struct cfdriver *cd) { int i; /* Make sure there are no active instances. */ for (i = 0; i < cd->cd_ndevs; i++) { if (cd->cd_devs[i] != NULL) return (EBUSY); } /* ...and no attachments loaded. */ if (LIST_EMPTY(&cd->cd_attach) == 0) return (EBUSY); LIST_REMOVE(cd, cd_list); KASSERT(cd->cd_devs == NULL); return (0); } /* * Look up a cfdriver by name. */ struct cfdriver * config_cfdriver_lookup(const char *name) { struct cfdriver *cd; LIST_FOREACH(cd, &allcfdrivers, cd_list) { if (STREQ(cd->cd_name, name)) return (cd); } return (NULL); } /* * Add a cfattach to the specified driver. */ int config_cfattach_attach(const char *driver, struct cfattach *ca) { struct cfattach *lca; struct cfdriver *cd; cd = config_cfdriver_lookup(driver); if (cd == NULL) return (ESRCH); /* Make sure this attachment isn't already on this driver. */ LIST_FOREACH(lca, &cd->cd_attach, ca_list) { if (STREQ(lca->ca_name, ca->ca_name)) return (EEXIST); } LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); return (0); } /* * Remove a cfattach from the specified driver. */ int config_cfattach_detach(const char *driver, struct cfattach *ca) { struct cfdriver *cd; struct device *dev; int i; cd = config_cfdriver_lookup(driver); if (cd == NULL) return (ESRCH); /* Make sure there are no active instances. */ for (i = 0; i < cd->cd_ndevs; i++) { if ((dev = cd->cd_devs[i]) == NULL) continue; if (dev->dv_cfattach == ca) return (EBUSY); } LIST_REMOVE(ca, ca_list); return (0); } /* * Look up a cfattach by name. */ static struct cfattach * config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) { struct cfattach *ca; LIST_FOREACH(ca, &cd->cd_attach, ca_list) { if (STREQ(ca->ca_name, atname)) return (ca); } return (NULL); } /* * Look up a cfattach by driver/attachment name. */ struct cfattach * config_cfattach_lookup(const char *name, const char *atname) { struct cfdriver *cd; cd = config_cfdriver_lookup(name); if (cd == NULL) return (NULL); return (config_cfattach_lookup_cd(cd, atname)); } /* * Apply the matching function and choose the best. This is used * a few times and we want to keep the code small. */ static void mapply(struct matchinfo *m, struct cfdata *cf) { int pri; if (m->fn != NULL) pri = (*m->fn)(m->parent, cf, m->aux); else { struct cfattach *ca; ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); if (ca == NULL) { /* No attachment for this entry, oh well. */ return; } if (ca->ca_match == NULL) { panic("mapply: no match function for '%s' attachment " "of '%s'", cf->cf_atname, cf->cf_name); } pri = (*ca->ca_match)(m->parent, cf, m->aux); } if (pri > m->pri) { m->match = cf; m->pri = pri; } } /* * Determine if `parent' is a potential parent for a device spec based * on `cfp'. */ static int cfparent_match(struct device *parent, const struct cfparent *cfp) { struct cfdriver *pcd; const char * const *cpp; const char *cp; /* We don't match root nodes here. */ if (cfp == NULL) return (0); pcd = parent->dv_cfdriver; KASSERT(pcd != NULL); /* * First, ensure this parent has the correct interface * attribute. */ if (pcd->cd_attrs == NULL) return (0); /* no interface attributes -> no children */ for (cpp = pcd->cd_attrs; (cp = *cpp) != NULL; cpp++) { if (STREQ(cp, cfp->cfp_iattr)) { /* Match. */ break; } } if (cp == NULL) return (0); /* doesn't carry the req'd attribute */ /* * If no specific parent device instance was specified (i.e. * we're attaching to the attribute only), we're done! */ if (cfp->cfp_parent == NULL) return (1); /* * Check the parent device's name. */ if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) return (0); /* not the same parent */ /* * Make sure the unit number matches. */ if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ cfp->cfp_unit == parent->dv_unit) return (1); /* Unit numbers don't match. */ return (0); } /* * Invoke the "match" routine for a cfdata entry on behalf of * an external caller, usually a "submatch" routine. */ int config_match(struct device *parent, struct cfdata *cf, void *aux) { struct cfattach *ca; ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); if (ca == NULL) { /* No attachment for this entry, oh well. */ return (0); } return ((*ca->ca_match)(parent, cf, aux)); } /* * Iterate over all potential children of some device, calling the given * function (default being the child's match function) for each one. * Nonzero returns are matches; the highest value returned is considered * the best match. Return the `found child' if we got a match, or NULL * otherwise. The `aux' pointer is simply passed on through. * * Note that this function is designed so that it can be used to apply * an arbitrary function to all potential children (its return value * can be ignored). */ struct cfdata * config_search(cfmatch_t fn, struct device *parent, void *aux) { struct cftable *ct; struct cfdata *cf; struct matchinfo m; KASSERT(config_initialized); m.fn = fn; m.parent = parent; m.aux = aux; m.match = NULL; m.pri = 0; TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { /* * Skip cf if no longer eligible, otherwise scan * through parents for one matching `parent', and * try match function. */ if (cf->cf_fstate == FSTATE_FOUND) continue; if (cf->cf_fstate == FSTATE_DNOTFOUND || cf->cf_fstate == FSTATE_DSTAR) continue; if (cfparent_match(parent, cf->cf_pspec)) mapply(&m, cf); } } return (m.match); } /* * Find the given root device. * This is much like config_search, but there is no parent. * Don't bother with multiple cfdata tables; the root node * must always be in the initial table. */ struct cfdata * config_rootsearch(cfmatch_t fn, const char *rootname, void *aux) { struct cfdata *cf; short *p; struct matchinfo m; m.fn = fn; m.parent = ROOT; m.aux = aux; m.match = NULL; m.pri = 0; /* * Look at root entries for matching name. We do not bother * with found-state here since only one root should ever be * searched (and it must be done first). */ for (p = cfroots; *p >= 0; p++) { cf = &cfdata[*p]; if (strcmp(cf->cf_name, rootname) == 0) mapply(&m, cf); } return (m.match); } static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; /* * The given `aux' argument describes a device that has been found * on the given parent, but not necessarily configured. Locate the * configuration data for that device (using the submatch function * provided, or using candidates' cd_match configuration driver * functions) and attach it, and return true. If the device was * not configured, call the given `print' function and return 0. */ struct device * config_found_sm(struct device *parent, void *aux, cfprint_t print, cfmatch_t submatch) { struct cfdata *cf; if ((cf = config_search(submatch, parent, aux)) != NULL) return (config_attach(parent, cf, aux, print)); if (print) { if (config_do_twiddle) twiddle(); aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]); } return (NULL); } /* * As above, but for root devices. */ struct device * config_rootfound(const char *rootname, void *aux) { struct cfdata *cf; if ((cf = config_rootsearch((cfmatch_t)NULL, rootname, aux)) != NULL) return (config_attach(ROOT, cf, aux, (cfprint_t)NULL)); aprint_error("root device %s not configured\n", rootname); return (NULL); } /* just like sprintf(buf, "%d") except that it works from the end */ static char * number(char *ep, int n) { *--ep = 0; while (n >= 10) { *--ep = (n % 10) + '0'; n /= 10; } *--ep = n + '0'; return (ep); } /* * Expand the size of the cd_devs array if necessary. */ void config_makeroom(int n, struct cfdriver *cd) { int old, new; void **nsp; if (n < cd->cd_ndevs) return; /* * Need to expand the array. */ old = cd->cd_ndevs; if (old == 0) new = MINALLOCSIZE / sizeof(void *); else new = old * 2; while (new <= n) new *= 2; cd->cd_ndevs = new; nsp = malloc(new * sizeof(void *), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (nsp == NULL) panic("config_attach: %sing dev array", old != 0 ? "expand" : "creat"); memset(nsp + old, 0, (new - old) * sizeof(void *)); if (old != 0) { memcpy(nsp, cd->cd_devs, old * sizeof(void *)); free(cd->cd_devs, M_DEVBUF); } cd->cd_devs = nsp; } /* * Attach a found device. Allocates memory for device variables. */ struct device * config_attach(struct device *parent, struct cfdata *cf, void *aux, cfprint_t print) { struct device *dev; struct cftable *ct; struct cfdriver *cd; struct cfattach *ca; size_t lname, lunit; const char *xunit; int myunit; char num[10]; cd = config_cfdriver_lookup(cf->cf_name); KASSERT(cd != NULL); ca = config_cfattach_lookup_cd(cd, cf->cf_atname); KASSERT(ca != NULL); if (ca->ca_devsize < sizeof(struct device)) panic("config_attach"); #ifndef __BROKEN_CONFIG_UNIT_USAGE if (cf->cf_fstate == FSTATE_STAR) { for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) if (cd->cd_devs[myunit] == NULL) break; /* * myunit is now the unit of the first NULL device pointer, * or max(cd->cd_ndevs,cf->cf_unit). */ } else { myunit = cf->cf_unit; KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); cf->cf_fstate = FSTATE_FOUND; } #else myunit = cf->cf_unit; if (cf->cf_fstate == FSTATE_STAR) cf->cf_unit++; else { KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); cf->cf_fstate = FSTATE_FOUND; } #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ /* compute length of name and decimal expansion of unit number */ lname = strlen(cd->cd_name); xunit = number(&num[sizeof(num)], myunit); lunit = &num[sizeof(num)] - xunit; if (lname + lunit > sizeof(dev->dv_xname)) panic("config_attach: device name too long"); /* get memory for all device vars */ dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (!dev) panic("config_attach: memory allocation for device softc failed"); memset(dev, 0, ca->ca_devsize); TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ dev->dv_class = cd->cd_class; dev->dv_cfdata = cf; dev->dv_cfdriver = cd; dev->dv_cfattach = ca; dev->dv_unit = myunit; memcpy(dev->dv_xname, cd->cd_name, lname); memcpy(dev->dv_xname + lname, xunit, lunit); dev->dv_parent = parent; dev->dv_flags = DVF_ACTIVE; /* always initially active */ if (config_do_twiddle) twiddle(); else aprint_naive("Found "); /* * We want the next two printfs for normal, verbose, and quiet, * but not silent (in which case, we're twiddling, instead). */ if (parent == ROOT) { if (config_do_twiddle) aprint_normal("%s (root)", dev->dv_xname); else printf("%s (root)", dev->dv_xname); } else { if (config_do_twiddle) aprint_normal("%s at %s", dev->dv_xname, parent->dv_xname); else printf("%s at %s", dev->dv_xname, parent->dv_xname); if (print) (void) (*print)(aux, NULL); } /* put this device in the devices array */ config_makeroom(dev->dv_unit, cd); if (cd->cd_devs[dev->dv_unit]) panic("config_attach: duplicate %s", dev->dv_xname); cd->cd_devs[dev->dv_unit] = dev; /* * Before attaching, clobber any unfound devices that are * otherwise identical. */ TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { if (STREQ(cf->cf_name, cd->cd_name) && cf->cf_unit == dev->dv_unit) { if (cf->cf_fstate == FSTATE_NOTFOUND) cf->cf_fstate = FSTATE_FOUND; #ifdef __BROKEN_CONFIG_UNIT_USAGE /* * Bump the unit number on all starred cfdata * entries for this device. */ if (cf->cf_fstate == FSTATE_STAR) cf->cf_unit++; #endif /* __BROKEN_CONFIG_UNIT_USAGE */ } } } #ifdef __HAVE_DEVICE_REGISTER device_register(dev, aux); #endif (*ca->ca_attach)(parent, dev, aux); config_process_deferred(&deferred_config_queue, dev); return (dev); } /* * As