/* $NetBSD: subr_autoconf.c,v 1.257 2018/03/04 07:12:18 mlelstv Exp $ */ /* * Copyright (c) 1996, 2000 Christopher G. Demetriou * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the * NetBSD Project. See http://www.NetBSD.org/ for * information about NetBSD. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratories. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) * * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 */ #include __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.257 2018/03/04 07:12:18 mlelstv Exp $"); #ifdef _KERNEL_OPT #include "opt_ddb.h" #include "drvctl.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Autoconfiguration subroutines. */ /* * Device autoconfiguration timings are mixed into the entropy pool. */ extern krndsource_t rnd_autoconf_source; /* * ioconf.c exports exactly two names: cfdata and cfroots. All system * devices and drivers are found via these tables. */ extern struct cfdata cfdata[]; extern const short cfroots[]; /* * List of all cfdriver structures. We use this to detect duplicates * when other cfdrivers are loaded. */ struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); extern struct cfdriver * const cfdriver_list_initial[]; /* * Initial list of cfattach's. */ extern const struct cfattachinit cfattachinit[]; /* * List of cfdata tables. We always have one such list -- the one * built statically when the kernel was configured. */ struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); static struct cftable initcftable; #define ROOT ((device_t)NULL) struct matchinfo { cfsubmatch_t fn; device_t parent; const int *locs; void *aux; struct cfdata *match; int pri; }; struct alldevs_foray { int af_s; struct devicelist af_garbage; }; static char *number(char *, int); static void mapply(struct matchinfo *, cfdata_t); static device_t config_devalloc(const device_t, const cfdata_t, const int *); static void config_devdelete(device_t); static void config_devunlink(device_t, struct devicelist *); static void config_makeroom(int, struct cfdriver *); static void config_devlink(device_t); static void config_alldevs_enter(struct alldevs_foray *); static void config_alldevs_exit(struct alldevs_foray *); static void config_add_attrib_dict(device_t); static void config_collect_garbage(struct devicelist *); static void config_dump_garbage(struct devicelist *); static void pmflock_debug(device_t, const char *, int); static device_t deviter_next1(deviter_t *); static void deviter_reinit(deviter_t *); struct deferred_config { TAILQ_ENTRY(deferred_config) dc_queue; device_t dc_dev; void (*dc_func)(device_t); }; TAILQ_HEAD(deferred_config_head, deferred_config); struct deferred_config_head deferred_config_queue = TAILQ_HEAD_INITIALIZER(deferred_config_queue); struct deferred_config_head interrupt_config_queue = TAILQ_HEAD_INITIALIZER(interrupt_config_queue); int interrupt_config_threads = 8; struct deferred_config_head mountroot_config_queue = TAILQ_HEAD_INITIALIZER(mountroot_config_queue); int mountroot_config_threads = 2; static lwp_t **mountroot_config_lwpids; static size_t mountroot_config_lwpids_size; static bool root_is_mounted = false; static void config_process_deferred(struct deferred_config_head *, device_t); /* Hooks to finalize configuration once all real devices have been found. */ struct finalize_hook { TAILQ_ENTRY(finalize_hook) f_list; int (*f_func)(device_t); device_t f_dev; }; static TAILQ_HEAD(, finalize_hook) config_finalize_list = TAILQ_HEAD_INITIALIZER(config_finalize_list); static int config_finalize_done; /* list of all devices */ static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); static kmutex_t alldevs_lock __cacheline_aligned; static devgen_t alldevs_gen = 1; static int alldevs_nread = 0; static int alldevs_nwrite = 0; static bool alldevs_garbage = false; static int config_pending; /* semaphore for mountroot */ static kmutex_t config_misc_lock; static kcondvar_t config_misc_cv; static bool detachall = false; #define STREQ(s1, s2) \ (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) static bool config_initialized = false; /* config_init() has been called. */ static int config_do_twiddle; static callout_t config_twiddle_ch; static void sysctl_detach_setup(struct sysctllog **); int no_devmon_insert(const char *, prop_dictionary_t); int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; typedef int (*cfdriver_fn)(struct cfdriver *); static int frob_cfdrivervec(struct cfdriver * const *cfdriverv, cfdriver_fn drv_do, cfdriver_fn drv_undo, const char *style, bool dopanic) { void (*pr)(const char *, ...) __printflike(1, 2) = dopanic ? panic : printf; int i, error = 0, e2 __diagused; for (i = 0; cfdriverv[i] != NULL; i++) { if ((error = drv_do(cfdriverv[i])) != 0) { pr("configure: `%s' driver %s failed: %d", cfdriverv[i]->cd_name, style, error); goto bad; } } KASSERT(error == 0); return 0; bad: printf("\n"); for (i--; i >= 0; i--) { e2 = drv_undo(cfdriverv[i]); KASSERT(e2 == 0); } return error; } typedef int (*cfattach_fn)(const char *, struct cfattach *); static int frob_cfattachvec(const struct cfattachinit *cfattachv, cfattach_fn att_do, cfattach_fn att_undo, const char *style, bool dopanic) { const struct cfattachinit *cfai = NULL; void (*pr)(const char *, ...) __printflike(1, 2) = dopanic ? panic : printf; int j = 0, error = 0, e2 __diagused; for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { for (j = 0; cfai->cfai_list[j] != NULL; j++) { if ((error = att_do(cfai->cfai_name, cfai->cfai_list[j])) != 0) { pr("configure: attachment `%s' " "of `%s' driver %s failed: %d", cfai->cfai_list[j]->ca_name, cfai->cfai_name, style, error); goto bad; } } } KASSERT(error == 0); return 0; bad: /* * Rollback in reverse order. dunno if super-important, but * do that anyway. Although the code looks a little like * someone did a little integration (in the math sense). */ printf("\n"); if (cfai) { bool last; for (last = false; last == false; ) { if (cfai == &cfattachv[0]) last = true; for (j--; j >= 0; j--) { e2 = att_undo(cfai->cfai_name, cfai->cfai_list[j]); KASSERT(e2 == 0); } if (!last) { cfai--; for (j = 0; cfai->cfai_list[j] != NULL; j++) ; } } } return error; } /* * Initialize the autoconfiguration data structures. Normally this * is done by configure(), but some platforms need to do this very * early (to e.g. initialize the console). */ void config_init(void) { KASSERT(config_initialized == false); mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&config_misc_cv, "cfgmisc"); callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); frob_cfdrivervec(cfdriver_list_initial, config_cfdriver_attach, NULL, "bootstrap", true); frob_cfattachvec(cfattachinit, config_cfattach_attach, NULL, "bootstrap", true); initcftable.ct_cfdata = cfdata; TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); config_initialized = true; } /* * Init or fini drivers and attachments. Either all or none * are processed (via rollback). It would be nice if this were * atomic to outside consumers, but with the current state of * locking ... */ int config_init_component(struct cfdriver * const *cfdriverv, const struct cfattachinit *cfattachv, struct cfdata *cfdatav) { int error; if ((error = frob_cfdrivervec(cfdriverv, config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) return error; if ((error = frob_cfattachvec(cfattachv, config_cfattach_attach, config_cfattach_detach, "init", false)) != 0) { frob_cfdrivervec(cfdriverv, config_cfdriver_detach, NULL, "init rollback", true); return error; } if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { frob_cfattachvec(cfattachv, config_cfattach_detach, NULL, "init rollback", true); frob_cfdrivervec(cfdriverv, config_cfdriver_detach, NULL, "init rollback", true); return error; } return 0; } int config_fini_component(struct cfdriver * const *cfdriverv, const struct cfattachinit *cfattachv, struct cfdata *cfdatav) { int error; if ((error = config_cfdata_detach(cfdatav)) != 0) return error; if ((error = frob_cfattachvec(cfattachv, config_cfattach_detach, config_cfattach_attach, "fini", false)) != 0) { if (config_cfdata_attach(cfdatav, 0) != 0) panic("config_cfdata fini rollback failed"); return error; } if ((error = frob_cfdrivervec(cfdriverv, config_cfdriver_detach, config_cfdriver_attach, "fini", false)) != 0) { frob_cfattachvec(cfattachv, config_cfattach_attach, NULL, "fini rollback", true); if (config_cfdata_attach(cfdatav, 0) != 0) panic("config_cfdata fini rollback failed"); return error; } return 0; } void config_init_mi(void) { if (!config_initialized) config_init(); sysctl_detach_setup(NULL); } void config_deferred(device_t dev) { config_process_deferred(&deferred_config_queue, dev); config_process_deferred(&interrupt_config_queue, dev); config_process_deferred(&mountroot_config_queue, dev); } static void config_interrupts_thread(void *cookie) { struct deferred_config *dc; while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); (*dc->dc_func)(dc->dc_dev); config_pending_decr(dc->dc_dev); kmem_free(dc, sizeof(*dc)); } kthread_exit(0); } void config_create_interruptthreads(void) { int i; for (i = 0; i < interrupt_config_threads; i++) { (void)kthread_create(PRI_NONE, 0, NULL, config_interrupts_thread, NULL, NULL, "configintr"); } } static void config_mountroot_thread(void *cookie) { struct deferred_config *dc; while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); (*dc->dc_func)(dc->dc_dev); kmem_free(dc, sizeof(*dc)); } kthread_exit(0); } void config_create_mountrootthreads(void) { int i; if (!root_is_mounted) root_is_mounted = true; mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * mountroot_config_threads; mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, KM_NOSLEEP); KASSERT(mountroot_config_lwpids); for (i = 0; i < mountroot_config_threads; i++) { mountroot_config_lwpids[i] = 0; (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, config_mountroot_thread, NULL, &mountroot_config_lwpids[i], "configroot"); } } void config_finalize_mountroot(void) { int i, error; for (i = 0; i < mountroot_config_threads; i++) { if (mountroot_config_lwpids[i] == 0) continue; error = kthread_join(mountroot_config_lwpids[i]); if (error) printf("%s: thread %x joined with error %d\n", __func__, i, error); } kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); } /* * Announce device attach/detach to userland listeners. */ int no_devmon_insert(const char *name, prop_dictionary_t p) { return ENODEV; } static void devmon_report_device(device_t dev, bool isattach) { prop_dictionary_t ev; const char *parent; const char *what; device_t pdev = device_parent(dev); /* If currently no drvctl device, just return */ if (devmon_insert_vec == no_devmon_insert) return; ev = prop_dictionary_create(); if (ev == NULL) return; what = (isattach ? "device-attach" : "device-detach"); parent = (pdev == NULL ? "root" : device_xname(pdev)); if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || !prop_dictionary_set_cstring(ev, "parent", parent)) { prop_object_release(ev); return; } if ((*devmon_insert_vec)(what, ev) != 0) prop_object_release(ev); } /* * Add a cfdriver to the system. */ int config_cfdriver_attach(struct cfdriver *cd) { struct cfdriver *lcd; /* Make sure this driver isn't already in the system. */ LIST_FOREACH(lcd, &allcfdrivers, cd_list) { if (STREQ(lcd->cd_name, cd->cd_name)) return EEXIST; } LIST_INIT(&cd->cd_attach); LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); return 0; } /* * Remove a cfdriver from the system. */ int config_cfdriver_detach(struct cfdriver *cd) { struct alldevs_foray af; int i, rc = 0; config_alldevs_enter(&af); /* Make sure there are no active instances. */ for (i = 0; i < cd->cd_ndevs; i++) { if (cd->cd_devs[i] != NULL) { rc = EBUSY; break; } } config_alldevs_exit(&af); if (rc != 0) return rc; /* ...and no attachments loaded. */ if (LIST_EMPTY(&cd->cd_attach) == 0) return EBUSY; LIST_REMOVE(cd, cd_list); KASSERT(cd->cd_devs == NULL); return 0; } /* * Look up a cfdriver by name. */ struct cfdriver * config_cfdriver_lookup(const char *name) { struct cfdriver *cd; LIST_FOREACH(cd, &allcfdrivers, cd_list) { if (STREQ(cd->cd_name, name)) return cd; } return NULL; } /* * Add a cfattach to the specified driver. */ int config_cfattach_attach(const char *driver, struct cfattach *ca) { struct cfattach *lca; struct cfdriver *cd; cd = config_cfdriver_lookup(driver); if (cd == NULL) return ESRCH; /* Make sure this attachment isn't already on this driver. */ LIST_FOREACH(lca, &cd->cd_attach, ca_list) { if (STREQ(lca->ca_name, ca->ca_name)) return EEXIST; } LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); return 0; } /* * Remove a cfattach from the specified driver. */ int config_cfattach_detach(const char *driver, struct cfattach *ca) { struct alldevs_foray af; struct cfdriver *cd; device_t dev; int i, rc = 0; cd = config_cfdriver_lookup(driver); if (cd == NULL) return ESRCH; config_alldevs_enter(&af); /* Make sure there are no active instances. */ for (i = 0; i < cd->cd_ndevs; i++) { if ((dev = cd->cd_devs[i]) == NULL) continue; if (dev->dv_cfattach == ca) { rc = EBUSY; break; } } config_alldevs_exit(&af); if (rc != 0) return rc; LIST_REMOVE(ca, ca_list); return 0; } /* * Look up a cfattach by name. */ static struct cfattach * config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) { struct cfattach *ca; LIST_FOREACH(ca, &cd->cd_attach, ca_list) { if (STREQ(ca->ca_name, atname)) return ca; } return NULL; } /* * Look up a cfattach by driver/attachment name. */ struct cfattach * config_cfattach_lookup(const char *name, const char *atname) { struct cfdriver *cd; cd = config_cfdriver_lookup(name); if (cd == NULL) return NULL; return config_cfattach_lookup_cd(cd, atname); } /* * Apply the matching function and choose the best. This is used * a few times and we want to keep the code small. */ static void mapply(struct matchinfo *m, cfdata_t cf) { int pri; if (m->fn != NULL) { pri = (*m->fn)(m->parent, cf, m->locs, m->aux); } else { pri = config_match(m->parent, cf, m->aux); } if (pri > m->pri) { m->match = cf; m->pri = pri; } } int config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) { const struct cfiattrdata *ci; const struct cflocdesc *cl; int nlocs, i; ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); KASSERT(ci); nlocs = ci->ci_loclen; KASSERT(!nlocs || locs); for (i = 0; i < nlocs; i++) { cl = &ci->ci_locdesc[i]; if (cl->cld_defaultstr != NULL && cf->cf_loc[i] == cl->cld_default) continue; if (cf->cf_loc[i] == locs[i]) continue; return 0; } return config_match(parent, cf, aux); } /* * Helper function: check whether the driver supports the interface attribute * and return its descriptor structure. */ static const struct cfiattrdata * cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) { const struct cfiattrdata * const *cpp; if (cd->cd_attrs == NULL) return 0; for (cpp = cd->cd_attrs; *cpp; cpp++) { if (STREQ((*cpp)->ci_name, ia)) { /* Match. */ return *cpp; } } return 0; } /* * Lookup an interface attribute description by name. * If the driver is given, consider only its supported attributes. */ const struct cfiattrdata * cfiattr_lookup(const char *name, const struct cfdriver *cd) { const struct cfdriver *d; const struct cfiattrdata *ia; if (cd) return cfdriver_get_iattr(cd, name); LIST_FOREACH(d, &allcfdrivers, cd_list) { ia = cfdriver_get_iattr(d, name); if (ia) return ia; } return 0; } /* * Determine if `parent' is a potential parent for a device spec based * on `cfp'. */ static int cfparent_match(const device_t parent, const struct cfparent *cfp) { struct cfdriver *pcd; /* We don't match root nodes here. */ if (cfp == NULL) return 0; pcd = parent->dv_cfdriver; KASSERT(pcd != NULL); /* * First, ensure this parent has the correct interface * attribute. */ if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) return 0; /* * If no specific parent device instance was specified (i.e. * we're attaching to the attribute only), we're done! */ if (cfp->cfp_parent == NULL) return 1; /* * Check the parent device's name. */ if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) return 0; /* not the same parent */ /* * Make sure the unit number matches. */ if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ cfp->cfp_unit == parent->dv_unit) return 1; /* Unit numbers don't match. */ return 0; } /* * Helper for config_cfdata_attach(): check all devices whether it could be * parent any attachment in the config data table passed, and rescan. */ static void rescan_with_cfdata(const struct cfdata *cf) { device_t d; const struct cfdata *cf1; deviter_t di; /* * "alldevs" is likely longer than a modules's cfdata, so make it * the outer loop. */ for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { if (!(d->dv_cfattach->ca_rescan)) continue; for (cf1 = cf; cf1->cf_name; cf1++) { if (!cfparent_match(d, cf1->cf_pspec)) continue; (*d->dv_cfattach->ca_rescan)(d, cfdata_ifattr(cf1), cf1->cf_loc); config_deferred(d); } } deviter_release(&di); } /* * Attach a supplemental config data table and rescan potential * parent devices if required. */ int config_cfdata_attach(cfdata_t cf, int scannow) { struct cftable *ct; ct = kmem_alloc(sizeof(*ct), KM_SLEEP); ct->ct_cfdata = cf; TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); if (scannow) rescan_with_cfdata(cf); return 0; } /* * Helper for config_cfdata_detach: check whether a device is * found through any attachment in the config data table. */ static int dev_in_cfdata(device_t d, cfdata_t cf) { const struct cfdata *cf1; for (cf1 = cf; cf1->cf_name; cf1++) if (d->dv_cfdata == cf1) return 1; return 0; } /* * Detach a supplemental config data table. Detach all devices found * through that table (and thus keeping references to it) before. */ int config_cfdata_detach(cfdata_t cf) { device_t d; int error = 0; struct cftable *ct; deviter_t di; for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; d = deviter_next(&di)) { if (!dev_in_cfdata(d, cf)) continue; if ((error = config_detach(d, 0)) != 0) break; } deviter_release(&di); if (error) { aprint_error_dev(d, "unable to detach instance\n"); return error; } TAILQ_FOREACH(ct, &allcftables, ct_list) { if (ct->ct_cfdata == cf) { TAILQ_REMOVE(&allcftables, ct, ct_list); kmem_free(ct, sizeof(*ct)); return 0; } } /* not found -- shouldn't happen */ return EINVAL; } /* * Invoke the "match" routine for a cfdata entry on behalf of * an external caller, usually a "submatch" routine. */ int config_match(device_t parent, cfdata_t cf, void *aux) { struct cfattach *ca; ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); if (ca == NULL) { /* No attachment for this entry, oh well. */ return 0; } return (*ca->ca_match)(parent, cf, aux); } /* * Iterate over all potential children of some device, calling the given * function (default being the child's match function) for each one. * Nonzero returns are matches; the highest value returned is considered * the best match. Return the `found child' if we got a match, or NULL * otherwise. The `aux' pointer is simply passed on through. * * Note that this function is designed so that it can be used to apply * an arbitrary function to all potential children (its return value * can be ignored). */ cfdata_t config_search_loc(cfsubmatch_t fn, device_t parent, const char *ifattr, const int *locs, void *aux) { struct cftable *ct; cfdata_t cf; struct matchinfo m; KASSERT(config_initialized); KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); m.fn = fn; m.parent = parent; m.locs = locs; m.aux = aux; m.match = NULL; m.pri = 0; TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { /* We don't match root nodes here. */ if (!cf->cf_pspec) continue; /* * Skip cf if no longer eligible, otherwise scan * through parents for one matching `parent', and * try match function. */ if (cf->cf_fstate == FSTATE_FOUND) continue; if (cf->cf_fstate == FSTATE_DNOTFOUND || cf->cf_fstate == FSTATE_DSTAR) continue; /* * If an interface attribute was specified, * consider only children which attach to * that attribute. */ if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) continue; if (cfparent_match(parent, cf->cf_pspec)) mapply(&m, cf); } } return m.match; } cfdata_t config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, void *aux) { return config_search_loc(fn, parent, ifattr, NULL, aux); } /* * Find the given root device. * This is much like config_search, but there is no parent. * Don't bother with multiple cfdata tables; the root node * must always be in the initial table. */ cfdata_t config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) { cfdata_t cf; const short *p; struct matchinfo m; m.fn = fn; m.parent = ROOT; m.aux = aux; m.match = NULL; m.pri = 0; m.locs = 0; /* * Look at root entries for matching name. We do not bother * with found-state here since only one root should ever be * searched (and it must be done first). */ for (p = cfroots; *p >= 0; p++) { cf = &cfdata[*p]; if (strcmp(cf->cf_name, rootname) == 0) mapply(&m, cf); } return m.match; } static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; /* * The given `aux' argument describes a device that has been found * on the given parent, but not necessarily configured. Locate the * configuration data for that device (using the submatch function * provided, or using candidates' cd_match configuration driver * functions) and attach it, and return its device_t. If the device was * not configured, call the given `print' function and return NULL. */ device_t config_found_sm_loc(device_t parent, const char *ifattr, const int *locs, void *aux, cfprint_t print, cfsubmatch_t submatch) { cfdata_t cf; if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) return(config_attach_loc(parent, cf, locs, aux, print)); if (print) { if (config_do_twiddle && cold) twiddle(); aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); } /* * This has the effect of mixing in a single timestamp to the * entropy pool. Experiments indicate the estimator will almost * always attribute one bit of entropy to this sample; analysis * of device attach/detach timestamps on FreeBSD indicates 4 * bits of entropy/sample so this seems appropriately conservative. */ rnd_add_uint32(&rnd_autoconf_source, 0); return NULL; } device_t config_found_ia(device_t parent, const char *ifattr, void *aux, cfprint_t print) { return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); } device_t config_found(device_t parent, void *aux, cfprint_t print) { return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); } /* * As above, but for root devices. */ device_t config_rootfound(const char *rootname, void *aux) { cfdata_t cf; if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) return