/* $NetBSD: hdc9224.c,v 1.13 2000/06/29 07:14:37 mrg Exp $ */ /* * Copyright (c) 1996 Ludd, University of Lule}, Sweden. * All rights reserved. * * This code is derived from software contributed to Ludd by Bertram Barth. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed at Ludd, University of * Lule}, Sweden and its contributors. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * with much help from (in alphabetical order): * Jeremy * Roger Ivie * Rick Macklem * Mike Young * * Rewritten by Ragge 25 Jun 2000. New features: * - Uses interrupts instead of polling to signal ready. * - Can cooperate with the SCSI routines WRT. the DMA area. * * TODO: * - Floppy support missing. * - Bad block forwarding missing. * - Statistics collection. */ #undef RDDEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For BBSIZE */ #include #include #include #include #include #include #include #include #include #include /* For DEC disk encoding */ #include #include "ioconf.h" #include "locators.h" /* * on-disk geometry block */ #define _aP __attribute__ ((packed)) /* force byte-alignment */ struct rdgeom { char mbz[10]; /* 10 bytes of zero */ long xbn_count _aP; /* number of XBNs */ long dbn_count _aP; /* number of DBNs */ long lbn_count _aP; /* number of LBNs (Logical-Block-Numbers) */ long rbn_count _aP; /* number of RBNs (Replacement-Block-Numbers) */ short nspt; /* number of sectors per track */ short ntracks; /* number of tracks */ short ncylinders; /* number of cylinders */ short precomp; /* first cylinder for write precompensation */ short reduced; /* first cylinder for reduced write current */ short seek_rate; /* seek rate or zero for buffered seeks */ short crc_eec; /* 0 if CRC, 1 if ECC is being used */ short rct; /* "replacement control table" (RCT) */ short rct_ncopies; /* number of copies of the RCT */ long media_id _aP; /* media identifier */ short interleave; /* sector-to-sector interleave */ short headskew; /* head-to-head skew */ short cylskew; /* cylinder-to-cylinder skew */ short gap0_size; /* size of GAP 0 in the MFM format */ short gap1_size; /* size of GAP 1 in the MFM format */ short gap2_size; /* size of GAP 2 in the MFM format */ short gap3_size; /* size of GAP 3 in the MFM format */ short sync_value; /* sync value used when formatting */ char reserved[32]; /* reserved for use by the RQDX formatter */ short serial_number; /* serial number */ #if 0 /* we don't need these 412 useless bytes ... */ char fill[412-2]; /* Filler bytes to the end of the block */ short checksum; /* checksum over the XBN */ #endif }; /* * Software status */ struct rdsoftc { struct device sc_dev; /* must be here! (pseudo-OOP:) */ struct disk sc_disk; /* disklabel etc. */ struct rdgeom sc_xbn; /* on-disk geometry information */ int sc_drive; /* physical unit number */ }; struct hdcsoftc { struct device sc_dev; /* must be here (pseudo-OOP:) */ struct evcnt sc_intrcnt; struct vsbus_dma sc_vd; vaddr_t sc_regs; /* register addresses */ struct buf_queue sc_q; struct buf *sc_active; struct hdc9224_UDCreg