/* $NetBSD: z8530tty.c,v 1.3 1996/02/19 04:34:01 gwr Exp $ */ /* * Copyright (c) 1994 Gordon W. Ross * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 Dual UART driver (tty interface) * * This is the "slave" driver that will be attached to * the "zsc" driver for plain "tty" async. serial lines. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KGDB extern int zs_check_kgdb(); #endif /* * Allow the MD var.h to override the default CFLAG so that * console messages during boot come out with correct parity. */ #ifndef ZSTTY_DEF_CFLAG #define ZSTTY_DEF_CFLAG TTYDEF_CFLAG #endif /* * How many input characters we can buffer. * The port-specific var.h may override this. * Note: must be a power of two! */ #ifndef ZSTTY_RING_SIZE #define ZSTTY_RING_SIZE 1024 #endif #define ZSTTY_RING_MASK (ZSTTY_RING_SIZE-1) struct zstty_softc { struct device zst_dev; /* required first: base device */ struct tty *zst_tty; struct zs_chanstate *zst_cs; int zst_hwflags; /* see z8530var.h */ int zst_swflags; /* TIOCFLAG_SOFTCAR, ... */ /* Flags to communicate with zstty_softint() */ volatile int zst_intr_flags; #define INTR_RX_OVERRUN 1 #define INTR_TX_EMPTY 2 #define INTR_ST_CHECK 4 /* * The transmit byte count and address are used for pseudo-DMA * output in the hardware interrupt code. PDMA can be suspended * to get pending changes done; heldtbc is used for this. It can * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state. */ int zst_tbc; /* transmit byte count */ caddr_t zst_tba; /* transmit buffer address */ int zst_heldtbc; /* held tbc while xmission stopped */ /* * Printing an overrun error message often takes long enough to * cause another overrun, so we only print one per second. */ long zst_rotime; /* time of last ring overrun */ long zst_fotime; /* time of last fifo overrun */ /* * The receive ring buffer. */ u_int zst_rbget; /* ring buffer `get' index */ volatile u_int zst_rbput; /* ring buffer `put' index */ u_short zst_rbuf[ZSTTY_RING_SIZE]; /* rr1, data pairs */ }; /* Definition of the driver for autoconfig. */ static int zstty_match(struct device *, void *, void *); static void zstty_attach(struct device *, struct device *, void *); struct cfdriver zsttycd = { NULL, "zstty", zstty_match, zstty_attach, DV_TTY, sizeof(struct zstty_softc), NULL, }; struct zsops zsops_tty; /* Routines called from other code. */ cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */ static void zsstart(struct tty *); static int zsparam(struct tty *, struct termios *); static void zs_modem(struct zstty_softc *zst, int onoff); /* * zstty_match: how is this zs channel configured? */ int zstty_match(parent, match, aux) struct device *parent; void *match, *aux; { struct cfdata *cf = match; struct zsc_attach_args *args = aux; /* Exact match is better than wildcard. */ if (cf->cf_loc[0] == args->channel) return 2; /* This driver accepts wildcard. */ if (cf->cf_loc[0] == -1) return 1; return 0; } void zstty_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct zsc_softc *zsc = (void *) parent; struct zstty_softc *zst = (void *) self; struct zsc_attach_args *args = aux; struct zs_chanstate *cs; struct cfdata *cf; struct tty *tp; int channel, tty_unit; dev_t dev; cf = zst->zst_dev.dv_cfdata; tty_unit = zst->zst_dev.dv_unit; channel = args->channel; cs = &zsc->zsc_cs[channel]; cs->cs_private = zst; cs->cs_ops = &zsops_tty; zst->zst_cs = cs; zst->zst_swflags = cf->cf_flags; /* softcar, etc. */ zst->zst_hwflags = args->hwflags; dev = makedev(ZSTTY_MAJOR, tty_unit); if (zst->zst_swflags) printf(" flags 0x%x", zst->zst_swflags); if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) printf(" (console)"); else { #ifdef KGDB /* * Allow kgdb to "take over" this port. If this port is * NOT the kgdb port, zs_check_kgdb() will return zero. * If it IS the kgdb port, it will print "kgdb,...\n" * and then return non-zero. */ if (zs_check_kgdb(cs, dev)) { /* * This is the kgdb port (exclusive use) * so skip the normal attach code. */ return; } #endif } printf("\n"); tp = zst->zst_tty = ttymalloc(); tp->t_dev = dev; tp->t_oproc = zsstart; tp->t_param = zsparam; /* * Hardware init */ if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) { /* This unit is the console. */ zst->zst_swflags |= TIOCFLAG_SOFTCAR; /* Call _param so interrupts get enabled. */ cs->cs_defspeed = zs_getspeed(cs); tp->t_ispeed = cs->cs_defspeed; tp->t_ospeed = cs->cs_defspeed; tp->t_cflag = ZSTTY_DEF_CFLAG; (void) zsparam(tp, &tp->t_termios); } else { /* Not the console; may need reset. */ int reset, s; reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } /* * Initialize state of modem control lines (DTR). * If softcar is set, turn on DTR now and leave it. * otherwise, turn off DTR now, and raise in open. * (Keeps modem from answering too early.) */ zs_modem(zst, (zst->zst_swflags & TIOCFLAG_SOFTCAR) ? 1 : 0); } /* * Return pointer to our tty. */ struct tty * zstty(dev) dev_t dev; { struct zstty_softc *zst; int unit = minor(dev); #ifdef DIAGNOSTIC if (unit >= zsttycd.cd_ndevs) panic("zstty"); #endif zst = zsttycd.cd_devs[unit]; return (zst->zst_tty); } /* * Open a zs serial (tty) port. */ int zsopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { register struct tty *tp; register struct zs_chanstate *cs; struct zstty_softc *zst; int error, s, unit; unit = minor(dev); if (unit >= zsttycd.cd_ndevs) return (ENXIO); zst = zsttycd.cd_devs[unit]; if (zst == NULL) return (ENXIO); tp = zst->zst_tty; cs = zst->zst_cs; /* If KGDB took the line, then tp==NULL */ if (tp == NULL) return (EBUSY); /* It's simpler to do this up here. */ if (((tp->t_state & (TS_ISOPEN | TS_XCLUDE)) == (TS_ISOPEN | TS_XCLUDE)) && (p->p_ucred->cr_uid != 0) ) { return (EBUSY); } s = spltty(); if ((tp->t_state & TS_ISOPEN) == 0) { /* First open. */ ttychars(tp); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = ZSTTY_DEF_CFLAG; if (zst->zst_swflags & TIOCFLAG_CLOCAL) tp->t_cflag |= CLOCAL; if (zst->zst_swflags & TIOCFLAG_CRTSCTS) tp->t_cflag |= CRTSCTS; if (zst->zst_swflags & TIOCFLAG_MDMBUF) tp->t_cflag |= MDMBUF; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = cs->cs_defspeed; (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); /* Flush any pending input. */ zst->zst_rbget = zst->zst_rbput; zs_iflush(cs); /* XXX */ /* Turn on DTR */ zs_modem(zst, 1); if (zst->zst_swflags & TIOCFLAG_SOFTCAR) { tp->t_state |= TS_CARR_ON; } } error = 0; /* Wait for carrier. */ for (;;) { register int rr0; /* Might never get status intr if carrier already on. */ rr0 = zs_read_csr(cs); if (rr0 & ZSRR0_DCD) { tp->t_state |= TS_CARR_ON; break; } if ((tp->t_state & TS_CARR_ON) || (tp->t_cflag & CLOCAL) || (flags & O_NONBLOCK) ) { break; } tp->t_state |= TS_WOPEN; error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0); if (error) { if ((tp->t_state & TS_ISOPEN) == 0) { /* Never get here with softcar */ zs_modem(zst, 0); tp->t_state &= ~TS_WOPEN; ttwakeup(tp); } break; } } splx(s); if (error == 0) error = linesw[tp->t_line].l_open(dev, tp); return (error); } /* * Close a zs serial port. */ int zsclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { struct zstty_softc *zst; register struct zs_chanstate *cs; register struct tty *tp; struct zsinfo *zi; int hup, s; zst = zsttycd.cd_devs[minor(dev)]; cs = zst->zst_cs; tp = zst->zst_tty; /* XXX This is for cons.c. */ if ((tp->t_state & TS_ISOPEN) == 0) return 0; (*linesw[tp->t_line].l_close)(tp, flags); hup = tp->t_cflag & HUPCL; if (zst->zst_swflags & TIOCFLAG_SOFTCAR) hup = 0; if (hup) { zs_modem(zst, 0); /* hold low for 1 second */ (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); } if (cs->cs_creg[5] & ZSWR5_BREAK) { zs_break(cs, 0); } /* XXX - turn off interrupts? */ ttyclose(tp); return (0); } /* * Read/write zs serial port. */ int zsread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct zstty_softc *zst; register struct tty *tp; zst = zsttycd.cd_devs[minor(dev)]; tp = zst->zst_tty; return (linesw[tp->t_line].l_read(tp, uio, flags)); } int zswrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { register struct zstty_softc *zst; register struct tty *tp; zst = zsttycd.cd_devs[minor(dev)]; tp = zst->zst_tty; return (linesw[tp->t_line].l_write(tp, uio, flags)); } #define TIOCFLAG_ALL (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL | \ TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF ) int zsioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register struct tty *tp; register int error, tmp; zst = zsttycd.cd_devs[minor(dev)]; cs = zst->zst_cs; tp = zst->zst_tty; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: zs_break(cs, 1); break; case TIOCCBRK: zs_break(cs, 0); break; case TIOCGFLAGS: *(int *)data = zst->zst_swflags; break; case TIOCSFLAGS: error = suser(p->p_ucred, &p->p_acflag); if (error != 0) return (EPERM); tmp = *(int *)data; /* Check for random bits... */ if (tmp & ~TIOCFLAG_ALL) return(EINVAL); /* Silently enforce softcar on the console. */ if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) tmp |= TIOCFLAG_SOFTCAR; /* These flags take effect during open. */ zst->zst_swflags = tmp; break; case TIOCSDTR: zs_modem(zst, 1); break; case TIOCCDTR: zs_modem(zst, 0); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: case TIOCMGET: default: return (ENOTTY); } return (0); } /* * Start or restart transmission. */ static void zsstart(tp) register struct tty *tp; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register int s, nch; zst = zsttycd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; s = spltty(); /* * If currently active or delaying, no need to do anything. */ if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) goto out; /* * If there are sleepers, and output has drained below low * water mark, awaken. */ if (tp->t_outq.c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); } nch = ndqb(&tp->t_outq, 0); /* XXX */ if (nch) { register char *p = tp->t_outq.c_cf; /* mark busy, enable tx done interrupts, & send first byte */ tp->t_state |= TS_BUSY; (void) splzs(); cs->cs_preg[1] |= ZSWR1_TIE; cs->cs_creg[1] |= ZSWR1_TIE; zs_write_reg(cs, 1, cs->cs_creg[1]); zs_write_data(cs, *p); zst->zst_tba = p + 1; zst->zst_tbc = nch - 1; } else { /* * Nothing to send, turn off transmit done interrupts. * This is useful if something is doing polled output. */ (void) splzs(); cs->cs_preg[1] &= ~ZSWR1_TIE; cs->cs_creg[1] &= ~ZSWR1_TIE; zs_write_reg(cs, 1, cs->cs_creg[1]); } out: splx(s); } /* * Stop output, e.g., for ^S or output flush. */ int zsstop(tp, flag) struct tty *tp; int flag; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register int s; zst = zsttycd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; s = splzs(); if (tp->t_state & TS_BUSY) { /* * Device is transmitting; must stop it. */ zst->zst_tbc = 0; if ((tp->t_state & TS_TTSTOP) == 0) tp->t_state |= TS_FLUSH; } splx(s); return (0); } /* * Set ZS tty parameters from termios. * XXX - Should just copy the whole termios after * making sure all the changes could be done. * XXX - Only whack the UART when params change... */ static int zsparam(tp, t) register struct tty *tp; register struct termios *t; { register struct zstty_softc *zst; register struct zs_chanstate *cs; register int s, bps, cflag, tconst; u_char tmp3, tmp4, tmp5, reset; zst = zsttycd.cd_devs[minor(tp->t_dev)]; cs = zst->zst_cs; /* * Because PCLK is only run at 4.9 MHz, the fastest we * can go is 51200 baud (this corresponds to TC=1). * This is somewhat unfortunate as there is no real * reason we should not be able to handle higher rates. */ bps = t->c_ospeed; if (bps < 0 || (t->c_ispeed && t->c_ispeed != bps)) return (EINVAL); if (bps == 0) { /* stty 0 => drop DTR and RTS */ zs_modem(zst, 0); return (0); } tconst = BPS_TO_TCONST(cs->cs_pclk_div16, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ bps = TCONST_TO_BPS(cs->cs_pclk_div16, tconst); if (bps != t->c_ospeed) return (EINVAL); tp->t_ispeed = tp->t_ospeed = bps; cflag = t->c_cflag; tp->t_cflag = cflag; /* * Block interrupts so that state will not * be altered until we are done setting it up. */ s = splzs(); /* * Initial values in cs_preg are set before * our attach routine is called. The master * interrupt enable is handled by zsc.c */ cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; switch (cflag & CSIZE) { case CS5: tmp3 = ZSWR3_RX_5; tmp5 = ZSWR5_TX_5; break; case CS6: tmp3 = ZSWR3_RX_6; tmp5 = ZSWR5_TX_6; break; case CS7: tmp3 = ZSWR3_RX_7; tmp5 = ZSWR5_TX_7; break; case CS8: default: tmp3 = ZSWR3_RX_8; tmp5 = ZSWR5_TX_8; break; } /* * Output hardware flow control on the chip is horrendous: if * carrier detect drops, the receiver is disabled. Hence we * can only do this when the carrier is on. */ tmp3 |= ZSWR3_RX_ENABLE; if (cflag & CCTS_OFLOW) { if (zs_read_csr(cs) & ZSRR0_DCD) tmp3 |= ZSWR3_HFC; } cs->cs_preg[3] = tmp3; cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; tmp4 = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); if ((cflag & PARODD) == 0) tmp4 |= ZSWR4_EVENP; if (cflag & PARENB) tmp4 |= ZSWR4_PARENB; cs->cs_preg[4] = tmp4; /* * If nothing is being transmitted, set up new current values, * else mark them as pending. */ if (cs->cs_heldchange == 0) { if (tp->t_state & TS_BUSY) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else { zs_loadchannelregs(cs); } } splx(s); return (0); } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ static void zs_modem(zst, onoff) struct zstty_softc *zst; int onoff; { struct zs_chanstate *cs; struct tty *tp; int s, bis, and; cs = zst->zst_cs; tp = zst->zst_tty; if (onoff) { bis = ZSWR5_DTR | ZSWR5_RTS; and = ~0; } else { bis = 0; and = ~(ZSWR5_DTR | ZSWR5_RTS); } s = splzs(); cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; if (cs->cs_heldchange == 0) { if (tp->t_state & TS_BUSY) { zst->zst_heldtbc = zst->zst_tbc; zst->zst_tbc = 0; cs->cs_heldchange = 1; } else { cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; zs_write_reg(cs, 5, cs->cs_creg[5]); } } splx(s); } /**************************************************************** * Interface to the lower layer (zscc) ****************************************************************/ /* * XXX: need to do input flow-control to avoid ring overrun. */ static int zstty_rxint(cs) register struct zs_chanstate *cs; { register struct zstty_softc *zst; register put, put_next; register u_char c, rr0, rr1; zst = cs->cs_private; put = zst->zst_rbput; nextchar: /* Read the input data ASAP. */ c = zs_read_data(cs); /* Save the status register too. */ rr1 = zs_read_reg(cs, 1); if (rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { /* Clear the receive error. */ zs_write_csr(cs, ZSWR0_RESET_ERRORS); } zst->zst_rbuf[put] = (c << 8) | rr1; put_next = (put + 1) & ZSTTY_RING_MASK; /* Would overrun if increment makes (put==get). */ if (put_next == zst->zst_rbget) { zst->zst_intr_flags |= INTR_RX_OVERRUN; } else { /* OK, really increment. */ put = put_next; } /* Keep reading until the FIFO is empty. */ rr0 = zs_read_csr(cs); if (rr0 & ZSRR0_RX_READY) goto nextchar; /* Done reading. */ zst->zst_rbput = put; /* Ask for softint() call. */ cs->cs_softreq = 1; return(1); } static int zstty_txint(cs) register struct zs_chanstate *cs; { register struct zstty_softc *zst; register int count, rval; zst = cs->cs_private; count = zst->zst_tbc; if (count > 0) { /* Send the next char. */ zs_write_data(cs, *zst->zst_tba); zst->zst_tba++; zst->zst_tbc = --count; rval = 0; } else { /* Nothing more to send. */ zs_write_csr(cs, ZSWR0_RESET_TXINT); zst->zst_intr_flags |= INTR_TX_EMPTY; rval = 1; /* want softcall */ } cs->cs_softreq = rval; return (rval); } static int zstty_stint(cs) register struct zs_chanstate *cs; { register struct zstty_softc *zst; register int rr0; zst = cs->cs_private; rr0 = zs_read_csr(cs); zs_write_csr(cs, ZSWR0_RESET_STATUS); if ((rr0 & ZSRR0_BREAK) && (zst->zst_hwflags & ZS_HWFLAG_CONSOLE)) { zs_abort(); return (0); } zst->zst_intr_flags |= INTR_ST_CHECK; /* Ask for softint() call. */ cs->cs_softreq = 1; return (1); } /* * Print out a ring or fifo overrun error message. */ static void zsoverrun(zst, ptime, what) struct zstty_softc *zst; long *ptime; char *what; { if (*ptime != time.tv_sec) { *ptime = time.tv_sec; log(LOG_WARNING, "%s: %s overrun\n", zst->zst_dev.dv_xname, what); } } static int zstty_softint(cs) struct zs_chanstate *cs; { register struct zstty_softc *zst; register struct linesw *line; register struct tty *tp; register int get, c, s; int intr_flags; register u_short ring_data; register u_char rr0, rr1; zst = cs->cs_private; tp = zst->zst_tty; line = &linesw[tp->t_line]; /* Atomically get and clear flags. */ s = splzs(); intr_flags = zst->zst_intr_flags; zst->zst_intr_flags = 0; splx(s); if (intr_flags & INTR_RX_OVERRUN) { /* May turn this on again below. */ intr_flags &= ~INTR_RX_OVERRUN; zsoverrun(zst, "ring"); } /* * Copy data from the receive ring into the tty layer. */ get = zst->zst_rbget; while (get != zst->zst_rbput) { ring_data = zst->zst_rbuf[get]; get = (get + 1) & ZSTTY_RING_MASK; if (ring_data & ZSRR1_DO) intr_flags |= INTR_RX_OVERRUN; /* low byte of ring_data is rr1 */ c = (ring_data >> 8) & 0xff; if (ring_data & ZSRR1_FE) c |= TTY_FE; if (ring_data & ZSRR1_PE) c |= TTY_PE; line->l_rint(c, tp); } zst->zst_rbget = get; /* If set, it is from the loop above. */ if (intr_flags & INTR_RX_OVERRUN) { zsoverrun(zst, "fifo"); } if (intr_flags & INTR_TX_EMPTY) { /* * Transmit done. Change registers and resume, * or just clear BUSY. */ if (cs->cs_heldchange) { s = splzs(); rr0 = zs_read_csr(cs); if ((rr0 & ZSRR0_DCD) == 0) cs->cs_preg[3] &= ~ZSWR3_HFC; zs_loadchannelregs(cs); splx(s); cs->cs_heldchange = 0; if (zst->zst_heldtbc && (tp->t_state & TS_TTSTOP) == 0) { zst->zst_tbc = zst->zst_heldtbc - 1; zs_write_data(cs, *zst->zst_tba); zst->zst_tba++; goto tx_resumed; } } tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else ndflush(&tp->t_outq, zst->zst_tba - (caddr_t) tp->t_outq.c_cf); line->l_start(tp); tx_resumed: } if (intr_flags & INTR_ST_CHECK) { /* * Status line change. * * The chip's hardware flow control is, as noted in zsreg.h, * busted---if the DCD line goes low the chip shuts off the * receiver (!). If we want hardware CTS flow control but do * not have it, and carrier is now on, turn HFC on; if we have * HFC now but carrier has gone low, turn it off. */ s = splzs(); rr0 = zs_read_csr(cs); if (rr0 & ZSRR0_DCD) { if (tp->t_cflag & CCTS_OFLOW && (cs->cs_creg[3] & ZSWR3_HFC) == 0) { cs->cs_creg[3] |= ZSWR3_HFC; zs_write_reg(cs, 3, cs->cs_creg[3]); } } else { if (cs->cs_creg[3] & ZSWR3_HFC) { cs->cs_creg[3] &= ~ZSWR3_HFC; zs_write_reg(cs, 3, cs->cs_creg[3]); } } splx(s); /* Was there a change on DCD? */ if ((rr0 ^ cs->cs_rr0) & ZSRR0_DCD) { c = ((rr0 & ZSRR0_DCD) != 0); if (line->l_modem(tp, c) == 0) zs_modem(zst, c); } cs->cs_rr0 = rr0; } return (1); } struct zsops zsops_tty = { zstty_rxint, /* receive char available */ zstty_stint, /* external/status */ zstty_txint, /* xmit buffer empty */ zstty_softint, /* process software interrupt */ };