/* * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_TREE_H #define __SGI_STL_INTERNAL_TREE_H /* Red-black tree class, designed for use in implementing STL associative containers (set, multiset, map, and multimap). The insertion and deletion algorithms are based on those in Cormen, Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990), except that (1) the header cell is maintained with links not only to the root but also to the leftmost node of the tree, to enable constant time begin(), and to the rightmost node of the tree, to enable linear time performance when used with the generic set algorithms (set_union, etc.); (2) when a node being deleted has two children its successor node is relinked into its place, rather than copied, so that the only iterators invalidated are those referring to the deleted node. */ #include #include #include #include __STL_BEGIN_NAMESPACE typedef bool __rb_tree_color_type; const __rb_tree_color_type __rb_tree_red = false; const __rb_tree_color_type __rb_tree_black = true; struct __rb_tree_node_base { typedef __rb_tree_color_type color_type; typedef __rb_tree_node_base* base_ptr; color_type color; base_ptr parent; base_ptr left; base_ptr right; static base_ptr minimum(base_ptr x) { while (x->left != 0) x = x->left; return x; } static base_ptr maximum(base_ptr x) { while (x->right != 0) x = x->right; return x; } }; template struct __rb_tree_node : public __rb_tree_node_base { typedef __rb_tree_node* link_type; Value value_field; }; struct __rb_tree_base_iterator { typedef __rb_tree_node_base::base_ptr base_ptr; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; base_ptr node; void increment() { if (node->right != 0) { node = node->right; while (node->left != 0) node = node->left; } else { base_ptr y = node->parent; while (node == y->right) { node = y; y = y->parent; } if (node->right != y) node = y; } } void decrement() { if (node->color == __rb_tree_red && node->parent->parent == node) node = node->right; else if (node->left != 0) { base_ptr y = node->left; while (y->right != 0) y = y->right; node = y; } else { base_ptr y = node->parent; while (node == y->left) { node = y; y = y->parent; } node = y; } } }; template struct __rb_tree_iterator : public __rb_tree_base_iterator { typedef Value value_type; typedef Ref reference; typedef Ptr pointer; typedef __rb_tree_iterator iterator; typedef __rb_tree_iterator const_iterator; typedef __rb_tree_iterator self; typedef __rb_tree_node* link_type; __rb_tree_iterator() {} __rb_tree_iterator(link_type x) { node = x; } __rb_tree_iterator(const iterator& it) { node = it.node; } reference operator*() const { return link_type(node)->value_field; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ self& operator++() { increment(); return *this; } self operator++(int) { self tmp = *this; increment(); return tmp; } self& operator--() { decrement(); return *this; } self operator--(int) { self tmp = *this; decrement(); return tmp; } }; inline bool operator==(const __rb_tree_base_iterator& x, const __rb_tree_base_iterator& y) { return x.node == y.node; } inline bool operator!=(const __rb_tree_base_iterator& x, const __rb_tree_base_iterator& y) { return x.node != y.node; } #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION inline bidirectional_iterator_tag iterator_category(const __rb_tree_base_iterator&) { return bidirectional_iterator_tag(); } inline __rb_tree_base_iterator::difference_type* distance_type(const __rb_tree_base_iterator&) { return (__rb_tree_base_iterator::difference_type*) 0; } template inline Value* value_type(const __rb_tree_iterator&) { return (Value*) 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ inline void __rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root) { __rb_tree_node_base* y = x->right; x->right = y->left; if (y->left !=0) y->left->parent = x; y->parent = x->parent; if (x == root) root = y; else if (x == x->parent->left) x->parent->left = y; else x->parent->right = y; y->left = x; x->parent = y; } inline void __rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root) { __rb_tree_node_base* y = x->left; x->left = y->right; if (y->right != 0) y->right->parent = x; y->parent = x->parent; if (x == root) root = y; else if (x == x->parent->right) x->parent->right = y; else x->parent->left = y; y->right = x; x->parent = y; } inline void __rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root) { x->color = __rb_tree_red; while (x != root && x->parent->color == __rb_tree_red) { if (x->parent == x->parent->parent->left) { __rb_tree_node_base* y = x->parent->parent->right; if (y && y->color == __rb_tree_red) { x->parent->color = __rb_tree_black; y->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; x = x->parent->parent; } else { if (x == x->parent->right) { x = x->parent; __rb_tree_rotate_left(x, root); } x->parent->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; __rb_tree_rotate_right(x->parent->parent, root); } } else { __rb_tree_node_base* y = x->parent->parent->left; if (y && y->color == __rb_tree_red) { x->parent->color = __rb_tree_black; y->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; x = x->parent->parent; } else { if (x == x->parent->left) { x = x->parent; __rb_tree_rotate_right(x, root); } x->parent->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; __rb_tree_rotate_left(x->parent->parent, root); } } } root->color = __rb_tree_black; } inline __rb_tree_node_base* __rb_tree_rebalance_for_erase(__rb_tree_node_base* z, __rb_tree_node_base*& root, __rb_tree_node_base*& leftmost, __rb_tree_node_base*& rightmost) { __rb_tree_node_base* y = z; __rb_tree_node_base* x = 0; __rb_tree_node_base* x_parent = 0; if (y->left == 0) // z has at most one non-null child. y == z. x = y->right; // x might be null. else if (y->right == 0) // z has exactly one non-null child. y == z. x = y->left; // x is not null. else { // z has two non-null children. Set y to y = y->right; // z's successor. x might be null. while (y->left != 0) y = y->left; x = y->right; } if (y != z) { // relink y in place of z. y is z's successor z->left->parent = y; y->left = z->left; if (y != z->right) { x_parent = y->parent; if (x) x->parent = y->parent; y->parent->left = x; // y must be a left child y->right = z->right; z->right->parent = y; } else x_parent = y; if (root == z) root = y; else if (z->parent->left == z) z->parent->left = y; else z->parent->right = y; y->parent = z->parent; __STD::swap(y->color, z->color); y = z; // y now points to node to be actually deleted } else { // y == z x_parent = y->parent; if (x) x->parent = y->parent; if (root == z) root = x; else if (z->parent->left == z) z->parent->left = x; else z->parent->right = x; if (leftmost == z) if (z->right == 0) // z->left must be null also leftmost = z->parent; // makes leftmost == header if z == root else leftmost = __rb_tree_node_base::minimum(x); if (rightmost == z) if (z->left == 0) // z->right must be null also rightmost = z->parent; // makes rightmost == header if z == root else // x == z->left rightmost = __rb_tree_node_base::maximum(x); } if (y->color != __rb_tree_red) { while (x != root && (x == 0 || x->color == __rb_tree_black)) if (x == x_parent->left) { __rb_tree_node_base* w = x_parent->right; if (w->color == __rb_tree_red) { w->color = __rb_tree_black; x_parent->color = __rb_tree_red; __rb_tree_rotate_left(x_parent, root); w = x_parent->right; } if ((w->left == 0 || w->left->color == __rb_tree_black) && (w->right == 0 || w->right->color == __rb_tree_black)) { w->color = __rb_tree_red; x = x_parent; x_parent = x_parent->parent; } else { if (w->right == 0 || w->right->color == __rb_tree_black) { if (w->left) w->left->color = __rb_tree_black; w->color = __rb_tree_red; __rb_tree_rotate_right(w, root); w = x_parent->right; } w->color = x_parent->color; x_parent->color = __rb_tree_black; if (w->right) w->right->color = __rb_tree_black; __rb_tree_rotate_left(x_parent, root); break; } } else { // same as above, with right <-> left. __rb_tree_node_base* w = x_parent->left; if (w->color == __rb_tree_red) { w->color = __rb_tree_black; x_parent->color = __rb_tree_red; __rb_tree_rotate_right(x_parent, root); w = x_parent->left; } if ((w->right == 0 || w->right->color == __rb_tree_black) && (w->left == 0 || w->left->color == __rb_tree_black)) { w->color = __rb_tree_red; x = x_parent; x_parent = x_parent->parent; } else { if (w->left == 0 || w->left->color == __rb_tree_black) { if (w->right) w->right->color = __rb_tree_black; w->color = __rb_tree_red; __rb_tree_rotate_left(w, root); w = x_parent->left; } w->color = x_parent->color; x_parent->color = __rb_tree_black; if (w->left) w->left->color = __rb_tree_black; __rb_tree_rotate_right(x_parent, root); break; } } if (x) x->color = __rb_tree_black; } return y; } template class rb_tree { protected: typedef void* void_pointer; typedef __rb_tree_node_base* base_ptr; typedef __rb_tree_node rb_tree_node; typedef simple_alloc rb_tree_node_allocator; typedef __rb_tree_color_type color_type; public: typedef Key key_type; typedef Value value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef rb_tree_node* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; protected: link_type get_node() { return rb_tree_node_allocator::allocate(); } void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); } link_type create_node(const value_type& x) { link_type tmp = get_node(); __STL_TRY { construct(&tmp->value_field, x); } __STL_UNWIND(put_node(tmp)); return tmp; } link_type clone_node(link_type x) { link_type tmp = create_node(x->value_field); tmp->color = x->color; tmp->left = 0; tmp->right = 0; return tmp; } void destroy_node(link_type p) { destroy(&p->value_field); put_node(p); } protected: size_type node_count; // keeps track of size of tree link_type header; Compare key_compare; link_type& root() const { return (link_type&) header->parent; } link_type& leftmost() const { return (link_type&) header->left; } link_type& rightmost() const { return (link_type&) header->right; } static link_type& left(link_type x) { return (link_type&)(x->left); } static link_type& right(link_type x) { return (link_type&)(x->right); } static link_type& parent(link_type x) { return (link_type&)(x->parent); } static reference value(link_type x) { return x->value_field; } static const Key& key(link_type x) { return KeyOfValue()(value(x)); } static color_type& color(link_type x) { return (color_type&)(x->color); } static link_type& left(base_ptr x) { return (link_type&)(x->left); } static link_type& right(base_ptr x) { return (link_type&)(x->right); } static link_type& parent(base_ptr x) { return (link_type&)(x->parent); } static reference value(base_ptr x) { return ((link_type)x)->value_field; } static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));} static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); } static link_type minimum(link_type x) { return (link_type) __rb_tree_node_base::minimum(x); } static link_type maximum(link_type x) { return (link_type) __rb_tree_node_base::maximum(x); } public: typedef __rb_tree_iterator iterator; typedef __rb_tree_iterator const_iterator; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator const_reverse_iterator; typedef reverse_iterator reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_bidirectional_iterator reverse_iterator; typedef reverse_bidirectional_iterator const_reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ private: iterator __insert(base_ptr x, base_ptr y, const value_type& v); link_type __copy(link_type x, link_type p); void __erase(link_type x); void init() { header = get_node(); color(header) = __rb_tree_red; // used to distinguish header from // root, in iterator.operator++ root() = 0; leftmost() = header; rightmost() = header; } public: // allocation/deallocation rb_tree(const Compare& comp = Compare()) : node_count(0), key_compare(comp) { init(); } rb_tree(const rb_tree& x) : node_count(0), key_compare(x.key_compare) { header = get_node(); color(header) = __rb_tree_red; if (x.root() == 0) { root() = 0; leftmost() = header; rightmost() = header; } else { __STL_TRY { root() = __copy(x.root(), header); } __STL_UNWIND(put_node(header)); leftmost() = minimum(root()); rightmost() = maximum(root()); } node_count = x.node_count; } ~rb_tree() { clear(); put_node(header); } rb_tree& operator=(const rb_tree& x); public: // accessors: Compare key_comp() const { return key_compare; } iterator begin() { return leftmost(); } const_iterator begin() const { return leftmost(); } iterator end() { return header; } const_iterator end() const { return header; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return node_count == 0; } size_type size() const { return node_count; } size_type max_size() const { return size_type(-1); } void swap(rb_tree& t) { __STD::swap(header, t.header); __STD::swap(node_count, t.node_count); __STD::swap(key_compare, t.key_compare); } public: // insert/erase pair insert_unique(const value_type& x); iterator insert_equal(const value_type& x); iterator insert_unique(iterator position, const value_type& x); iterator insert_equal(iterator position, const value_type& x); #ifdef __STL_MEMBER_TEMPLATES template void insert_unique(InputIterator first, InputIterator last); template void insert_equal(InputIterator first, InputIterator last); #else /* __STL_MEMBER_TEMPLATES */ void insert_unique(const_iterator first, const_iterator last); void insert_unique(const value_type* first, const value_type* last); void insert_equal(const_iterator first, const_iterator last); void insert_equal(const value_type* first, const value_type* last); #endif /* __STL_MEMBER_TEMPLATES */ void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void erase(const key_type* first, const