config_attach(ROOT, cf, aux, NULL); aprint_error("root device %s not configured\n", rootname); return NULL; } /* just like sprintf(buf, "%d") except that it works from the end */ static char * number(char *ep, int n) { *--ep = 0; while (n >= 10) { *--ep = (n % 10) + '0'; n /= 10; } *--ep = n + '0'; return ep; } /* * Expand the size of the cd_devs array if necessary. * * The caller must hold alldevs_lock. config_makeroom() may release and * re-acquire alldevs_lock, so callers should re-check conditions such * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() * returns. */ static void config_makeroom(int n, struct cfdriver *cd) { int ondevs, nndevs; device_t *osp, *nsp; KASSERT(mutex_owned(&alldevs_lock)); alldevs_nwrite++; for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) ; while (n >= cd->cd_ndevs) { /* * Need to expand the array. */ ondevs = cd->cd_ndevs; osp = cd->cd_devs; /* * Release alldevs_lock around allocation, which may * sleep. */ mutex_exit(&alldevs_lock); nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); mutex_enter(&alldevs_lock); /* * If another thread moved the array while we did * not hold alldevs_lock, try again. */ if (cd->cd_devs != osp) { mutex_exit(&alldevs_lock); kmem_free(nsp, sizeof(device_t[nndevs])); mutex_enter(&alldevs_lock); continue; } memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); if (ondevs != 0) memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); cd->cd_ndevs = nndevs; cd->cd_devs = nsp; if (ondevs != 0) { mutex_exit(&alldevs_lock); kmem_free(osp, sizeof(device_t[ondevs])); mutex_enter(&alldevs_lock); } } KASSERT(mutex_owned(&alldevs_lock)); alldevs_nwrite--; } /* * Put dev into the devices list. */ static void config_devlink(device_t dev) { mutex_enter(&alldevs_lock); KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); dev->dv_add_gen = alldevs_gen; /* It is safe to add a device to the tail of the list while * readers and writers are in the list. */ TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); mutex_exit(&alldevs_lock); } static void config_devfree(device_t dev) { int priv = (dev->dv_flags & DVF_PRIV_ALLOC); if (dev->dv_cfattach->ca_devsize > 0) kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); if (priv) kmem_free(dev, sizeof(*dev)); } /* * Caller must hold alldevs_lock. */ static void config_devunlink(device_t dev, struct devicelist *garbage) { struct device_garbage *dg = &dev->dv_garbage; cfdriver_t cd = device_cfdriver(dev); int i; KASSERT(mutex_owned(&alldevs_lock)); /* Unlink from device list. Link to garbage list. */ TAILQ_REMOVE(&alldevs, dev, dv_list); TAILQ_INSERT_TAIL(garbage, dev, dv_list); /* Remove from cfdriver's array. */ cd->cd_devs[dev->dv_unit] = NULL; /* * If the device now has no units in use, unlink its softc array. */ for (i = 0; i < cd->cd_ndevs; i++) { if (cd->cd_devs[i] != NULL) break; } /* Nothing found. Unlink, now. Deallocate, later. */ if (i == cd->cd_ndevs) { dg->dg_ndevs = cd->cd_ndevs; dg->dg_devs = cd->cd_devs; cd->cd_devs = NULL; cd->cd_ndevs = 0; } } static void config_devdelete(device_t dev) { struct device_garbage *dg = &dev->dv_garbage; device_lock_t dvl = device_getlock(dev); if (dg->dg_devs != NULL) kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); cv_destroy(&dvl->dvl_cv); mutex_destroy(&dvl->dvl_mtx); KASSERT(dev->dv_properties != NULL); prop_object_release(dev->dv_properties); if (dev->dv_activity_handlers) panic("%s with registered handlers", __func__); if (dev->dv_locators) { size_t amount = *--dev->dv_locators; kmem_free(dev->dv_locators, amount); } config_devfree(dev); } static int config_unit_nextfree(cfdriver_t cd, cfdata_t cf) { int unit; if (cf->cf_fstate == FSTATE_STAR) { for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) if (cd->cd_devs[unit] == NULL) break; /* * unit is now the unit of the first NULL device pointer, * or max(cd->cd_ndevs,cf->cf_unit). */ } else { unit = cf->cf_unit; if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) unit = -1; } return unit; } static int config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) { struct alldevs_foray af; int unit; config_alldevs_enter(&af); for (;;) { unit = config_unit_nextfree(cd, cf); if (unit == -1) break; if (unit < cd->cd_ndevs) { cd->cd_devs[unit] = dev; dev->dv_unit = unit; break; } config_makeroom(unit, cd); } config_alldevs_exit(&af); return unit; } static device_t config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) { cfdriver_t cd; cfattach_t ca; size_t lname, lunit; const char *xunit; int myunit; char num[10]; device_t dev; void *dev_private; const struct cfiattrdata *ia; device_lock_t dvl; cd = config_cfdriver_lookup(cf->cf_name); if (cd == NULL) return NULL; ca = config_cfattach_lookup_cd(cd, cf->cf_atname); if (ca == NULL) return NULL; /* get memory for all device vars */ KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device), "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize, sizeof(struct device)); if (ca->ca_devsize > 0) { dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); } else { KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); dev_private = NULL; } if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); } else { dev = dev_private; #ifdef DIAGNOSTIC printf("%s has not been converted to device_t\n", cd->cd_name); #endif KASSERT(dev != NULL); } dev->dv_class = cd->cd_class; dev->dv_cfdata = cf; dev->dv_cfdriver = cd; dev->dv_cfattach = ca; dev->dv_activity_count = 0; dev->dv_activity_handlers = NULL; dev->dv_private = dev_private; dev->dv_flags = ca->ca_flags; /* inherit flags from class */ myunit = config_unit_alloc(dev, cd, cf); if (myunit == -1) { config_devfree(dev); return NULL; } /* compute length of name and decimal expansion of unit number */ lname = strlen(cd->cd_name); xunit = number(&num[sizeof(num)], myunit); lunit = &num[sizeof(num)] - xunit; if (lname + lunit > sizeof(dev->dv_xname)) panic("config_devalloc: device name too long"); dvl = device_getlock(dev); mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); cv_init(&dvl->dvl_cv, "pmfsusp"); memcpy(dev->dv_xname, cd->cd_name, lname); memcpy(dev->dv_xname + lname, xunit, lunit); dev->dv_parent = parent; if (parent != NULL) dev->dv_depth = parent->dv_depth + 1; else dev->dv_depth = 0; dev->dv_flags |= DVF_ACTIVE; /* always initially active */ if (locs) { KASSERT(parent); /* no locators at root */ ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); dev->dv_locators = kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); } dev->dv_properties = prop_dictionary_create(); KASSERT(dev->dv_properties != NULL); prop_dictionary_set_cstring_nocopy(dev->dv_properties, "device-driver", dev->dv_cfdriver->cd_name); prop_dictionary_set_uint16(dev->dv_properties, "device-unit", dev->dv_unit); if (parent != NULL) { prop_dictionary_set_cstring(dev->dv_properties, "device-parent", device_xname(parent)); } if (dev->dv_cfdriver->cd_attrs != NULL) config_add_attrib_dict(dev); return dev; } /* * Create an array of device attach attributes and add it * to the device's dv_properties dictionary. * * interface-attributes * * * attribute-name * foo * locators * * * loc-name * foo-loc1 * * * loc-name * foo-loc2 * default * foo-loc2-default * * ... * * * ... * */ static void config_add_attrib_dict(device_t dev) { int i, j; const struct cfiattrdata *ci; prop_dictionary_t attr_dict, loc_dict; prop_array_t attr_array, loc_array; if ((attr_array = prop_array_create()) == NULL) return; for (i = 0; ; i++) { if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) break; if ((attr_dict = prop_dictionary_create()) == NULL) break; prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", ci->ci_name); /* Create an array of the locator names and defaults */ if (ci->ci_loclen != 0 && (loc_array = prop_array_create()) != NULL) { for (j = 0; j < ci->ci_loclen; j++) { loc_dict = prop_dictionary_create(); if (loc_dict == NULL) continue; prop_dictionary_set_cstring_nocopy(loc_dict, "loc-name", ci->ci_locdesc[j].cld_name); if (ci->ci_locdesc[j].cld_defaultstr != NULL) prop_dictionary_set_cstring_nocopy( loc_dict, "default", ci->ci_locdesc[j].cld_defaultstr); prop_array_set(loc_array, j, loc_dict); prop_object_release(loc_dict); } prop_dictionary_set_and_rel(attr_dict, "locators", loc_array); } prop_array_add(attr_array, attr_dict); prop_object_release(attr_dict); } if (i == 0) prop_object_release(attr_array); else prop_dictionary_set_and_rel(dev->dv_properties, "interface-attributes", attr_array); return; } /* * Attach a found device. */ device_t config_attach_loc(device_t parent, cfdata_t cf, const int *locs, void *aux, cfprint_t print) { device_t dev; struct cftable *ct; const char *drvname; dev = config_devalloc(parent, cf, locs); if (!dev) panic("config_attach: allocation of device softc failed"); /* XXX redundant - see below? */ if (cf->cf_fstate != FSTATE_STAR) { KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); cf->cf_fstate = FSTATE_FOUND; } config_devlink(dev); if (config_do_twiddle && cold) twiddle(); else aprint_naive("Found "); /* * We want the next two printfs for normal, verbose, and quiet, * but not silent (in which case, we're twiddling, instead). */ if (parent == ROOT) { aprint_naive("%s (root)", device_xname(dev)); aprint_normal("%s (root)", device_xname(dev)); } else { aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); if (print) (void) (*print)(aux, NULL); } /* * Before attaching, clobber any unfound devices that are * otherwise identical. * XXX code above is redundant? */ drvname = dev->dv_cfdriver->cd_name; TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { if (STREQ(cf->cf_name, drvname) && cf->cf_unit == dev->dv_unit) { if (cf->cf_fstate == FSTATE_NOTFOUND) cf->cf_fstate = FSTATE_FOUND; } } } device_register(dev, aux); /* Let userland know */ devmon_report_device(dev, true); (*dev->dv_cfattach->ca_attach)(parent, dev, aux); if (!device_pmf_is_registered(dev)) aprint_debug_dev(dev, "WARNING: power management not " "supported\n"); config_process_deferred(&deferred_config_queue, dev); device_register_post_config(dev, aux); return dev; } device_t config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) { return config_attach_loc(parent, cf, NULL, aux, print); } /* * As above, but for pseudo-devices. Pseudo-devices attached in this * way are silently inserted into the device tree, and their children * attached. * * Note that because pseudo-devices are attached silently, any information * the attach routine wishes to print should be prefixed with the device * name by the attach routine. */ device_t config_attach_pseudo(cfdata_t cf) { device_t dev; dev = config_devalloc(ROOT, cf, NULL); if (!dev) return NULL; /* XXX mark busy in cfdata */ if (cf->cf_fstate != FSTATE_STAR) { KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); cf->cf_fstate = FSTATE_FOUND; } config_devlink(dev); #if 0 /* XXXJRT not yet */ device_register(dev, NULL); /* like a root node */ #endif /* Let userland know */ devmon_report_device(dev, true); (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); config_process_deferred(&deferred_config_queue, dev); return dev; } /* * Caller must hold alldevs_lock. */ static void config_collect_garbage(struct devicelist *garbage) { device_t dv; KASSERT(!cpu_intr_p()); KASSERT(!cpu_softintr_p()); KASSERT(mutex_owned(&alldevs_lock)); while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { TAILQ_FOREACH(dv, &alldevs, dv_list) { if (dv->dv_del_gen != 0) break; } if (dv == NULL) { alldevs_garbage = false; break; } config_devunlink(dv, garbage); } KASSERT(mutex_owned(&alldevs_lock)); } static void config_dump_garbage(struct devicelist *garbage) { device_t dv; while ((dv = TAILQ_FIRST(garbage)) != NULL) { TAILQ_REMOVE(garbage, dv, dv_list); config_devdelete(dv); } } /* * Detach a device. Optionally forced (e.g. because of hardware * removal) and quiet. Returns zero if successful, non-zero * (an error code) otherwise. * * Note that this code wants to be run from a process context, so * that the detach can sleep to allow processes which have a device * open to run and unwind their stacks. */ int config_detach(device_t dev, int flags) { struct alldevs_foray af; struct cftable *ct; cfdata_t cf; const struct cfattach *ca; struct cfdriver *cd; device_t d __diagused; int rv = 0; cf = dev->dv_cfdata; KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || cf->cf_fstate == FSTATE_STAR), "config_detach: %s: bad device fstate: %d", device_xname(dev), cf ? cf->cf_fstate : -1); cd = dev->dv_cfdriver; KASSERT(cd != NULL); ca = dev->dv_cfattach; KASSERT(ca != NULL); mutex_enter(&alldevs_lock); if (dev->dv_del_gen != 0) { mutex_exit(&alldevs_lock); #ifdef DIAGNOSTIC printf("%s: %s is already detached\n", __func__, device_xname(dev)); #endif /* DIAGNOSTIC */ return ENOENT; } alldevs_nwrite++; mutex_exit(&alldevs_lock); if (!detachall && (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { rv = EOPNOTSUPP; } else if (ca->ca_detach != NULL) { rv = (*ca->ca_detach)(dev, flags); } else rv = EOPNOTSUPP; /* * If it was not possible to detach the device, then we either * panic() (for the forced but failed case), or return an error. * * If it was possible to detach the device, ensure that the * device is deactivated. */ if (rv == 0) dev->dv_flags &= ~DVF_ACTIVE; else if ((flags & DETACH_FORCE) == 0) goto out; else { panic("config_detach: forced detach of %s failed (%d)", device_xname(dev), rv); } /* * The device has now been successfully detached. */ /* Let userland know */ devmon_report_device(dev, false); #ifdef DIAGNOSTIC /* * Sanity: If you're successfully detached, you should have no * children. (Note that because children must be attached * after parents, we only need to search the latter part of * the list.) */ for (d = TAILQ_NEXT(dev, dv_list); d != NULL; d = TAILQ_NEXT(d, dv_list)) { if (d->dv_parent == dev && d->dv_del_gen == 0) { printf("config_detach: detached device %s" " has children %s\n", device_xname(dev), device_xname(d)); panic("config_detach"); } } #endif /* notify the parent that the child is gone */ if (dev->dv_parent) { device_t p = dev->dv_parent; if (p->dv_cfattach->ca_childdetached) (*p->dv_cfattach->ca_childdetached)(p, dev); } /* * Mark cfdata to show that the unit can be reused, if possible. */ TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { if (STREQ(cf->cf_name, cd->cd_name)) { if (cf->cf_fstate == FSTATE_FOUND && cf->cf_unit == dev->dv_unit) cf->cf_fstate = FSTATE_NOTFOUND; } } } if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) aprint_normal_dev(dev, "detached\n"); out: config_alldevs_enter(&af); KASSERT(alldevs_nwrite != 0); --alldevs_nwrite; if (rv == 0 && dev->dv_del_gen == 0) { if (alldevs_nwrite == 0 && alldevs_nread == 0) config_devunlink(dev, &af.af_garbage); else { dev->dv_del_gen = alldevs_gen; alldevs_garbage = true; } } config_alldevs_exit(&af); return rv; } int config_detach_children(device_t parent, int flags) { device_t dv; deviter_t di; int error = 0; for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; dv = deviter_next(&di)) { if (device_parent(dv) != parent) continue; if ((error = config_detach(dv, flags)) != 0) break; } deviter_release(&di); return error; } device_t shutdown_first(struct shutdown_state *s) { if (!s->initialized) { deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); s->initialized = true; } return shutdown_next(s); } device_t shutdown_next(struct shutdown_state *s) { device_t dv; while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) ; if (dv == NULL) s->initialized = false; return dv; } bool config_detach_all(int how) { static struct shutdown_state s; device_t curdev; bool progress = false; int flags; if ((how & (RB_NOSYNC|RB_DUMP)) != 0) return false; if ((how & RB_POWERDOWN) == RB_POWERDOWN) flags = DETACH_SHUTDOWN | DETACH_POWEROFF; else flags = DETACH_SHUTDOWN; for (curdev = shutdown_first(&s); curdev != NULL; curdev = shutdown_next(&s)) { aprint_debug(" detaching %s, ", device_xname(curdev)); if (config_detach(curdev, flags) == 0) { progress = true; aprint_debug("success."); } else aprint_debug("failed."); } return progress; } static bool device_is_ancestor_of(device_t ancestor, device_t descendant) { device_t dv; for (dv = descendant; dv != NULL; dv = device_parent(dv)) { if (device_parent(dv) == ancestor) return true; } return false; } int config_deactivate(device_t dev) { deviter_t di; const struct cfattach *ca; device_t descendant; int s, rv = 0, oflags; for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); descendant != NULL; descendant = deviter_next(&di)) { if (dev != descendant && !device_is_ancestor_of(dev, descendant)) continue; if ((descendant->dv_flags & DVF_ACTIVE) == 0) continue; ca = descendant->dv_cfattach; oflags = descendant->dv_flags; descendant->dv_flags &= ~DVF_ACTIVE; if (ca->ca_activate == NULL) continue; s = splhigh(); rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); splx(s); if (rv != 0) descendant->dv_flags = oflags; } deviter_release(&di); return rv; } /* * Defer the configuration of the specified device until all * of its parent's devices have been attached. */ void config_defer(device_t dev, void (*func)(device_t)) { struct deferred_config *dc; if (dev->dv_parent == NULL) panic("config_defer: can't defer config of a root device"); #ifdef DIAGNOSTIC TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { if (dc->dc_dev == dev) panic("config_defer: deferred twice"); } #endif dc = kmem_alloc(sizeof(*dc), KM_SLEEP); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); config_pending_incr(dev); } /* * Defer some autoconfiguration for a device until after interrupts * are enabled. */ void config_interrupts(device_t dev, void (*func)(device_t)) { struct deferred_config *dc; /* * If interrupts are enabled, callback now. */ if (cold == 0) { (*func)(dev); return; } #ifdef DIAGNOSTIC TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { if (dc->dc_dev == dev) panic("config_interrupts: deferred twice"); } #endif dc = kmem_alloc(sizeof(*dc), KM_SLEEP); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); config_pending_incr(dev); } /* * Defer some autoconfiguration for a device until after root file system * is mounted (to load firmware etc). */ void config_mountroot(device_t dev, void (*func)(device_t)) { struct deferred_config *dc; /* * If root file system is mounted, callback now. */ if (root_is_mounted) { (*func)(dev); return; } #ifdef DIAGNOSTIC TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { if (dc->dc_dev == dev) panic("%s: deferred twice", __func__); } #endif dc = kmem_alloc(sizeof(*dc), KM_SLEEP); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); } /* * Process a deferred configuration queue. */ static void config_process_deferred(struct deferred_config_head *queue, device_t parent) { struct deferred_config *dc, *ndc; for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { ndc = TAILQ_NEXT(dc, dc_queue); if (parent == NULL || dc->dc_dev->dv_parent == parent) { TAILQ_REMOVE(queue, dc, dc_queue); (*dc->dc_func)(dc->dc_dev); config_pending_decr(dc->dc_dev); kmem_free(dc, sizeof(*dc)); } } } /* * Manipulate the config_pending semaphore. */ void config_pending_incr(device_t dev) { mutex_enter(&config_misc_lock); config_pending++; #ifdef DEBUG_AUTOCONF printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); #endif mutex_exit(&config_misc_lock); } void config_pending_decr(device_t dev) { KASSERT(0 < config_pending); mutex_enter(&config_misc_lock); config_pending--; #ifdef DEBUG_AUTOCONF printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); #endif if (config_pending == 0) cv_broadcast(&config_misc_cv); mutex_exit(&config_misc_lock); } /* * Register a "finalization" routine. Finalization routines are * called iteratively once all real devices have been found during * autoconfiguration, for as long as any one finalizer has done * any work. */ int config_finalize_register(device_t dev, int (*fn)(device_t)) { struct finalize_hook *f; /* * If finalization has already been done, invoke the * callback function now. */ if (config_finalize_done) { while ((*fn)(dev) != 0) /* loop */ ; return 0; } /* Ensure this isn't already on the list. */ TAILQ_FOREACH(f, &config_finalize_list, f_list) { if (f->f_func == fn && f->f_dev == dev) return EEXIST; } f = kmem_alloc(sizeof(*f), KM_SLEEP); f->f_func = fn; f->f_dev = dev; TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); return 0; } void config_finalize(void) { struct finalize_hook *f; struct pdevinit *pdev; extern struct pdevinit pdevinit[]; int errcnt, rv; /* * Now that device driver threads have been created, wait for * them to finish any deferred autoconfiguration. */ mutex_enter(&config_misc_lock); while (config_pending != 0) cv_wait(&config_misc_cv, &config_misc_lock); mutex_exit(&config_misc_lock); KERNEL_LOCK(1, NULL); /* Attach pseudo-devices. */ for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) (*pdev->pdev_attach)(pdev->pdev_count); /* Run the hooks until none of them does any work. */ do { rv = 0; TAILQ_FOREACH(f, &config_finalize_list, f_list) rv |= (*f->f_func)(f->f_dev); } while (rv != 0); config_finalize_done = 1; /* Now free all the hooks. */ while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { TAILQ_REMOVE(&config_finalize_list, f, f_list); kmem_free(f, sizeof(*f)); } KERNEL_UNLOCK_ONE(NULL); errcnt = aprint_get_error_count(); if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && (boothowto & AB_VERBOSE) == 0) { mutex_enter(&config_misc_lock); if (config_do_twiddle) { config_do_twiddle = 0; printf_nolog(" done.\n"); } mutex_exit(&config_misc_lock); } if (errcnt != 0) { printf("WARNING: %d error%s while detecting hardware; " "check system log.