/* $NetBSD: mvsata.c,v 1.3 2010/01/05 13:30:10 mbalmer Exp $ */ /* * Copyright (c) 2008 KIYOHARA Takashi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: mvsata.c,v 1.3 2010/01/05 13:30:10 mbalmer Exp $"); #include "opt_mvsata.h" /* ATAPI implementation not finished. Also don't work shadow registers? */ //#include "atapibus.h" #include #if NATAPIBUS > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NATAPIBUS > 0 #include /* for SCSI status */ #endif #include #include #include #define MVSATA_DEV(sc) ((sc)->sc_wdcdev.sc_atac.atac_dev) #define MVSATA_DEV2(mvport) ((mvport)->port_ata_channel.ch_atac->atac_dev) #define MVSATA_HC_READ_4(hc, reg) \ bus_space_read_4((hc)->hc_iot, (hc)->hc_ioh, (reg)) #define MVSATA_HC_WRITE_4(hc, reg, val) \ bus_space_write_4((hc)->hc_iot, (hc)->hc_ioh, (reg), (val)) #define MVSATA_EDMA_READ_4(mvport, reg) \ bus_space_read_4((mvport)->port_iot, (mvport)->port_ioh, (reg)) #define MVSATA_EDMA_WRITE_4(mvport, reg, val) \ bus_space_write_4((mvport)->port_iot, (mvport)->port_ioh, (reg), (val)) #define MVSATA_WDC_READ_2(mvport, reg) \ bus_space_read_2((mvport)->port_iot, (mvport)->port_ioh, (reg)) #define MVSATA_WDC_READ_1(mvport, reg) \ bus_space_read_1((mvport)->port_iot, (mvport)->port_ioh, (reg)) #define MVSATA_WDC_WRITE_2(mvport, reg, val) \ bus_space_write_2((mvport)->port_iot, (mvport)->port_ioh, (reg), (val)) #define MVSATA_WDC_WRITE_1(mvport, reg, val) \ bus_space_write_1((mvport)->port_iot, (mvport)->port_ioh, (reg), (val)) #ifdef MVSATA_DEBUG #define DPRINTF(x) if (mvsata_debug) printf x #define DPRINTFN(n,x) if (mvsata_debug >= (n)) printf x int mvsata_debug = 3; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define ATA_DELAY 10000 /* 10s for a drive I/O */ #define ATAPI_DELAY 10 /* 10 ms, this is used only before sending a cmd */ #define ATAPI_MODE_DELAY 1000 /* 1s, timeout for SET_FEATURE cmds */ #define MVSATA_EPRD_MAX_SIZE (sizeof(struct eprd) * (MAXPHYS / PAGE_SIZE)) #ifndef MVSATA_WITHOUTDMA static int mvsata_bio(struct ata_drive_datas *, struct ata_bio *); static void mvsata_reset_drive(struct ata_drive_datas *, int); static void mvsata_reset_channel(struct ata_channel *, int); static int mvsata_exec_command(struct ata_drive_datas *, struct ata_command *); static int mvsata_addref(struct ata_drive_datas *); static void mvsata_delref(struct ata_drive_datas *); static void mvsata_killpending(struct ata_drive_datas *); #if NATAPIBUS > 0 static void mvsata_atapibus_attach(struct atabus_softc *); static void mvsata_atapi_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t, void *); static void mvsata_atapi_minphys(struct buf *); static void mvsata_atapi_probe_device(struct atapibus_softc *, int); static void mvsata_atapi_kill_pending(struct scsipi_periph *); #endif #endif static void mvsata_setup_channel(struct ata_channel *); #ifndef MVSATA_WITHOUTDMA static void mvsata_bio_start(struct ata_channel *, struct ata_xfer *); static int mvsata_bio_intr(struct ata_channel *, struct ata_xfer *, int); static void mvsata_bio_kill_xfer(struct ata_channel *, struct ata_xfer *, int); static void mvsata_bio_done(struct ata_channel *, struct ata_xfer *); static int mvsata_bio_ready(struct mvsata_port *, struct ata_bio *, int, int); static void mvsata_wdc_cmd_start(struct ata_channel *, struct ata_xfer *); static int mvsata_wdc_cmd_intr(struct ata_channel *, struct ata_xfer *, int); static void mvsata_wdc_cmd_kill_xfer(struct ata_channel *, struct ata_xfer *, int); static void mvsata_wdc_cmd_done(struct ata_channel *, struct ata_xfer *); static void mvsata_wdc_cmd_done_end(struct ata_channel *, struct ata_xfer *); #if NATAPIBUS > 0 static void mvsata_atapi_start(struct ata_channel *, struct ata_xfer *); static int mvsata_atapi_intr(struct ata_channel *, struct ata_xfer *, int); static void mvsata_atapi_kill_xfer(struct ata_channel *, struct ata_xfer *, int); static void mvsata_atapi_reset(struct ata_channel *, struct ata_xfer *); static void mvsata_atapi_phase_complete(struct ata_xfer *); static void mvsata_atapi_done(struct ata_channel *, struct ata_xfer *); static void mvsata_atapi_polldsc(void *); #endif static int mvsata_edma_inqueue(struct mvsata_port *, struct ata_bio *, void *); static int mvsata_edma_handle(struct mvsata_port *, struct ata_xfer *); static int mvsata_edma_wait(struct mvsata_port *, struct ata_xfer *, int); static void mvsata_edma_timeout(void *); static void mvsata_edma_rqq_remove(struct mvsata_port *, struct ata_xfer *); #if NATAPIBUS > 0 static int mvsata_bdma_init(struct mvsata_port *, struct scsipi_xfer *, void *); static void mvsata_bdma_start(struct mvsata_port *); #endif #endif static int mvsata_port_init(struct mvsata_hc *, int); static int mvsata_wdc_reg_init(struct mvsata_port *, struct wdc_regs *); #ifndef MVSATA_WITHOUTDMA static inline void mvsata_quetag_init(struct mvsata_port *); static inline int mvsata_quetag_get(struct mvsata_port *); static inline void mvsata_quetag_put(struct mvsata_port *, int); static void *mvsata_edma_resource_prepare(struct mvsata_port *, bus_dma_tag_t, bus_dmamap_t *, size_t, int); static void mvsata_edma_resource_purge(struct mvsata_port *, bus_dma_tag_t, bus_dmamap_t, void *); static int mvsata_dma_bufload(struct mvsata_port *, int, void *, size_t, int); static inline void mvsata_dma_bufunload(struct mvsata_port *, int, int); #endif static void mvsata_hreset_port(struct mvsata_port *); static void mvsata_reset_port(struct mvsata_port *); static void mvsata_reset_hc(struct mvsata_hc *); #ifndef MVSATA_WITHOUTDMA static void mvsata_softreset(struct mvsata_port *, int); static void mvsata_edma_reset_qptr(struct mvsata_port *); static inline void mvsata_edma_enable(struct mvsata_port *); static int mvsata_edma_disable(struct mvsata_port *, int, int); static void mvsata_edma_config(struct mvsata_port *, int); static void mvsata_edma_setup_crqb(struct mvsata_port *, int, int, struct ata_bio *); #endif static uint32_t mvsata_read_preamps_gen1(struct mvsata_port *); static void mvsata_fix_phy_gen1(struct mvsata_port *); static void mvsata_devconn_gen1(struct mvsata_port *); static uint32_t mvsata_read_preamps_gen2(struct mvsata_port *); static void mvsata_fix_phy_gen2(struct mvsata_port *); #ifndef MVSATA_WITHOUTDMA static void mvsata_edma_setup_crqb_gen2e(struct mvsata_port *, int, int, struct ata_bio *); #ifdef MVSATA_DEBUG static void mvsata_print_crqb(struct mvsata_port *, int); static void mvsata_print_crpb(struct mvsata_port *, int); static void mvsata_print_eprd(struct mvsata_port *, int); #endif #endif #ifndef MVSATA_WITHOUTDMA struct ata_bustype mvsata_ata_bustype = { SCSIPI_BUSTYPE_ATA, mvsata_bio, mvsata_reset_drive, mvsata_reset_channel, mvsata_exec_command, ata_get_params, mvsata_addref, mvsata_delref, mvsata_killpending }; #if NATAPIBUS > 0 static const struct scsipi_bustype mvsata_atapi_bustype = { SCSIPI_BUSTYPE_ATAPI, atapi_scsipi_cmd, atapi_interpret_sense, atapi_print_addr, mvsata_atapi_kill_pending, }; #endif /* NATAPIBUS */ #endif struct mvsata_product { int model; int hc; int port; int generation; int flags; } mvsata_products[] = { { PCI_PRODUCT_MARVELL_88SX5040, 1, 4, gen1, 0 }, { PCI_PRODUCT_MARVELL_88SX5041, 1, 4, gen1, 0 }, { PCI_PRODUCT_MARVELL_88SX5080, 2, 4, gen1, 0 }, { PCI_PRODUCT_MARVELL_88SX5081, 2, 4, gen1, 0 }, { PCI_PRODUCT_MARVELL_88SX6040, 1, 4, gen2, 0 }, { PCI_PRODUCT_MARVELL_88SX6041, 1, 4, gen2, 0 }, { PCI_PRODUCT_MARVELL_88SX6042, 1, 4, gen2e, 