above, but for pseudo-devices. Pseudo-devices attached in this * way are silently inserted into the device tree, and their children * attached. * * Note that because pseudo-devices are attached silently, any information * the attach routine wishes to print should be prefixed with the device * name by the attach routine. */ struct device * config_attach_pseudo(const char *name, int unit) { struct device *dev; struct cfdriver *cd; struct cfattach *ca; size_t lname, lunit; const char *xunit; int myunit; char num[10]; cd = config_cfdriver_lookup(name); if (cd == NULL) return (NULL); ca = config_cfattach_lookup_cd(cd, name); if (ca == NULL) return (NULL); if (ca->ca_devsize < sizeof(struct device)) panic("config_attach_pseudo"); if (unit == DVUNIT_ANY) { for (myunit = 0; myunit < cd->cd_ndevs; myunit++) if (cd->cd_devs[myunit] == NULL) break; /* * myunit is now the unit of the first NULL device pointer. */ } else { myunit = unit; if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) return (NULL); } /* compute length of name and decimal expansion of unit number */ lname = strlen(cd->cd_name); xunit = number(&num[sizeof(num)], myunit); lunit = &num[sizeof(num)] - xunit; if (lname + lunit > sizeof(dev->dv_xname)) panic("config_attach_pseudo: device name too long"); /* get memory for all device vars */ dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (!dev) panic("config_attach_pseudo: memory allocation for device " "softc failed"); memset(dev, 0, ca->ca_devsize); TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ dev->dv_class = cd->cd_class; dev->dv_cfdata = NULL; dev->dv_cfdriver = cd; dev->dv_cfattach = ca; dev->dv_unit = myunit; memcpy(dev->dv_xname, cd->cd_name, lname); memcpy(dev->dv_xname + lname, xunit, lunit); dev->dv_parent = ROOT; dev->dv_flags = DVF_ACTIVE; /* always initially active */ /* put this device in the devices array */ config_makeroom(dev->dv_unit, cd); if (cd->cd_devs[dev->dv_unit]) panic("config_attach_pseudo: duplicate %s", dev->dv_xname); cd->cd_devs[dev->dv_unit] = dev; #if 0 /* XXXJRT not yet */ #ifdef __HAVE_DEVICE_REGISTER device_register(dev, NULL); /* like a root node */ #endif #endif (*ca->ca_attach)(ROOT, dev, NULL); config_process_deferred(&deferred_config_queue, dev); return (dev); } /* * Detach a device. Optionally forced (e.g. because of hardware * removal) and quiet. Returns zero if successful, non-zero * (an error code) otherwise. * * Note that this code wants to be run from a process context, so * that the detach can sleep to allow processes which have a device * open to run and unwind their stacks. */ int config_detach(struct device *dev, int flags) { struct cftable *ct; struct cfdata *cf; const struct cfattach *ca; struct cfdriver *cd; #ifdef DIAGNOSTIC struct device *d; #endif int rv = 0, i; #ifdef DIAGNOSTIC if (dev->dv_cfdata != NULL && dev->dv_cfdata->cf_fstate != FSTATE_FOUND && dev->dv_cfdata->cf_fstate != FSTATE_STAR) panic("config_detach: bad device fstate"); #endif cd = dev->dv_cfdriver; KASSERT(cd != NULL); ca = dev->dv_cfattach; KASSERT(ca != NULL); /* * Ensure the device is deactivated. If the device doesn't * have an activation entry point, we allow DVF_ACTIVE to * remain set. Otherwise, if DVF_ACTIVE is still set, the * device is busy, and the detach fails. */ if (ca->ca_activate != NULL) rv = config_deactivate(dev); /* * Try to detach the device. If that's not possible, then * we either panic() (for the forced but failed case), or * return an error. */ if (rv == 0) { if (ca->ca_detach != NULL) rv = (*ca->ca_detach)(dev, flags); else rv = EOPNOTSUPP; } if (rv != 0) { if ((flags & DETACH_FORCE) == 0) return (rv); else panic("config_detach: forced detach of %s failed (%d)", dev->dv_xname, rv); } /* * The device has now been successfully detached. */ #ifdef DIAGNOSTIC /* * Sanity: If you're successfully detached, you should have no * children. (Note that because children must be attached * after parents, we only need to search the latter part of * the list.) */ for (d = TAILQ_NEXT(dev, dv_list); d != NULL; d = TAILQ_NEXT(d, dv_list)) { if (d->dv_parent == dev) { printf("config_detach: detached device %s" " has children %s\n", dev->dv_xname, d->dv_xname); panic("config_detach"); } } #endif /* * Mark cfdata to show that the unit can be reused, if possible. */ TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { if (STREQ(cf->cf_name, cd->cd_name)) { if (cf->cf_fstate == FSTATE_FOUND && cf->cf_unit == dev->dv_unit) cf->cf_fstate = FSTATE_NOTFOUND; #ifdef __BROKEN_CONFIG_UNIT_USAGE /* * Note that we can only re-use a starred * unit number if the unit being detached * had the last assigned unit number. */ if (cf->cf_fstate == FSTATE_STAR && cf->cf_unit == dev->dv_unit + 1) cf->cf_unit--; #endif /* __BROKEN_CONFIG_UNIT_USAGE */ } } } /* * Unlink from device list. */ TAILQ_REMOVE(&alldevs, dev, dv_list); /* * Remove from cfdriver's array, tell the world (unless it was * a pseudo-device), and free softc. */ cd->cd_devs[dev->dv_unit] = NULL; if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) aprint_normal("%s detached\n", dev->dv_xname); free(dev, M_DEVBUF); /* * If the device now has no units in use, deallocate its softc array. */ for (i = 0; i < cd->cd_ndevs; i++) if (cd->cd_devs[i] != NULL) break; if (i == cd->cd_ndevs) { /* nothing found; deallocate */ free(cd->cd_devs, M_DEVBUF); cd->cd_devs = NULL; cd->cd_ndevs = 0; } /* * Return success. */ return (0); } int config_activate(struct device *dev) { const struct cfattach *ca = dev->dv_cfattach; int rv = 0, oflags = dev->dv_flags; if (ca->ca_activate == NULL) return (EOPNOTSUPP); if ((dev->dv_flags & DVF_ACTIVE) == 0) { dev->dv_flags |= DVF_ACTIVE; rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); if (rv) dev->dv_flags = oflags; } return (rv); } int config_deactivate(struct device *dev) { const struct cfattach *ca = dev->dv_cfattach; int rv = 0, oflags = dev->dv_flags; if (ca->ca_activate == NULL) return (EOPNOTSUPP); if (dev->dv_flags & DVF_ACTIVE) { dev->dv_flags &= ~DVF_ACTIVE; rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); if (rv) dev->dv_flags = oflags; } return (rv); } /* * Defer the configuration of the specified device until all * of its parent's devices have been attached. */ void config_defer(struct device *dev, void (*func)(struct device *)) { struct deferred_config *dc; if (dev->dv_parent == NULL) panic("config_defer: can't defer config of a root device"); #ifdef DIAGNOSTIC for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; dc = TAILQ_NEXT(dc, dc_queue)) { if (dc->dc_dev == dev) panic("config_defer: deferred twice"); } #endif dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (dc == NULL) panic("config_defer: unable to allocate callback"); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); config_pending_incr(); } /* * Defer some autoconfiguration for a device until after interrupts * are enabled. */ void config_interrupts(struct device *dev, void (*func)(struct device *)) { struct deferred_config *dc; /* * If interrupts are enabled, callback now. */ if (cold == 0) { (*func)(dev); return; } #ifdef DIAGNOSTIC for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; dc = TAILQ_NEXT(dc, dc_queue)) { if (dc->dc_dev == dev) panic("config_interrupts: deferred twice"); } #endif dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); if (dc == NULL) panic("config_interrupts: unable to allocate callback"); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); config_pending_incr(); } /* * Process a deferred configuration queue. */ static void config_process_deferred(struct deferred_config_head *queue, struct device *parent) { struct deferred_config *dc, *ndc; for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { ndc = TAILQ_NEXT(dc, dc_queue); if (parent == NULL || dc->dc_dev->dv_parent == parent) { TAILQ_REMOVE(queue, dc, dc_queue); (*dc->dc_func)(dc->dc_dev); free(dc, M_DEVBUF); config_pending_decr(); } } } /* * Manipulate the config_pending semaphore. */ void config_pending_incr(void) { config_pending++; } void config_pending_decr(void) { #ifdef DIAGNOSTIC if (config_pending == 0) panic("config_pending_decr: config_pending == 0"); #endif config_pending--; if (config_pending == 0) wakeup((void *)&config_pending); } /* * Register a "finalization" routine. Finalization routines are * called iteratively once all real devices have been found during * autoconfiguration, for as long as any one finalizer has done * any work. */ int config_finalize_register(struct device *dev, int (*fn)(struct device *)) { struct finalize_hook *f; /* * If finalization has already been done, invoke the * callback function now. */ if (config_finalize_done) { while ((*fn)(dev) != 0) /* loop */ ; } /* Ensure this isn't already on the list. */ TAILQ_FOREACH(f, &config_finalize_list, f_list) { if (f->f_func == fn && f->f_dev == dev) return (EEXIST); } f = malloc(sizeof(*f), M_TEMP, M_WAITOK); f->f_func = fn; f->f_dev = dev; TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); return (0); } void config_finalize(void) { struct finalize_hook *f; int rv; /* Run the hooks until none of them does any work. */ do { rv = 0; TAILQ_FOREACH(f, &config_finalize_list, f_list) rv |= (*f->f_func)(f->f_dev); } while (rv != 0); config_finalize_done = 1; /* Now free all the hooks. */ while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { TAILQ_REMOVE(&config_finalize_list, f, f_list); free(f, M_TEMP); } } /* * We need a dummy object to stuff into the evcnt link set to * ensure that there always is at least one object in the set. */ static struct evcnt dummy_static_evcnt; __link_set_add_bss(evcnts, dummy_static_evcnt); /* * Initialize event counters. This does the attach procedure for * each of the static event counters in the "evcnts" link set. */ void evcnt_init(void) { __link_set_decl(evcnts, struct evcnt); struct evcnt * const *evp; __link_set_foreach(evp, evcnts) { if (*evp == &dummy_static_evcnt) continue; evcnt_attach_static(*evp); } } /* * Attach a statically-initialized event. The type and string pointers * are already set up. */ void evcnt_attach_static(struct evcnt *ev) { int len; len = strlen(ev->ev_group); #ifdef DIAGNOSTIC if (len >= EVCNT_STRING_MAX) /* ..._MAX includes NUL */ panic("evcnt_attach_static: group length (%s)", ev->ev_group); #endif ev->ev_grouplen = len; len = strlen(ev->ev_name); #ifdef DIAGNOSTIC if (len >= EVCNT_STRING_MAX) /* ..._MAX includes NUL */ panic("evcnt_attach_static: name length (%s)", ev->ev_name); #endif ev->ev_namelen = len; TAILQ_INSERT_TAIL(&allevents, ev, ev_list); } /* * Attach a dynamically-initialized event. Zero it, set up the type * and string pointers and then act like it was statically initialized. */ void evcnt_attach_dynamic(struct evcnt *ev, int type, const struct evcnt *parent, const char *group, const char *name) { memset(ev, 0, sizeof *ev); ev->ev_type = type; ev->ev_parent = parent; ev->ev_group = group; ev->ev_name = name; evcnt_attach_static(ev); } /* * Detach an event. */ void evcnt_detach(struct evcnt *ev) { TAILQ_REMOVE(&allevents, ev, ev_list); } #ifdef DDB void event_print(int full, void (*pr)(const char *, ...)) { struct evcnt *evp; TAILQ_FOREACH(evp, &allevents, ev_list) { if (evp->ev_count == 0 && !full) continue; (*pr)("evcnt type %d: %s %s = %lld\n", evp->ev_type, evp->ev_group, evp->ev_name, evp->ev_count); } } #endif /* DDB */