\n", errcnt, errcnt == 1 ? "" : "s"); } } void config_twiddle_init(void) { if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { config_do_twiddle = 1; } callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); } void config_twiddle_fn(void *cookie) { mutex_enter(&config_misc_lock); if (config_do_twiddle) { twiddle(); callout_schedule(&config_twiddle_ch, mstohz(100)); } mutex_exit(&config_misc_lock); } static void config_alldevs_enter(struct alldevs_foray *af) { TAILQ_INIT(&af->af_garbage); mutex_enter(&alldevs_lock); config_collect_garbage(&af->af_garbage); } static void config_alldevs_exit(struct alldevs_foray *af) { mutex_exit(&alldevs_lock); config_dump_garbage(&af->af_garbage); } /* * device_lookup: * * Look up a device instance for a given driver. */ device_t device_lookup(cfdriver_t cd, int unit) { device_t dv; mutex_enter(&alldevs_lock); if (unit < 0 || unit >= cd->cd_ndevs) dv = NULL; else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) dv = NULL; mutex_exit(&alldevs_lock); return dv; } /* * device_lookup_private: * * Look up a softc instance for a given driver. */ void * device_lookup_private(cfdriver_t cd, int unit) { return device_private(device_lookup(cd, unit)); } /* * device_find_by_xname: * * Returns the device of the given name or NULL if it doesn't exist. */ device_t device_find_by_xname(const char *name) { device_t dv; deviter_t di; for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { if (strcmp(device_xname(dv), name) == 0) break; } deviter_release(&di); return dv; } /* * device_find_by_driver_unit: * * Returns the device of the given driver name and unit or * NULL if it doesn't exist. */ device_t device_find_by_driver_unit(const char *name, int unit) { struct cfdriver *cd; if ((cd = config_cfdriver_lookup(name)) == NULL) return NULL; return device_lookup(cd, unit); } /* * Power management related functions. */ bool device_pmf_is_registered(device_t dev) { return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; } bool device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) { if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) return true; if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) return false; if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && dev->dv_driver_suspend != NULL && !(*dev->dv_driver_suspend)(dev, qual)) return false; dev->dv_flags |= DVF_DRIVER_SUSPENDED; return true; } bool device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) { if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) return true; if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) return false; if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && dev->dv_driver_resume != NULL && !(*dev->dv_driver_resume)(dev, qual)) return false; dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; return true; } bool device_pmf_driver_shutdown(device_t dev, int how) { if (*dev->dv_driver_shutdown != NULL && !(*dev->dv_driver_shutdown)(dev, how)) return false; return true; } bool device_pmf_driver_register(device_t dev, bool (*suspend)(device_t, const pmf_qual_t *), bool (*resume)(device_t, const pmf_qual_t *), bool (*shutdown)(device_t, int)) { dev->dv_driver_suspend = suspend; dev->dv_driver_resume = resume; dev->dv_driver_shutdown = shutdown; dev->dv_flags |= DVF_POWER_HANDLERS; return true; } static const char * curlwp_name(void) { if (curlwp->l_name != NULL) return curlwp->l_name; else return curlwp->l_proc->p_comm; } void device_pmf_driver_deregister(device_t dev) { device_lock_t dvl = device_getlock(dev); dev->dv_driver_suspend = NULL; dev->dv_driver_resume = NULL; mutex_enter(&dvl->dvl_mtx); dev->dv_flags &= ~DVF_POWER_HANDLERS; while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { /* Wake a thread that waits for the lock. That * thread will fail to acquire the lock, and then * it will wake the next thread that waits for the * lock, or else it will wake us. */ cv_signal(&dvl->dvl_cv); pmflock_debug(dev, __func__, __LINE__); cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); pmflock_debug(dev, __func__, __LINE__); } mutex_exit(&dvl->dvl_mtx); } bool device_pmf_driver_child_register(device_t dev) { device_t parent = device_parent(dev); if (parent == NULL || parent->dv_driver_child_register == NULL) return true; return (*parent->dv_driver_child_register)(dev); } void device_pmf_driver_set_child_register(device_t dev, bool (*child_register)(device_t)) { dev->dv_driver_child_register = child_register; } static void pmflock_debug(device_t dev, const char *func, int line) { device_lock_t dvl = device_getlock(dev); aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); } static bool device_pmf_lock1(device_t dev) { device_lock_t dvl = device_getlock(dev); while (device_pmf_is_registered(dev) && dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { dvl->dvl_nwait++; pmflock_debug(dev, __func__, __LINE__); cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); pmflock_debug(dev, __func__, __LINE__); dvl->dvl_nwait--; } if (!device_pmf_is_registered(dev)) { pmflock_debug(dev, __func__, __LINE__); /* We could not acquire the lock, but some other thread may * wait for it, also. Wake that thread. */ cv_signal(&dvl->dvl_cv); return false; } dvl->dvl_nlock++; dvl->dvl_holder = curlwp; pmflock_debug(dev, __func__, __LINE__); return true; } bool device_pmf_lock(device_t dev) { bool rc; device_lock_t dvl = device_getlock(dev); mutex_enter(&dvl->dvl_mtx); rc = device_pmf_lock1(dev); mutex_exit(&dvl->dvl_mtx); return rc; } void device_pmf_unlock(device_t dev) { device_lock_t dvl = device_getlock(dev); KASSERT(dvl->dvl_nlock > 0); mutex_enter(&dvl->dvl_mtx); if (--dvl->dvl_nlock == 0) dvl->dvl_holder = NULL; cv_signal(&dvl->dvl_cv); pmflock_debug(dev, __func__, __LINE__); mutex_exit(&dvl->dvl_mtx); } device_lock_t device_getlock(device_t dev) { return &dev->dv_lock; } void * device_pmf_bus_private(device_t dev) { return dev->dv_bus_private; } bool device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) { if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) return true; if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) return false; if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && dev->dv_bus_suspend != NULL && !(*dev->dv_bus_suspend)(dev, qual)) return false; dev->dv_flags |= DVF_BUS_SUSPENDED; return true; } bool device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) { if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) return true; if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && dev->dv_bus_resume != NULL && !(*dev->dv_bus_resume)(dev, qual)) return false; dev->dv_flags &= ~DVF_BUS_SUSPENDED; return true; } bool device_pmf_bus_shutdown(device_t dev, int how) { if (*dev->dv_bus_shutdown != NULL && !(*dev->dv_bus_shutdown)(dev, how)) return false; return true; } void device_pmf_bus_register(device_t dev, void *priv, bool (*suspend)(device_t, const pmf_qual_t *), bool (*resume)(device_t, const pmf_qual_t *), bool (*shutdown)(device_t, int), void (*deregister)(device_t)) { dev->dv_bus_private = priv; dev->dv_bus_resume = resume; dev->dv_bus_suspend = suspend; dev->dv_bus_shutdown = shutdown; dev->dv_bus_deregister = deregister; } void device_pmf_bus_deregister(device_t dev) { if (dev->dv_bus_deregister == NULL) return; (*dev->dv_bus_deregister)(dev); dev->dv_bus_private = NULL; dev->dv_bus_suspend = NULL; dev->dv_bus_resume = NULL; dev->dv_bus_deregister = NULL; } void * device_pmf_class_private(device_t dev) { return dev->dv_class_private; } bool device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) { if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) return true; if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && dev->dv_class_suspend != NULL && !(*dev->dv_class_suspend)(dev, qual)) return false; dev->dv_flags |= DVF_CLASS_SUSPENDED; return true; } bool device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) { if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) return true; if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) return false; if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && dev->dv_class_resume != NULL && !