/* $NetBSD: fd.c,v 1.9 2002/11/01 11:31:51 mrg Exp $ */ /* $OpenBSD: fd.c,v 1.6 1998/10/03 21:18:57 millert Exp $ */ /* NetBSD: fd.c,v 1.78 1995/07/04 07:23:09 mycroft Exp */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "locators.h" #define FDUNIT(dev) DISKUNIT(dev) #define FDTYPE(dev) DISKPART(dev) /* controller driver configuration */ int fdprint(void *, const char *); /* * Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how * we tell them apart. */ struct fd_type { int sectrac; /* sectors per track */ int heads; /* number of heads */ int seccyl; /* sectors per cylinder */ int secsize; /* size code for sectors */ int datalen; /* data len when secsize = 0 */ int steprate; /* step rate and head unload time */ int gap1; /* gap len between sectors */ int gap2; /* formatting gap */ int cyls; /* total num of cylinders */ int size; /* size of disk in sectors */ int step; /* steps per cylinder */ int rate; /* transfer speed code */ const char *name; }; /* The order of entries in the following table is important -- BEWARE! */ struct fd_type fd_types[] = { { 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" }, /* 1.44MB diskette */ { 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" }, /* 1.2 MB AT-diskettes */ { 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" }, /* 360kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" }, /* 360kB PC diskettes */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */ { 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" }, /* 720kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */ }; /* software state, per disk (with up to 4 disks per ctlr) */ struct fd_softc { struct device sc_dev; struct disk sc_dk; const struct fd_type *sc_deftype; /* default type descriptor */ struct fd_type *sc_type; /* current type descriptor */ struct fd_type sc_type_copy; /* copy for fiddling when formatting */ struct callout sc_motoron_ch; struct callout sc_motoroff_ch; daddr_t sc_blkno; /* starting block number */ int sc_bcount; /* byte count left */ int sc_opts; /* user-set options */ int sc_skip; /* bytes already transferred */ int sc_nblks; /* number of blocks currently transferring */ int sc_nbytes; /* number of bytes currently transferring */ int sc_drive; /* physical unit number */ int sc_flags; #define FD_OPEN 0x01 /* it's open */ #define FD_MOTOR 0x02 /* motor should be on */ #define FD_MOTOR_WAIT 0x04 /* motor coming up */ int sc_cylin; /* where we think the head is */ void *sc_sdhook; /* saved shutdown hook for drive. */ TAILQ_ENTRY(fd_softc) sc_drivechain; int sc_ops; /* I/O ops since last switch */ struct bufq_state sc_q; /* pending I/O requests */ int sc_active; /* number of active I/O operations */ }; /* floppy driver configuration */ int fdprobe __P((struct device *, struct cfdata *, void *)); void fdattach __P((struct device *, struct device *, void *)); extern struct cfdriver fd_cd; CFATTACH_DECL(fd, sizeof(struct fd_softc), fdprobe, fdattach, NULL, NULL); dev_type_open(fdopen); dev_type_close(fdclose); dev_type_read(fdread); dev_type_write(fdwrite); dev_type_ioctl(fdioctl); dev_type_strategy(fdstrategy); const struct bdevsw fd_bdevsw = { fdopen, fdclose, fdstrategy, fdioctl, nodump, nosize, D_DISK }; const struct cdevsw fd_cdevsw = { fdopen, fdclose, fdread, fdwrite, fdioctl, nostop, notty, nopoll, nommap, nokqfilter, D_DISK }; void fdgetdisklabel(struct fd_softc *); int fd_get_parms(struct fd_softc *); void fdstrategy(struct buf *); void fdstart(struct fd_softc *); struct dkdriver fddkdriver = { fdstrategy }; #if 0 const struct fd_type *fd_nvtotype(char *, int, int); #endif void fd_set_motor(struct fdc_softc *fdc, int reset); void fd_motor_off(void *arg); void fd_motor_on(void *arg); int fdcresult(struct fdc_softc *fdc); void fdcstart(struct fdc_softc *fdc); void fdcstatus(struct device *dv, int n, char *s); void fdctimeout(void *arg); void fdcpseudointr(void *arg); void fdcretry(struct fdc_softc *fdc); void fdfinish(struct fd_softc *fd, struct buf *bp); __inline const struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t); void fd_mountroot_hook(struct device *); /* * Arguments passed between fdcattach and fdprobe. */ struct fdc_attach_args { int fa_drive; const struct fd_type *fa_deftype; }; /* * Print the location of a disk drive (called just before attaching the * the drive). If `fdc' is not NULL, the drive was found but was not * in the system config file; print the drive name as well. * Return QUIET (config_find ignores this if the device was configured) to * avoid printing `fdN not configured' messages. */ int fdprint(aux, fdc) void *aux; const char *fdc; { register struct fdc_attach_args *fa = aux; if (!fdc) printf(" drive %d", fa->fa_drive); return QUIET; } void fdcattach(fdc) struct fdc_softc *fdc; { struct fdc_attach_args fa; bus_space_tag_t iot; bus_space_handle_t ioh; int type; iot = fdc->sc_iot; ioh = fdc->sc_ioh; callout_init(&fdc->sc_timo_ch); callout_init(&fdc->sc_intr_ch); fdc->sc_state = DEVIDLE; TAILQ_INIT(&fdc->sc_drives); /* * No way yet to determine default disk types. * we assume 1.44 3.5" type for the moment. */ type = 0; /* physical limit: two drives per controller. */ for (fa.fa_drive = 0; fa.fa_drive < 2; fa.fa_drive++) { fa.fa_deftype = &fd_types[type]; (void)config_found(&fdc->sc_dev, (void *)&fa, fdprint); } } int fdprobe(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct fdc_softc *fdc = (void *)parent; struct cfdata *cf = match; struct fdc_attach_args *fa = aux; int drive = fa->fa_drive; bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; int n; if (cf->cf_loc[FDCCF_DRIVE] != FDCCF_DRIVE_DEFAULT && cf->cf_loc[FDCCF_DRIVE] != drive) return 0; /* select drive and turn on motor */ bus_space_write_1(iot, ioh, FDOUT, drive | FDO_FRST | FDO_MOEN(drive)); /* wait for motor to spin up */ delay(250000); out_fdc(iot, ioh, NE7CMD_RECAL); out_fdc(iot, ioh, drive); /* wait for recalibrate */ delay(2000000); out_fdc(iot, ioh, NE7CMD_SENSEI); n = fdcresult(fdc); #ifdef FD_DEBUG { int i; printf("fdprobe: status"); for (i = 0; i < n; i++) printf(" %x", fdc->sc_status[i]); printf("\n"); } #endif if (n != 2 || (fdc->sc_status[0] & 0xf8) != 0x20) return 0; /* turn off motor */ bus_space_write_1(iot, ioh, FDOUT, FDO_FRST); return 1; } /* * Controller is working, and drive responded. Attach it. */ void fdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct fdc_softc *fdc = (void *)parent; struct fd_softc *fd = (void *)self; struct fdc_attach_args *fa = aux; const struct fd_type *type = fa->fa_deftype; int drive = fa->fa_drive; callout_init(&fd->sc_motoron_ch); callout_init(&fd->sc_motoroff_ch); /* XXX Allow `flags' to override device type? */ if (type) printf(": %s, %d cyl, %d head, %d sec\n", type->name, type->cyls, type->heads, type->sectrac); else printf(": density unknown\n"); bufq_alloc(&fd->sc_q, BUFQ_DISKSORT|BUFQ_SORT_CYLINDER); fd->sc_cylin = -1; fd->sc_drive = drive; fd->sc_deftype = type; fdc->sc_fd[drive] = fd; /* * Initialize and attach the disk structure. */ fd->sc_dk.dk_name = fd->sc_dev.dv_xname; fd->sc_dk.dk_driver = &fddkdriver; disk_attach(&fd->sc_dk); /* Establish a mountroot hook. */ mountroothook_establish(fd_mountroot_hook, &fd->sc_dev); /* Needed to power off if the motor is on when we halt. */ fd->sc_sdhook = shutdownhook_establish(fd_motor_off, fd); } #if 0 /* * Translate nvram type into internal data structure. Return NULL for * none/unknown/unusable. */ const struct fd_type * fd_nvtotype(fdc, nvraminfo, drive) char *fdc; int nvraminfo, drive; { int type; type = (drive == 0 ? nvraminfo : nvraminfo << 4) & 0xf0; #if 0 switch (type) { case NVRAM_DISKETTE_NONE: return NULL; case NVRAM_DISKETTE_12M: return &fd_types[1]; case NVRAM_DISKETTE_TYPE5: case NVRAM_DISKETTE_TYPE6: /* XXX We really ought to handle 2.88MB format. */ case NVRAM_DISKETTE_144M: return &fd_types[0]; case