key_type* last); void clear() { if (node_count != 0) { __erase(root()); leftmost() = header; root() = 0; rightmost() = header; node_count = 0; } } public: // set operations: iterator find(const key_type& x); const_iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; pair equal_range(const key_type& x); pair equal_range(const key_type& x) const; public: // Debugging. bool __rb_verify() const; }; template inline bool operator==(const rb_tree& x, const rb_tree& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template inline bool operator<(const rb_tree& x, const rb_tree& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template inline void swap(rb_tree& x, rb_tree& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template rb_tree& rb_tree:: operator=(const rb_tree& x) { if (this != &x) { // Note that Key may be a constant type. clear(); node_count = 0; key_compare = x.key_compare; if (x.root() == 0) { root() = 0; leftmost() = header; rightmost() = header; } else { root() = __copy(x.root(), header); leftmost() = minimum(root()); rightmost() = maximum(root()); node_count = x.node_count; } } return *this; } template typename rb_tree::iterator rb_tree:: __insert(base_ptr x_, base_ptr y_, const Value& v) { link_type x = (link_type) x_; link_type y = (link_type) y_; link_type z; if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) { z = create_node(v); left(y) = z; // also makes leftmost() = z when y == header if (y == header) { root() = z; rightmost() = z; } else if (y == leftmost()) leftmost() = z; // maintain leftmost() pointing to min node } else { z = create_node(v); right(y) = z; if (y == rightmost()) rightmost() = z; // maintain rightmost() pointing to max node } parent(z) = y; left(z) = 0; right(z) = 0; __rb_tree_rebalance(z, header->parent); ++node_count; return iterator(z); } template typename rb_tree::iterator rb_tree::insert_equal(const Value& v) { link_type y = header; link_type x = root(); while (x != 0) { y = x; x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x); } return __insert(x, y, v); } template pair::iterator, bool> rb_tree::insert_unique(const Value& v) { link_type y = header; link_type x = root(); bool comp = true; while (x != 0) { y = x; comp = key_compare(KeyOfValue()(v), key(x)); x = comp ? left(x) : right(x); } iterator j = iterator(y); if (comp) if (j == begin()) return pair(__insert(x, y, v), true); else --j; if (key_compare(key(j.node), KeyOfValue()(v))) return pair(__insert(x, y, v), true); return pair(j, false); } template typename rb_tree::iterator rb_tree::insert_unique(iterator position, const Val& v) { if (position.node == header->left) // begin() if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node))) return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_unique(v).first; else if (position.node == header) // end() if (key_compare(key(rightmost()), KeyOfValue()(v))) return __insert(0, rightmost(), v); else return insert_unique(v).first; else { iterator before = position; --before; if (key_compare(key(before.node), KeyOfValue()(v)) && key_compare(KeyOfValue()(v), key(position.node))) if (right(before.node) == 0) return __insert(0, before.node, v); else return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_unique(v).first; } } template typename rb_tree::iterator rb_tree::insert_equal(iterator position, const Val& v) { if (position.node == header->left) // begin() if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node))) return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_equal(v); else if (position.node == header) // end() if (!key_compare(KeyOfValue()(v), key(rightmost()))) return __insert(0, rightmost(), v); else return insert_equal(v); else { iterator before = position; --before; if (!key_compare(KeyOfValue()(v), key(before.node)) && !key_compare(key(position.node), KeyOfValue()(v))) if (right(before.node) == 0) return __insert(0, before.node, v); else return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_equal(v); } } #ifdef __STL_MEMBER_TEMPLATES template template void rb_tree::insert_equal(II first, II last) { for ( ; first != last; ++first) insert_equal(*first); } template template void rb_tree::insert_unique(II first, II last) { for ( ; first != last; ++first) insert_unique(*first); } #else /* __STL_MEMBER_TEMPLATES */ template void rb_tree::insert_equal(const V* first, const V* last) { for ( ; first != last; ++first) insert_equal(*first); } template void rb_tree::insert_equal(const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert_equal(*first); } template void rb_tree::insert_unique(const V* first, const