(*dev->dv_class_resume)(dev, qual)) return false; dev->dv_flags &= ~DVF_CLASS_SUSPENDED; return true; } void device_pmf_class_register(device_t dev, void *priv, bool (*suspend)(device_t, const pmf_qual_t *), bool (*resume)(device_t, const pmf_qual_t *), void (*deregister)(device_t)) { dev->dv_class_private = priv; dev->dv_class_suspend = suspend; dev->dv_class_resume = resume; dev->dv_class_deregister = deregister; } void device_pmf_class_deregister(device_t dev) { if (dev->dv_class_deregister == NULL) return; (*dev->dv_class_deregister)(dev); dev->dv_class_private = NULL; dev->dv_class_suspend = NULL; dev->dv_class_resume = NULL; dev->dv_class_deregister = NULL; } bool device_active(device_t dev, devactive_t type) { size_t i; if (dev->dv_activity_count == 0) return false; for (i = 0; i < dev->dv_activity_count; ++i) { if (dev->dv_activity_handlers[i] == NULL) break; (*dev->dv_activity_handlers[i])(dev, type); } return true; } bool device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) { void (**new_handlers)(device_t, devactive_t); void (**old_handlers)(device_t, devactive_t); size_t i, old_size, new_size; int s; old_handlers = dev->dv_activity_handlers; old_size = dev->dv_activity_count; KASSERT(old_size == 0 || old_handlers != NULL); for (i = 0; i < old_size; ++i) { KASSERT(old_handlers[i] != handler); if (old_handlers[i] == NULL) { old_handlers[i] = handler; return true; } } new_size = old_size + 4; new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); for (i = 0; i < old_size; ++i) new_handlers[i] = old_handlers[i]; new_handlers[old_size] = handler; for (i = old_size+1; i < new_size; ++i) new_handlers[i] = NULL; s = splhigh(); dev->dv_activity_count = new_size; dev->dv_activity_handlers = new_handlers; splx(s); if (old_size > 0) kmem_free(old_handlers, sizeof(void * [old_size])); return true; } void device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) { void (**old_handlers)(device_t, devactive_t); size_t i, old_size; int s; old_handlers = dev->dv_activity_handlers; old_size = dev->dv_activity_count; for (i = 0; i < old_size; ++i) { if (old_handlers[i] == handler) break; if (old_handlers[i] == NULL) return; /* XXX panic? */ } if (i == old_size) return; /* XXX panic? */ for (; i < old_size - 1; ++i) { if ((old_handlers[i] = old_handlers[i + 1]) != NULL) continue; if (i == 0) { s = splhigh(); dev->dv_activity_count = 0; dev->dv_activity_handlers = NULL; splx(s); kmem_free(old_handlers, sizeof(void *[old_size])); } return; } old_handlers[i] = NULL; } /* Return true iff the device_t `dev' exists at generation `gen'. */ static bool device_exists_at(device_t dv, devgen_t gen) { return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && dv->dv_add_gen <= gen; } static bool deviter_visits(const deviter_t *di, device_t dv) { return device_exists_at(dv, di->di_gen); } /* * Device Iteration * * deviter_t: a device iterator. Holds state for a "walk" visiting * each device_t's in the device tree. * * deviter_init(di, flags): initialize the device iterator `di' * to "walk" the device tree. deviter_next(di) will return * the first device_t in the device tree, or NULL if there are * no devices. * * `flags' is one or more of DEVITER_F_RW, indicating that the * caller intends to modify the device tree by calling * config_detach(9) on devices in the order that the iterator * returns them; DEVITER_F_ROOT_FIRST, asking for the devices * nearest the "root" of the device tree to be returned, first; * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from * the root of the device tree, first; and DEVITER_F_SHUTDOWN, * indicating both that deviter_init() should not respect any * locks on the device tree, and that deviter_next(di) may run * in more than one LWP before the walk has finished. * * Only one DEVITER_F_RW iterator may be in the device tree at * once. * * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. * * Results are undefined if the flags DEVITER_F_ROOT_FIRST and * DEVITER_F_LEAVES_FIRST are used in combination. * * deviter_first(di, flags): initialize the device iterator `di' * and return the first device_t in the device tree, or NULL * if there are no devices. The statement * * dv = deviter_first(di); * * is shorthand for * * deviter_init(di); * dv = deviter_next(di); * * deviter_next(di): return the next device_t in the device tree, * or NULL if there are no more devices. deviter_next(di) * is undefined if `di' was not initialized with deviter_init() or * deviter_first(). * * deviter_release(di): stops iteration (subsequent calls to * deviter_next() will return NULL), releases any locks and * resources held by the device iterator. * * Device iteration does not return device_t's in any particular * order. An iterator will never return the same device_t twice. * Device iteration is guaranteed to complete---i.e., if deviter_next(di) * is called repeatedly on the same `di', it will eventually return * NULL. It is ok to attach/detach devices during device iteration. */ void deviter_init(deviter_t *di, deviter_flags_t flags) { device_t dv; memset(di, 0, sizeof(*di)); if ((flags & DEVITER_F_SHUTDOWN) != 0) flags |= DEVITER_F_RW; mutex_enter(&alldevs_lock); if ((flags & DEVITER_F_RW) != 0) alldevs_nwrite++; else alldevs_nread++; di->di_gen = alldevs_gen++; di->di_flags = flags; switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { case DEVITER_F_LEAVES_FIRST: TAILQ_FOREACH(dv, &alldevs, dv_list) { if (!deviter_visits(di, dv)) continue; di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); } break; case DEVITER_F_ROOT_FIRST: TAILQ_FOREACH(dv, &alldevs, dv_list) { if (!deviter_visits(di, dv)) continue; di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); } break; default: break; } deviter_reinit(di); mutex_exit(&alldevs_lock); } static void deviter_reinit(deviter_t *di) { KASSERT(mutex_owned(&alldevs_lock)); if ((di->di_flags & DEVITER_F_RW) != 0) di->di_prev = TAILQ_LAST(&alldevs, devicelist); else di->di_prev = TAILQ_FIRST(&alldevs); } device_t deviter_first(deviter_t *di, deviter_flags_t flags) { deviter_init(di, flags); return deviter_next(di); } static device_t deviter_next2(deviter_t *di) { device_t dv; KASSERT(mutex_owned(&alldevs_lock)); dv = di->di_prev; if (dv == NULL) return NULL; if ((di->di_flags & DEVITER_F_RW) != 0) di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); else di->di_prev = TAILQ_NEXT(dv, dv_list); return dv; } static device_t deviter_next1(deviter_t *di) { device_t dv; KASSERT(mutex_owned(&alldevs_lock)); do { dv = deviter_next2(di); } while (dv != NULL && !deviter_visits(di, dv)); return dv; } device_t deviter_next(deviter_t *di) { device_t dv = NULL; mutex_enter(&alldevs_lock); switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { case 0: dv = deviter_next1(di); break; case DEVITER_F_LEAVES_FIRST: while (di->di_curdepth >= 0) { if ((dv = deviter_next1(di)) == NULL) { di->di_curdepth--; deviter_reinit(di); } else if (dv->dv_depth == di->di_curdepth) break; } break; case DEVITER_F_ROOT_FIRST: while (di->di_curdepth <= di->di_maxdepth) { if ((dv = deviter_next1(di)) == NULL) { di->di_curdepth++; deviter_reinit(di); } else if (dv->dv_depth == di->di_curdepth) break; } break; default: break; } mutex_exit(&alldevs_lock); return dv; } void deviter_release(deviter_t *di) { bool rw = (di->di_flags & DEVITER_F_RW) != 0; mutex_enter(&alldevs_lock); if (rw) --alldevs_nwrite; else --alldevs_nread; /* XXX wake a garbage-collection thread */ mutex_exit(&alldevs_lock); } const char * cfdata_ifattr(const struct cfdata *cf) { return cf->cf_pspec->cfp_iattr; } bool ifattr_match(const char *snull, const char *t) { return (snull == NULL) || strcmp(snull, t) == 0; } void null_childdetached(device_t self, device_t child) { /* do nothing */ } static void sysctl_detach_setup(struct sysctllog **clog) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_BOOL, "detachall", SYSCTL_DESCR("Detach all devices at shutdown"), NULL, 0, &detachall, 0, CTL_KERN, CTL_CREATE, CTL_EOL); }