sc_creg; /* (command) registers to be written */ struct hdc9224_UDCreg sc_sreg; /* (status) registers being read */ caddr_t sc_dmabase; /* */ int sc_dmasize; caddr_t sc_bufaddr; /* Current in-core address */ int sc_diskblk; /* Current block on disk */ int sc_bytecnt; /* How much left to transfer */ int sc_xfer; /* Current transfer size */ int sc_retries; volatile u_char sc_status; /* last status from interrupt */ char sc_intbit; }; struct hdc_attach_args { int ha_drive; }; /* * prototypes for (almost) all the internal routines */ static int hdcmatch(struct device *, struct cfdata *, void *); static void hdcattach(struct device *, struct device *, void *); static int hdcprint(void *, const char *); static int rdmatch(struct device *, struct cfdata *, void *); static void rdattach(struct device *, struct device *, void *); static void hdcintr(void *); static int hdc_command(struct hdcsoftc *, int); static void rd_readgeom(struct hdcsoftc *, struct rdsoftc *); #ifdef RDDEBUG static void hdc_printgeom( struct rdgeom *); #endif static void hdc_writeregs(struct hdcsoftc *); static void hdcstart(struct hdcsoftc *, struct buf *); static int hdc_rdselect(struct hdcsoftc *, int); static void rdmakelabel(struct disklabel *, struct rdgeom *); static void hdc_writeregs(struct hdcsoftc *); static void hdc_readregs(struct hdcsoftc *); static void hdc_qstart(void *); bdev_decl(rd); cdev_decl(rd); struct cfattach hdc_ca = { sizeof(struct hdcsoftc), hdcmatch, hdcattach }; struct cfattach rd_ca = { sizeof(struct rdsoftc), rdmatch, rdattach }; /* At least 0.7 uS between register accesses */ static int rd_dmasize, inq = 0; static int u; #define WAIT asm("movl _u,_u;movl _u,_u;movl _u,_u; movl _u,_u") #define HDC_WREG(x) *(volatile char *)(sc->sc_regs) = (x) #define HDC_RREG *(volatile char *)(sc->sc_regs) #define HDC_WCMD(x) *(volatile char *)(sc->sc_regs + 4) = (x) #define HDC_RSTAT *(volatile char *)(sc->sc_regs + 4) /* * new-config's hdcmatch() is similiar to old-config's hdcprobe(), * thus we probe for the existence of the controller and reset it. * NB: we can't initialize the controller yet, since space for hdcsoftc * is not yet allocated. Thus we do this in hdcattach()... */ int hdcmatch(struct device *parent, struct cfdata *cf, void *aux) { struct vsbus_attach_args *va = aux; volatile char *hdc_csr = (char *)va->va_addr; int i; u = 8; /* !!! - GCC */ if (vax_boardtype == VAX_BTYP_49 || vax_boardtype == VAX_BTYP_46 || vax_boardtype == VAX_BTYP_48) return 0; hdc_csr[4] = DKC_CMD_RESET; /* reset chip */ for (i = 0; i < 1000; i++) { DELAY(1000); if (hdc_csr[4] & DKC_ST_DONE) break; } if (i == 100) return 0; /* No response to reset */ hdc_csr[4] = DKC_CMD_SETREGPTR|UDC_TERM; WAIT; hdc_csr[0] = UDC_TC_CRCPRE|UDC_TC_INTDONE; WAIT; hdc_csr[4] = DKC_CMD_DRDESELECT; /* Should be harmless */ DELAY(1000); return (1); } int hdcprint(void *aux, const char *name) { struct hdc_attach_args *ha = aux; if (name) printf ("RD?? at %s drive %d", name, ha->ha_drive); return UNCONF; } /* * hdc_attach() probes for all possible devices */ void hdcattach(struct device *parent, struct device *self, void *aux) { struct vsbus_attach_args *va = aux; struct hdcsoftc *sc = (void *)self; struct hdc_attach_args ha; int status, i; printf ("\n"); /* * Get interrupt vector, enable instrumentation. */ scb_vecalloc(va->va_cvec, hdcintr, sc, SCB_ISTACK, &sc->sc_intrcnt); evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL, self->dv_xname, "intr"); sc->sc_regs = vax_map_physmem(va->va_paddr, 1); sc->sc_dmabase = (caddr_t)va->va_dmaaddr; sc->sc_dmasize = va->va_dmasize; sc->sc_intbit = va->va_maskno; rd_dmasize = min(MAXPHYS, sc->sc_dmasize); /* Used in rd_minphys */ sc->sc_vd.vd_go = hdc_qstart; sc->sc_vd.vd_arg = sc; /* * Reset controller. */ HDC_WCMD(DKC_CMD_RESET); DELAY(1000); status = HDC_RSTAT; if (status != (DKC_ST_DONE|DKC_TC_SUCCESS)) { printf("%s: RESET failed, status 0x%x\n", sc->sc_dev.dv_xname, status); return; } BUFQ_INIT(&sc->sc_q); /* * now probe for all possible hard drives */ for (i = 0; i < 4; i++) { if (i == 2) /* Floppy, needs special handling */ continue; HDC_WCMD(DKC_CMD_DRSELECT | i); DELAY(1000); status = HDC_RSTAT; ha.ha_drive = i; if ((status & DKC_ST_TERMCOD) == DKC_TC_SUCCESS) config_found(self, (void *)&ha, hdcprint); } } /* * rdmatch() probes for the existence of a RD-type disk/floppy */ int rdmatch(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct hdc_attach_args *ha = aux; if (cf->cf_loc[HDCCF_DRIVE] != HDCCF_DRIVE_DEFAULT && cf->cf_loc[HDCCF_DRIVE] != ha->ha_drive) return 0; if (ha->ha_drive == 2) /* Always floppy, not supported */ return 0; return 1; } #define RDMAJOR 19 void rdattach(struct device *parent, struct device *self, void *aux) { struct hdcsoftc *sc = (void*)parent; struct rdsoftc *rd = (void*)self; struct hdc_attach_args *ha = aux; struct disklabel *dl; char *msg; rd->sc_drive = ha->ha_drive; /* * Initialize and attach the disk structure. */ rd->sc_disk.dk_name = rd->sc_dev.dv_xname; disk_attach(&rd->sc_disk); /* * if it's not a floppy then evaluate the on-disk geometry. * if neccessary correct the label... */ rd_readgeom(sc, rd); disk_printtype(rd->sc_drive, rd->sc_xbn.media_id); dl = rd->sc_disk.dk_label; rdmakelabel(dl, &rd->sc_xbn); printf("%s", rd->sc_dev.dv_xname); msg = readdisklabel(MAKEDISKDEV(RDMAJOR, rd->sc_dev.dv_unit, RAW_PART), rdstrategy, dl, NULL); if (msg) printf(": %s", msg); printf(": size %d sectors\n", dl->d_secperunit); #ifdef RDDEBUG hdc_printgeom(&rd->sc_xbn); #endif } void hdcintr(void *arg) { struct hdcsoftc *sc = arg; struct buf *bp; sc->sc_status = HDC_RSTAT; if (sc->sc_active == 0) return; /* Complain? */ if ((sc->sc_status & (DKC_ST_INTPEND|DKC_ST_DONE)) != (DKC_ST_INTPEND|DKC_ST_DONE)) return; /* Why spurious ints sometimes??? */ bp = sc->sc_active; sc->sc_active = 0; if ((sc->sc_status & DKC_ST_TERMCOD) != DKC_TC_SUCCESS) { int i; u_char *g = (u_char *)&sc->sc_sreg; if (sc->sc_retries++ < 3) { /* Allow 3 retries */ hdcstart(sc, bp); return; } printf("%s: failed, status 0x%x\n", sc->sc_dev.dv_xname, sc->sc_status); hdc_readregs(sc); for (i = 0; i < 10; i++) printf("%i: %x\n", i, g[i]); bp->b_flags |= B_ERROR; bp->b_error = ENXIO; bp->b_resid = bp->b_bcount; biodone(bp); vsbus_dma_intr(); return; } if (bp->b_flags & B_READ) { vsbus_copytoproc(bp->b_proc, sc->sc_dmabase, sc->sc_bufaddr, sc->sc_xfer); } sc->sc_diskblk += (sc->sc_xfer/DEV_BSIZE); sc->sc_bytecnt -= sc->sc_xfer; sc->sc_bufaddr += sc->sc_xfer; if (sc->sc_bytecnt == 0) { /* Finished transfer */ biodone(bp); vsbus_dma_intr(); } else hdcstart(sc, bp); } /* * */ void rdstrategy(struct buf *bp) { struct rdsoftc *rd; struct hdcsoftc *sc; struct disklabel *lp; int unit, s; unit = DISKUNIT(bp->b_dev); if (unit > rd_cd.cd_ndevs || (rd = rd_cd.cd_devs[unit]) == NULL) { bp->b_error = ENXIO; bp->b_flags |= B_ERROR; goto done; } sc = (void *)rd->sc_dev.dv_parent; lp = rd->sc_disk.dk_label; if ((bounds_check_with_label(bp, lp, 1)) <= 0) goto done; if (bp->b_bcount == 0) goto done; bp->b_rawblkno = bp->b_blkno + lp->d_partitions[DISKPART(bp->b_dev)].p_offset; bp->b_cylinder = bp->b_rawblkno / lp->d_secpercyl; s = splimp(); disksort_cylinder(&sc->sc_q, bp); if (inq == 0) { inq = 1; vsbus_dma_start(&sc->sc_vd); } splx(s); return; done: biodone(bp); } void hdc_qstart(void *arg) { struct hdcsoftc *sc = arg; inq = 0; hdcstart(sc, 0); if (BUFQ_FIRST(&sc->sc_q)) { vsbus_dma_start(&sc->sc_vd); /* More to go */ inq = 1; } } void hdcstart(struct hdcsoftc *sc, struct buf *ob) { struct hdc9224_UDCreg *p = &sc->sc_creg; struct disklabel *lp; struct rdsoftc *rd; struct buf *bp; int cn, sn, tn, bn, blks; volatile char ch; if (sc->sc_active) return; /* Already doing something */ if (ob == 0) { bp = BUFQ_FIRST(&sc->sc_q); if (bp == NULL) return; /* Nothing to do */ BUFQ_REMOVE(&sc->sc_q, bp); sc->sc_bufaddr = bp->b_data; sc->sc_diskblk = bp->b_rawblkno; sc->sc_bytecnt = bp->b_bcount; sc->sc_retries = 0; bp->b_resid = 0; } else bp = ob; rd = rd_cd.cd_devs[DISKUNIT(bp->b_dev)]; hdc_rdselect(sc, rd->sc_drive); sc->sc_active = bp; bn = sc->sc_diskblk; lp = rd->sc_disk.dk_label; if (bn) { cn = bn / lp->d_secpercyl; sn = bn % lp->d_secpercyl; tn = sn / lp->d_nsectors; sn = sn % lp->d_nsectors; } else cn = sn = tn = 0; cn++; /* first cylinder is reserved */ bzero(p, sizeof(struct hdc9224_UDCreg)); /* * Tricky thing: the controller do itself only increase the sector * number, not the track or cylinder number. Therefore the driver * is not allowed to have transfers that crosses track boundaries. */ blks = sc->sc_bytecnt/DEV_BSIZE; if ((sn + blks) > lp->d_nsectors) blks = lp->d_nsectors - sn; p->udc_dsect = sn; p->udc_dcyl = cn & 0xff; p->udc_dhead = ((cn >> 4) & 0x70) | tn; p->udc_scnt = blks; p->udc_rtcnt = UDC_RC_RTRYCNT; p->udc_mode = UDC_MD_HDD; p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWRFLT; hdc_writeregs(sc); /* Count up vars */ sc->sc_xfer = blks * DEV_BSIZE; ch = HDC_RSTAT; /* Avoid pending interrupts */ WAIT; vsbus_clrintr(sc->sc_intbit); /* Clear pending int's */ if (bp->b_flags & B_READ) { HDC_WCMD(DKC_CMD_READ_HDD); } else { vsbus_copyfromproc(bp->b_proc, sc->sc_bufaddr, sc->sc_dmabase, sc->sc_xfer); HDC_WCMD(DKC_CMD_WRITE_HDD); } } void rd_readgeom(struct hdcsoftc *sc, struct rdsoftc *rd) { struct hdc9224_UDCreg *p = &sc->sc_creg; hdc_rdselect(sc, rd->sc_drive); /* select drive right now */ bzero(p, sizeof(struct hdc9224_UDCreg)); p->udc_scnt = 1; p->udc_rtcnt = UDC_RC_RTRYCNT; p->udc_mode = UDC_MD_HDD; p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWPROT; hdc_writeregs(sc); sc->sc_status = 0; HDC_WCMD(DKC_CMD_READ_HDD|2); while ((sc->sc_status & DKC_ST_INTPEND) == 0) ; bcopy(sc->sc_dmabase, &rd->sc_xbn, sizeof(struct rdgeom)); } #ifdef RDDEBUG /* * display the contents of the on-disk geometry structure */ void hdc_printgeom(p) struct rdgeom *p; { printf ("**DiskData** XBNs: %ld, DBNs: %ld, LBNs: %ld, RBNs: %ld\n", p->xbn_count, p->dbn_count, p->lbn_count, p->rbn_count); printf ("sec/track: %d, tracks: %d, cyl: %d, precomp/reduced: %d/%d\n", p->nspt, p->ntracks, p->ncylinders, p->precomp, p->reduced); printf ("seek-rate: %d, crc/eec: %s, RCT: %d, RCT-copies: %d\n", p->seek_rate, p->crc_eec?"EEC":"CRC", p->rct, p->rct_ncopies); printf ("media-ID: %lx, interleave: %d, headskew: %d, cylskew: %d\n", p->media_id, p->interleave, p->headskew, p->cylskew); printf ("gap0: %d, gap1: %d, gap2: %d, gap3: %d, sync-value: %d\n", p->gap0_size, p->gap1_size, p->gap2_size, p->gap3_size, p->sync_value); } #endif /* * Return the size of a partition, if known, or -1 if not. */ int rdsize(dev_t dev) { struct rdsoftc *rd; int unit = DISKUNIT(dev); int size; if (unit >= rd_cd.cd_ndevs || rd_cd.cd_devs[unit] == 0) return -1; rd = rd_cd.cd_devs[unit]; size = rd->sc_disk.dk_label->d_partitions[DISKPART(dev)].p_size * (rd->sc_disk.dk_label->d_secsize / DEV_BSIZE); return (size); } /* * */ int rdopen(dev_t dev, int flag, int fmt, struct proc *p) { struct rdsoftc *rd; int unit, part; unit = DISKUNIT(dev); if (unit >= rd_cd.cd_ndevs) return ENXIO; rd = rd_cd.cd_devs[unit]; if (rd == 0) return ENXIO; part = DISKPART(dev); if (part >= rd->sc_disk.dk_label->d_npartitions) return ENXIO; switch (fmt) { case S_IFCHR: rd->sc_disk.dk_copenmask |= (1 << part); break; case S_IFBLK: rd->sc_disk.dk_bopenmask |= (1 << part); break; } rd->sc_disk.dk_openmask = rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask; return 0; } /* * */ int rdclose(dev_t dev, int flag, int fmt, struct proc *p) { struct rdsoftc *rd; int part; rd = rd_cd.cd_devs[DISKUNIT(dev)]; part = DISKPART(dev); switch (fmt) { case S_IFCHR: rd->sc_disk.dk_copenmask &= ~(1 << part); break; case S_IFBLK: rd->sc_disk.dk_bopenmask &= ~(1 << part); break; } rd->sc_disk.dk_openmask = rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask; return (0); } /* * */ int rdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) { struct rdsoftc *rd = rd_cd.cd_devs[DISKUNIT(dev)]; struct disklabel *lp = rd->sc_disk.dk_label; int err = 0; switch (cmd) { case DIOCGDINFO: bcopy(lp, addr, sizeof (struct disklabel)); break; case DIOCGPART: ((struct partinfo *)addr)->disklab = lp; ((struct partinfo *)addr)->part = &lp->d_partitions[DISKPART(dev)]; break; case DIOCWDINFO: case DIOCSDINFO: if ((flag & FWRITE) == 0) return EBADF; else err = (cmd == DIOCSDINFO ? setdisklabel(lp, (struct disklabel *)addr, 0, 0) : writedisklabel(dev, rdstrategy, lp, 0)); break; case DIOCGDEFLABEL: bzero(lp, sizeof(struct disklabel)); rdmakelabel(lp, &rd->sc_xbn); break; case DIOCWLABEL: if ((flag & FWRITE) == 0) err = EBADF; break; default: err = ENOTTY; } return err; } /* * */ int rdread(dev_t dev, struct uio *uio, int flag) { return (physio (rdstrategy, NULL, dev, B_READ, minphys, uio)); } /* * */ int rdwrite(dev_t dev, struct uio *uio, int flag) { return (physio (rdstrategy, NULL, dev, B_WRITE, minphys, uio)); } /* * */ int rddump(dev_t dev, daddr_t daddr, caddr_t addr, size_t size) { return 0; } /* * we have to wait 0.7 usec between two accesses to any of the * dkc-registers, on a VS2000 with 1 MIPS, this is roughly one * instruction. Thus the loop-overhead will be enough... */ static void hdc_readregs(struct hdcsoftc *sc) { int i; char *p; HDC_WCMD(DKC_CMD_SETREGPTR); WAIT; p = (void*)&sc->sc_sreg; for (i=0; i<10; i++) { *p++ = HDC_RREG; /* dkc_reg auto-increments */ WAIT; } } static void hdc_writeregs(struct hdcsoftc *sc) { int i; char *p; HDC_WCMD(DKC_CMD_SETREGPTR); p = (void*)&sc->sc_creg; for (i=0; i<10; i++) { HDC_WREG(*p++); /* dkc_reg auto-increments */ WAIT; } } /* * hdc_command() issues a command and polls the intreq-register * to find when command has completed */ int hdc_command(struct hdcsoftc *sc, int cmd) { hdc_writeregs(sc); /* write the prepared registers */ HDC_WCMD(cmd); WAIT; return (0); } int hdc_rdselect(struct hdcsoftc *sc, int unit) { struct hdc9224_UDCreg *p = &sc->sc_creg; int error; /* * bring "creg" in some known-to-work state and * select the drive with the DRIVE SELECT command. */ bzero(p, sizeof(struct hdc9224_UDCreg)); p->udc_rtcnt = UDC_RC_HDD_READ; p->udc_mode = UDC_MD_HDD; p->udc_term = UDC_TC_HDD; error = hdc_command(sc, DKC_CMD_DRSEL_HDD | unit); return (error); } void rdmakelabel(struct disklabel *dl, struct rdgeom *g) { int n, p = 0; dl->d_bbsize = BBSIZE; dl->d_sbsize = SBSIZE; dl->d_typename[p++] = MSCP_MID_CHAR(2, g->media_id); dl->d_typename[p++] = MSCP_MID_CHAR(1, g->media_id); if (MSCP_MID_ECH(0, g->media_id)) dl->d_typename[p++] = MSCP_MID_CHAR(0, g->media_id); n = MSCP_MID_NUM(g->media_id); if (n > 99) { dl->d_typename[p++] = '1'; n -= 100; } if (n > 9) { dl->d_typename[p++] = (n / 10) + '0'; n %= 10; } dl->d_typename[p++] = n + '0'; dl->d_typename[p] = 0; dl->d_type = DTYPE_MSCP; /* XXX - what to use here??? */ dl->d_rpm = 3600; dl->d_secsize = DEV_BSIZE; dl->d_secperunit = g->lbn_count; dl->d_nsectors = g->nspt; dl->d_ntracks = g->ntracks; dl->d_secpercyl = dl->d_nsectors * dl->d_ntracks; dl->d_ncylinders = dl->d_secperunit / dl->d_secpercyl; dl->d_npartitions = MAXPARTITIONS; dl->d_partitions[0].p_size = dl->d_partitions[2].p_size = dl->d_secperunit; dl->d_partitions[0].p_offset = dl->d_partitions[2].p_offset = 0; dl->d_interleave = dl->d_headswitch = 1; dl->d_magic = dl->d_magic2 = DISKMAGIC; dl->d_checksum = dkcksum(dl); }