V* last) { for ( ; first != last; ++first) insert_unique(*first); } template void rb_tree::insert_unique(const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert_unique(*first); } #endif /* __STL_MEMBER_TEMPLATES */ template inline void rb_tree::erase(iterator position) { link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node, header->parent, header->left, header->right); destroy_node(y); --node_count; } template typename rb_tree::size_type rb_tree::erase(const Key& x) { pair p = equal_range(x); size_type n = 0; distance(p.first, p.second, n); erase(p.first, p.second); return n; } template typename rb_tree::link_type rb_tree::__copy(link_type x, link_type p) { // structural copy. x and p must be non-null. link_type top = clone_node(x); top->parent = p; __STL_TRY { if (x->right) top->right = __copy(right(x), top); p = top; x = left(x); while (x != 0) { link_type y = clone_node(x); p->left = y; y->parent = p; if (x->right) y->right = __copy(right(x), y); p = y; x = left(x); } } __STL_UNWIND(__erase(top)); return top; } template void rb_tree::__erase(link_type x) { // erase without rebalancing while (x != 0) { __erase(right(x)); link_type y = left(x); destroy_node(x); x = y; } } template void rb_tree::erase(iterator first, iterator last) { if (first == begin() && last == end()) clear(); else while (first != last) erase(first++); } template void rb_tree::erase(const Key* first, const Key* last) { while (first != last) erase(*first++); } template typename rb_tree::iterator rb_tree::find(const Key& k) { link_type y = header; // Last node which is not less than k. link_type x = root(); // Current node. while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); iterator j = iterator(y); return (j == end() || key_compare(k, key(j.node))) ? end() : j; } template typename rb_tree::const_iterator rb_tree::find(const Key& k) const { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) { if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); } const_iterator j = const_iterator(y); return (j == end() || key_compare(k, key(j.node))) ? end() : j; } template typename rb_tree::size_type rb_tree::count(const Key& k) const { pair p = equal_range(k); size_type n = 0; distance(p.first, p.second, n); return n; } template typename rb_tree::iterator rb_tree::lower_bound(const Key& k) { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); return iterator(y); } template typename rb_tree::const_iterator rb_tree::lower_bound(const Key& k) const { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); return const_iterator(y); } template typename rb_tree::iterator rb_tree::upper_bound(const Key& k) { link_type y = header; /* Last node which is greater than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (key_compare(k, key(x))) y = x, x = left(x); else x = right(x); return iterator(y); } template typename rb_tree::const_iterator rb_tree::upper_bound(const Key& k) const { link_type y = header; /* Last node which is greater than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (key_compare(k, key(x))) y = x, x = left(x); else x = right(x); return const_iterator(y); } template inline pair::iterator, typename rb_tree::iterator> rb_tree::equal_range(const Key& k) { return pair(lower_bound(k), upper_bound(k)); } template inline pair::const_iterator, typename rb_tree::const_iterator> rb_tree::equal_range(const Key& k) const { return pair(lower_bound(k), upper_bound(k)); } inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root) { if (node == 0) return 0; else { int bc = node->color == __rb_tree_black ? 1 : 0; if (node == root) return bc; else return bc + __black_count(node->parent, root); } } template bool rb_tree::__rb_verify() const { if (node_count == 0 || begin() == end()) return node_count == 0 && begin() == end() && header->left == header && header->right == header; int len = __black_count(leftmost(), root()); for (const_iterator it = begin(); it != end(); ++it) { link_type x = (link_type) it.node; link_type L = left(x); link_type R = right(x); if (x->color == __rb_tree_red) if ((L && L->color == __rb_tree_red) || (R && R->color == __rb_tree_red)) return false; if (L && key_compare(key(x), key(L))) return false; if (R && key_compare(key(R), key(x))) return false; if (!L && !R && __black_count(x, root()) != len) return false; } if (leftmost() != __rb_tree_node_base::minimum(root())) return false; if (rightmost() != __rb_tree_node_base::maximum(root())) return false; return true; } __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_TREE_H */ // Local Variables: // mode:C++ // End: