/* $NetBSD: rijndael-api-fst.c,v 1.21 2007/01/22 01:38:33 cbiere Exp $ */ /** * rijndael-api-fst.c * * @version 2.9 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Acknowledgements: * * We are deeply indebted to the following people for their bug reports, * fixes, and improvement suggestions to this implementation. Though we * tried to list all contributions, we apologise in advance for any * missing reference. * * Andrew Bales * Markus Friedl * John Skodon */ #include __KERNEL_RCSID(0, "$NetBSD: rijndael-api-fst.c,v 1.21 2007/01/22 01:38:33 cbiere Exp $"); #include #ifdef _KERNEL #include #else #include #include #endif #include #include #include int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen, const char *keyMaterial) { u_int8_t cipherKey[RIJNDAEL_MAXKB]; if (key == NULL) { return BAD_KEY_INSTANCE; } if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) { key->direction = direction; } else { return BAD_KEY_DIR; } if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { key->keyLen = keyLen; } else { return BAD_KEY_MAT; } if (keyMaterial != NULL) { memcpy(key->keyMaterial, keyMaterial, keyLen/8); } /* initialize key schedule: */ memcpy(cipherKey, key->keyMaterial, keyLen/8); if (direction == DIR_ENCRYPT) { key->Nr = rijndaelKeySetupEnc(key->rk, cipherKey, keyLen); } else { key->Nr = rijndaelKeySetupDec(key->rk, cipherKey, keyLen); } rijndaelKeySetupEnc(key->ek, cipherKey, keyLen); return TRUE; } int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, const char *IV) { if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) { cipher->mode = mode; } else { return BAD_CIPHER_MODE; } if (IV != NULL) { memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE); } else { memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE); } return TRUE; } int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key, const BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, t, numBlocks; u_int8_t block[16], *iv; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } break; case MODE_CBC: iv = (u_int8_t *)cipher->IV; for (i = numBlocks; i > 0; i--) { const u_int32_t *src, *iv32; u_int32_t *dst; src = (const uint32_t *)input; iv32 = (const u_int32_t *)iv; dst = (u_int32_t *)block; dst[0] = src[0] ^ iv32[0]; dst[1] = src[1] ^ iv32[1]; dst[2] = src[2] ^ iv32[2]; dst[3] = src[3] ^ iv32[3]; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); iv = outBuffer; input += 16; outBuffer += 16; } break; case MODE_CFB1: iv = (u_int8_t *)cipher->IV; for (i = numBlocks; i > 0; i--) { memcpy(outBuffer, input, 16); for (k = 0; k < 128; k++) { rijndaelEncrypt(key->ek, key->Nr, iv, block); outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7); for (t = 0; t < 15; t++) { iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7); } iv[15] = (iv[15] << 1) | ((outBuffer[k >> 3] >> (7 - (k & 7))) & 1); } outBuffer += 16; input += 16; } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } /** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param input data to be encrypted (octet sequence) * @param inputOctets input length in octets (not bits) * @param outBuffer encrypted output data * * @return length in octets (not bits) of the encrypted output buffer. */ int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key, const BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; u_int8_t block[16], *iv; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); memcpy(block, input, 16 - padLen); memset(block + 16 - padLen, padLen, padLen); rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); break; case MODE_CBC: iv = (u_int8_t *)cipher->IV; for (i = numBlocks; i > 0; i--) { const u_int32_t *src, *iv32; u_int32_t *dst; src = (const uint32_t *)input; iv32 = (const u_int32_t *)iv; dst = (u_int32_t *)block; dst[0] = src[0] ^ iv32[0]; dst[1] = src[1] ^ iv32[1]; dst[2] = src[2] ^ iv32[2]; dst[3] = src[3] ^ iv32[3]; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); iv = outBuffer; input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); for (i = 0; i < 16 - padLen; i++) { block[i] = input[i] ^ iv[i]; } for (i = 16 - padLen; i < 16; i++) { block[i] = (BYTE)padLen ^ iv[i]; } rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); break; default: return BAD_CIPHER_STATE; } return 16*(numBlocks + 1); } int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key, const BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, t, numBlocks; u_int8_t block[16], *iv; if (cipher == NULL || key == NULL || (cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } break; case MODE_CBC: iv = (u_int8_t *)cipher->IV; for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, block); ((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0]; ((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1]; ((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2]; ((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3]; memcpy(cipher->IV, input, 16); memcpy(outBuffer, block, 16); input += 16; outBuffer += 16; } break; case MODE_CFB1: iv = (u_int8_t *)cipher->IV; for (i = numBlocks; i > 0; i--) { memcpy(outBuffer, input, 16); for (k = 0; k < 128; k++) { rijndaelEncrypt(key->ek, key->Nr, iv, block); for (t = 0; t < 15; t++) { iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7); } iv[15] = (iv[15] << 1) | ((input[k >> 3] >> (7 - (k & 7))) & 1); outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7); } outBuffer += 16; input += 16; } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key, const BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; u_int8_t block[16]; if (cipher == NULL || key == NULL || key->direction == DIR_ENCRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } if (inputOctets % 16 != 0) { return BAD_DATA; } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(key->rk, key->Nr, input, block); padLen = block[15]; if (padLen >= 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } memcpy(outBuffer, block, 16 - padLen); break; case MODE_CBC: /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, block); ((u_int32_t*)block)[0] ^= ((u_int32_t*)cipher->IV)[0]; ((u_int32_t*)block)[1] ^= ((u_int32_t*)cipher->IV)[1]; ((u_int32_t*)block)[2] ^= ((u_int32_t*)cipher->IV)[2]; ((u_int32_t*)block)[3] ^= ((u_int32_t*)cipher->IV)[3]; memcpy(cipher->IV, input, 16); memcpy(outBuffer, block, 16); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(key->rk, key->Nr, input, block); ((u_int32_t*)block)[0] ^= ((u_int32_t*)cipher->IV)[0]; ((u_int32_t*)block)[1] ^= ((u_int32_t*)cipher->IV)[1]; ((u_int32_t*)block)[2] ^= ((u_int32_t*)cipher->IV)[2]; ((u_int32_t*)block)[3] ^= ((u_int32_t*)cipher->IV)[3]; padLen = block[15]; if (padLen <= 0 || padLen > 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } memcpy(outBuffer, block, 16 - padLen); break; default: return BAD_CIPHER_STATE; } return 16*numBlocks - padLen; }