NVRAM_DISKETTE_360K: return &fd_types[3]; case NVRAM_DISKETTE_720K: return &fd_types[4]; default: printf("%s: drive %d: unknown device type 0x%x\n", fdc, drive, type); return NULL; } #else return &fd_types[0]; /* Use only 1.44 for now */ #endif } #endif __inline const struct fd_type * fd_dev_to_type(fd, dev) struct fd_softc *fd; dev_t dev; { int type = FDTYPE(dev); if (type > (sizeof(fd_types) / sizeof(fd_types[0]))) return NULL; return type ? &fd_types[type - 1] : fd->sc_deftype; } void fdstrategy(bp) register struct buf *bp; /* IO operation to perform */ { struct fd_softc *fd = device_lookup(&fd_cd, FDUNIT(bp->b_dev)); int sz; int s; /* Valid unit, controller, and request? */ if (bp->b_blkno < 0 || (bp->b_bcount % FDC_BSIZE) != 0) { bp->b_error = EINVAL; goto bad; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; sz = howmany(bp->b_bcount, FDC_BSIZE); if (bp->b_blkno + sz > fd->sc_type->size) { sz = fd->sc_type->size - bp->b_blkno; if (sz == 0) { /* If exactly at end of disk, return EOF. */ goto done; } if (sz < 0) { /* If past end of disk, return EINVAL. */ bp->b_error = EINVAL; goto bad; } /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } bp->b_rawblkno = bp->b_blkno; bp->b_cylinder = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE) / fd->sc_type->seccyl; #ifdef FD_DEBUG printf("fdstrategy: b_blkno %d b_bcount %ld blkno %d cylin %ld sz %d\n", bp->b_blkno, bp->b_bcount, fd->sc_blkno, bp->b_cylinder, sz); #endif /* Queue transfer on drive, activate drive and controller if idle. */ s = splbio(); BUFQ_PUT(&fd->sc_q, bp); callout_stop(&fd->sc_motoroff_ch); /* a good idea */ if (fd->sc_active == 0) fdstart(fd); #ifdef DIAGNOSTIC else { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; if (fdc->sc_state == DEVIDLE) { printf("fdstrategy: controller inactive\n"); fdcstart(fdc); } } #endif splx(s); return; bad: bp->b_flags |= B_ERROR; done: /* Toss transfer; we're done early. */ bp->b_resid = bp->b_bcount; biodone(bp); } void fdstart(fd) struct fd_softc *fd; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int active = fdc->sc_drives.tqh_first != 0; /* Link into controller queue. */ fd->sc_active = 1; TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); /* If controller not already active, start it. */ if (!active) fdcstart(fdc); } void fdfinish(fd, bp) struct fd_softc *fd; struct buf *bp; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; /* * Move this drive to the end of the queue to give others a `fair' * chance. We only force a switch if N operations are completed while * another drive is waiting to be serviced, since there is a long motor * startup delay whenever we switch. */ (void)BUFQ_GET(&fd->sc_q); if (fd->sc_drivechain.tqe_next && ++fd->sc_ops >= 8) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); if (BUFQ_PEEK(&fd->sc_q) != NULL) TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); else fd->sc_active = 0; } bp->b_resid = fd->sc_bcount; fd->sc_skip = 0; biodone(bp); /* turn off motor 5s from now */ callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd); fdc->sc_state = DEVIDLE; } int fdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio)); } int fdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio)); } void fd_set_motor(fdc, reset) struct fdc_softc *fdc; int reset; { struct fd_softc *fd; u_char status; int n; if ((fd = fdc->sc_drives.tqh_first) != NULL) status = fd->sc_drive; else status = 0; if (!reset) status |= FDO_FRST | FDO_FDMAEN; for (n = 0; n < 4; n++) if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) status |= FDO_MOEN(n); bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, FDOUT, status); } void fd_motor_off(arg) void *arg; { struct fd_softc *fd = arg; int s; s = splbio(); fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); fd_set_motor((struct fdc_softc *)fd->sc_dev.dv_parent, 0); splx(s); } void fd_motor_on(arg) void *arg; { struct fd_softc *fd = arg; struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int s; s = splbio(); fd->sc_flags &= ~FD_MOTOR_WAIT; if ((fdc->sc_drives.tqh_first == fd) && (fdc->sc_state == MOTORWAIT)) (void) fdcintr(fdc); splx(s); } int fdcresult(fdc) struct fdc_softc *fdc; { bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; u_char i; int j = 100000, n = 0; for (; j; j--) { i = bus_space_read_1(iot, ioh, FDSTS) & (NE7_DIO | NE7_RQM | NE7_CB); if (i == NE7_RQM) return n; if (i == (NE7_DIO | NE7_RQM | NE7_CB)) { if (n >= sizeof(fdc->sc_status)) { log(LOG_ERR, "fdcresult: overrun\n"); return -1; } fdc->sc_status[n++] = bus_space_read_1(iot, ioh, FDDATA); } delay(10); } log(LOG_ERR, "fdcresult: timeout\n"); return -1; } int out_fdc(iot, ioh, x) bus_space_tag_t iot; bus_space_handle_t ioh; u_char x; { int i = 100000; while ((bus_space_read_1(iot, ioh, FDSTS) & NE7_DIO) && i-- > 0); if (i <= 0) return -1; while ((bus_space_read_1(iot, ioh, FDSTS) & NE7_RQM) == 0 && i-- > 0); if (i <= 0) return -1; bus_space_write_1(iot, ioh, FDDATA, x); return 0; } int fdopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { struct fd_softc *fd; const struct fd_type *type; fd = device_lookup(&fd_cd, FDUNIT(dev)); if (fd == NULL) return ENXIO; type = fd_dev_to_type(fd, dev); if (type == NULL) return ENXIO; if ((fd->sc_flags & FD_OPEN) != 0 && memcmp(fd->sc_type, type, sizeof(*type))) return EBUSY; fd->sc_type_copy = *type; fd->sc_type = &fd->sc_type_copy; fd->sc_cylin = -1; fd->sc_flags |= FD_OPEN; return 0; } int fdclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { struct fd_softc *fd = device_lookup(&fd_cd, FDUNIT(dev)); fd->sc_flags &= ~FD_OPEN; return 0; } void fdcstart(fdc) struct fdc_softc *fdc; { #ifdef DIAGNOSTIC /* only got here if controller's drive queue was inactive; should be in idle state */ if (fdc->sc_state != DEVIDLE) { printf("fdcstart: not idle\n"); return; } #endif (void) fdcintr(fdc); } void fdcstatus(dv, n, s) struct device *dv; int n; char *s; { struct fdc_softc *fdc = (void *)dv->dv_parent; char bits[64]; if (n == 0) { out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI); (void) fdcresult(fdc); n = 2; } printf("%s: %s", dv->dv_xname, s); switch (n) { case 0: printf("\n"); break; case 2: printf(" (st0 %s cyl %d)\n", bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS, bits, sizeof(bits)), fdc->sc_status[1]); break; case 7: printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS, bits, sizeof(bits))); printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1], NE7_ST1BITS, bits, sizeof(bits))); printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2], NE7_ST2BITS, bits, sizeof(bits))); printf(" cyl %d head %d sec %d)\n", fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); break; #ifdef DIAGNOSTIC default: printf("\nfdcstatus: weird size"); break; #endif } } void fdctimeout(arg) void *arg; { struct fdc_softc *fdc = arg; struct fd_softc *fd = fdc->sc_drives.tqh_first; int s; s = splbio(); #ifdef DEBUG log(LOG_ERR, "fdctimeout: state %d\n", fdc->sc_state); #endif fdcstatus(&fd->sc_dev, 0, "timeout"); if (BUFQ_PEEK(&fd->sc_q) != NULL) fdc->sc_state++; else fdc->sc_state = DEVIDLE; (void) fdcintr(fdc); splx(s); } void fdcpseudointr(arg) void *arg; { int s; /* Just ensure it has the right spl. */ s = splbio(); (void) fdcintr(arg); splx(s); } int fdcintr(arg) void *arg; { struct fdc_softc *fdc = arg; #define st0 fdc->sc_status[0] #define cyl fdc->sc_status[1] struct fd_softc *fd; struct buf *bp; bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; int read, head, sec, i, nblks; struct fd_type *type; loop: /* Is there a drive for the controller to do a transfer with? */ fd = fdc->sc_drives.tqh_first; if (fd == NULL) { fdc->sc_state = DEVIDLE; return 1; } /* Is there a transfer to this drive? If not, deactivate drive. */ bp = BUFQ_PEEK(&fd->sc_q); if (bp == NULL) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); fd->sc_active = 0; goto loop; } switch (fdc->sc_state) { case DEVIDLE: fdc->sc_errors = 0; fd->sc_skip = 0; fd->sc_bcount = bp->b_bcount; fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE); callout_stop(&fd->sc_motoroff_ch); if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) { fdc->sc_state = MOTORWAIT; return 1; } if ((fd->sc_flags & FD_MOTOR) == 0) { /* Turn on the motor, being careful about pairing. */ struct fd_softc *ofd = fdc->sc_fd[fd->sc_drive ^ 1]; if (ofd && ofd->sc_flags & FD_MOTOR) { callout_stop(&ofd->sc_motoroff_ch); ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); } fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT; fd_set_motor(fdc, 0); fdc->sc_state = MOTORWAIT; /* Allow .25s for motor to stabilize. */ callout_reset(&fd->sc_motoron_ch, hz / 4, fd_motor_on, fd); return 1; } /* Make sure the right drive is selected. */ fd_set_motor(fdc, 0); /* fall through */ case DOSEEK: doseek: if (fd->sc_cylin == bp->b_cylinder) goto doio; out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */ out_fdc(iot, ioh, fd->sc_type->steprate); out_fdc(iot, ioh, 6); /* XXX head load time == 6ms */ out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */ out_fdc(iot, ioh, fd->sc_drive); /* drive number */ out_fdc(iot, ioh, bp->b_cylinder * fd->sc_type->step); fd->sc_cylin = -1; fdc->sc_state = SEEKWAIT; fd->sc_dk.dk_seek++; disk_busy(&fd->sc_dk); callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc); return 1; case DOIO: doio: type = fd->sc_type; sec = fd->sc_blkno % type->seccyl; nblks = type->seccyl - sec; nblks = min(nblks, fd->sc_bcount / FDC_BSIZE); nblks = min(nblks, fdc->sc_maxiosize / FDC_BSIZE); fd->sc_nblks = nblks; fd->sc_nbytes = nblks * FDC_BSIZE; head = sec / type->sectrac; sec -= head * type->sectrac; #ifdef DIAGNOSTIC { int block; block = (fd->sc_cylin * type->heads + head) * type->sectrac + sec; if (block != fd->sc_blkno) { printf("fdcintr: block %d != blkno %d\n", block, fd->sc_blkno); #ifdef DDB Debugger(); #endif } } #endif read = (bp->b_flags & B_READ) != 0; FDCDMA_START(fdc, bp->b_data + fd->sc_skip, fd->sc_nbytes, read); bus_space_write_1(iot, ioh, FDCTL, type->rate); #ifdef FD_DEBUG printf("fdcintr: %s drive %d track %d head %d sec %d nblks %d\n", read ? "read" : "write", fd->sc_drive, fd->sc_cylin, head, sec, nblks); #endif if (read) out_fdc(iot, ioh, NE7CMD_READ); /* READ */ else out_fdc(iot, ioh, NE7CMD_WRITE);/* WRITE */ out_fdc(iot, ioh, (head << 2) | fd->sc_drive); out_fdc(iot, ioh, fd->sc_cylin); /* track */ out_fdc(iot, ioh, head); out_fdc(iot, ioh, sec + 1); /* sector + 1 */ out_fdc(iot, ioh, type->secsize); /* sector size */ out_fdc(iot, ioh, type->sectrac); /* sectors/track */ out_fdc(iot, ioh, type->gap1); /* gap1 size */ out_fdc(iot, ioh, type->datalen); /* data length */ fdc->sc_state = IOCOMPLETE; disk_busy(&fd->sc_dk); /* allow 2 seconds for operation */ callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc); return 1; /* will return later */ case SEEKWAIT: callout_stop(&fdc->sc_timo_ch); fdc->sc_state = SEEKCOMPLETE; /* allow 1/50 second for heads to settle */ callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc); return 1; case SEEKCOMPLETE: disk_unbusy(&fd->sc_dk, 0, 0); /* Make sure seek really happened. */ out_fdc(iot, ioh, NE7CMD_SENSEI); if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 || cyl != bp->b_cylinder * fd->sc_type->step) { #ifdef FD_DEBUG fdcstatus(&fd->sc_dev, 2, "seek failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = bp->b_cylinder; goto doio; case IOTIMEDOUT: FDCDMA_ABORT(fdc); case SEEKTIMEDOUT: case RECALTIMEDOUT: case RESETTIMEDOUT: fdcretry(fdc); goto loop; case IOCOMPLETE: /* IO DONE, post-analyze */ callout_stop(&fdc->sc_timo_ch); disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); i = fdcresult(fdc); if (i != 7 || (st0 & 0xf8) != 0) { FDCDMA_ABORT(fdc); #ifdef FD_DEBUG fdcstatus(&fd->sc_dev, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %d nblks %d\n", fd->sc_blkno, fd->sc_nblks); #endif fdcretry(fdc); goto loop; } FDCDMA_DONE(fdc); if (fdc->sc_errors) { diskerr(bp, "fd", "soft error (corrected)", LOG_PRINTF, fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL); printf("\n"); fdc->sc_errors = 0; } fd->sc_blkno += fd->sc_nblks; fd->sc_skip += fd->sc_nbytes; fd->sc_bcount -= fd->sc_nbytes; if (fd->sc_bcount > 0) { bp->b_cylinder = fd->sc_blkno / fd->sc_type->seccyl; goto doseek; } fdfinish(fd, bp); goto loop; case DORESET: /* try a reset, keep motor on */ fd_set_motor(fdc, 1); delay(100); fd_set_motor(fdc, 0); fdc->sc_state = RESETCOMPLETE; callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc); return 1; /* will return later */ case RESETCOMPLETE: callout_stop(&fdc->sc_timo_ch); /* clear the controller output buffer */ for (i = 0; i < 4; i++) { out_fdc(iot, ioh, NE7CMD_SENSEI); (void) fdcresult(fdc); } /* fall through */ case DORECAL: out_fdc(iot, ioh, NE7CMD_RECAL); /* recalibrate function */ out_fdc(iot, ioh, fd->sc_drive); fdc->sc_state = RECALWAIT; callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc); return 1; /* will return later */ case RECALWAIT: callout_stop(&fdc->sc_timo_ch); fdc->sc_state = RECALCOMPLETE; /* allow 1/30 second for heads to settle */ callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc); return 1; /* will return later */ case RECALCOMPLETE: out_fdc(iot, ioh, NE7CMD_SENSEI); if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) { #ifdef FD_DEBUG fdcstatus(&fd->sc_dev, 2, "recalibrate failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = 0; goto doseek; case MOTORWAIT: if (fd->sc_flags & FD_MOTOR_WAIT) return 1; /* time's not up yet */ goto doseek; default: fdcstatus(&fd->sc_dev, 0, "stray interrupt"); return 1; } #ifdef DIAGNOSTIC panic("fdcintr: impossible"); #endif #undef st0 #undef cyl } void fdcretry(fdc) struct fdc_softc *fdc; { struct fd_softc *fd; struct buf *bp; char bits[64]; fd = fdc->sc_drives.tqh_first; bp = BUFQ_PEEK(&fd->sc_q); switch (fdc->sc_errors) { case 0: /* try again */ fdc->sc_state = DOSEEK; break; case 1: case 2: case 3: /* didn't work; try recalibrating */ fdc->sc_state = DORECAL; break; case 4: /* still no go; reset the bastard */ fdc->sc_state = DORESET; break; default: diskerr(bp, "fd", "hard error", LOG_PRINTF, fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL); printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS, bits, sizeof(bits))); printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1], NE7_ST1BITS, bits, sizeof(bits))); printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2], NE7_ST2BITS, bits, sizeof(bits))); printf(" cyl %d head %d sec %d)\n", fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); bp->b_flags |= B_ERROR; bp->b_error = EIO; fdfinish(fd, bp); } fdc->sc_errors++; } int fdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct fd_softc *fd = device_lookup(&fd_cd, FDUNIT(dev)); struct disklabel buffer; int error; switch (cmd) { case DIOCGDINFO: memset(&buffer, 0, sizeof(buffer)); buffer.d_secpercyl = fd->sc_type->seccyl; buffer.d_type = DTYPE_FLOPPY; buffer.d_secsize = FDC_BSIZE; if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL) return EINVAL; *(struct disklabel *)addr = buffer; return 0; case DIOCWLABEL: if ((flag & FWRITE) == 0) return EBADF; /* XXX do something */ return 0; case DIOCWDINFO: if ((flag & FWRITE) == 0) return EBADF; error = setdisklabel(&buffer, (struct disklabel *)addr, 0, NULL); if (error) return error; error = writedisklabel(dev, fdstrategy, &buffer, NULL); return error; default: return ENOTTY; } #ifdef DIAGNOSTIC panic("fdioctl: impossible"); #endif } /* * Mountroot hook: prompt the user to enter the root file system floppy. */ void fd_mountroot_hook(dev) struct device *dev; { int c; printf("Insert filesystem floppy and press return."); cnpollc(1); for (;;) { c = cngetc(); if ((c == '\r') || (c == '\n')) { printf("\n"); break; } } cnpollc(0); }