0 }, { PCI_PRODUCT_MARVELL_88SX6080, 2, 4, gen2, MVSATA_FLAGS_PCIE }, { PCI_PRODUCT_MARVELL_88SX6081, 2, 4, gen2, MVSATA_FLAGS_PCIE }, { PCI_PRODUCT_ADP2_1420SA, 2, 4, gen2, MVSATA_FLAGS_PCIE }, { PCI_PRODUCT_MARVELL_88SX7042, 1, 4, gen2e, 0 }, { PCI_PRODUCT_ADP2_1430SA, 1, 4, gen2e, 0 }, { PCI_PRODUCT_TRIONES_ROCKETRAID_2310, 1, 4, gen2e, 0 }, { PCI_PRODUCT_MARVELL_88F5082, 1, 1, gen2e, 0 }, /* Orion */ { PCI_PRODUCT_MARVELL_88F5182, 1, 2, gen2e, 0 }, /* Orion */ { PCI_PRODUCT_MARVELL_88F6082, 1, 1, gen2e, 0 }, /* Orion */ #if 0 /* Marvell MV64660 Disco5: Product is 0x6490 ?? */ { PCI_PRODUCT_MARVELL_88F6490, 1, 1, gen2e, 0 }, /* Discover?*/ #endif { -1, 0, 0, gen_unknown, 0 } }; int mvsata_attach(struct mvsata_softc *sc, int (*mvsata_sreset)(struct mvsata_softc *), int (*mvsata_misc_reset)(struct mvsata_softc *), int read_pre_amps) { struct mvsata_hc *mvhc; struct mvsata_port *mvport; uint32_t (*read_preamps)(struct mvsata_port *) = NULL; void (*_fix_phy)(struct mvsata_port *) = NULL; #ifndef MVSATA_WITHOUTDMA void (*edma_setup_crqb) (struct mvsata_port *, int, int, struct ata_bio *) = NULL; #endif struct mvsata_product *product; int hc, port, channel, i; for (i = 0; mvsata_products[i].model != -1; i++) if (sc->sc_model == mvsata_products[i].model) break; if (mvsata_products[i].model == -1) { aprint_error_dev(MVSATA_DEV(sc), "unknown product 0x%04x\n", sc->sc_model); return EINVAL; } product = &mvsata_products[i]; aprint_normal_dev(MVSATA_DEV(sc), "Gen%s, %dhc, %dport/hc\n", (product->generation == gen1) ? "I" : ((product->generation == gen2) ? "II" : "IIe"), product->hc, product->port); switch (product->generation) { case gen1: mvsata_sreset = NULL; read_pre_amps = 1; /* MUST */ read_preamps = mvsata_read_preamps_gen1; _fix_phy = mvsata_fix_phy_gen1; #ifndef MVSATA_WITHOUTDMA edma_setup_crqb = mvsata_edma_setup_crqb; #endif break; case gen2: read_preamps = mvsata_read_preamps_gen2; _fix_phy = mvsata_fix_phy_gen2; #ifndef MVSATA_WITHOUTDMA edma_setup_crqb = mvsata_edma_setup_crqb; #endif break; case gen2e: read_preamps = mvsata_read_preamps_gen2; _fix_phy = mvsata_fix_phy_gen2; #ifndef MVSATA_WITHOUTDMA edma_setup_crqb = mvsata_edma_setup_crqb_gen2e; #endif break; } sc->sc_gen = mvsata_products[i].generation; sc->sc_hc = mvsata_products[i].hc; sc->sc_port = mvsata_products[i].port; sc->sc_flags = mvsata_products[i].flags; #ifdef MVSATA_WITHOUTDMA sc->sc_wdcdev.sc_atac.atac_cap |= ATAC_CAP_DATA16; #else sc->sc_edma_setup_crqb = edma_setup_crqb; sc->sc_wdcdev.sc_atac.atac_cap |= (ATAC_CAP_DATA16 | ATAC_CAP_DMA | ATAC_CAP_UDMA); #endif sc->sc_wdcdev.sc_atac.atac_pio_cap = 4; #ifndef MVSATA_WITHOUTDMA sc->sc_wdcdev.sc_atac.atac_dma_cap = 0; sc->sc_wdcdev.sc_atac.atac_udma_cap = 0; #else sc->sc_wdcdev.sc_atac.atac_dma_cap = 2; sc->sc_wdcdev.sc_atac.atac_udma_cap = 6; #endif sc->sc_wdcdev.sc_atac.atac_channels = sc->sc_ata_channels; sc->sc_wdcdev.sc_atac.atac_nchannels = sc->sc_hc * sc->sc_port; #ifndef MVSATA_WITHOUTDMA sc->sc_wdcdev.sc_atac.atac_bustype_ata = &mvsata_ata_bustype; #if NATAPIBUS > 0 sc->sc_wdcdev.sc_atac.atac_atapibus_attach = mvsata_atapibus_attach; #endif #endif sc->sc_wdcdev.sc_atac.atac_probe = wdc_sataprobe; sc->sc_wdcdev.sc_atac.atac_set_modes = mvsata_setup_channel; sc->sc_wdc_regs = malloc(sizeof(struct wdc_regs) * product->hc * product->port, M_DEVBUF, M_NOWAIT); if (sc->sc_wdc_regs == NULL) { aprint_error_dev(MVSATA_DEV(sc), "can't allocate wdc regs memory\n"); return ENOMEM; } sc->sc_wdcdev.regs = sc->sc_wdc_regs; for (hc = 0; hc < sc->sc_hc; hc++) { mvhc = &sc->sc_hcs[hc]; mvhc->hc = hc; mvhc->hc_sc = sc; mvhc->hc_iot = sc->sc_iot; if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, hc * SATAHC_REGISTER_SIZE, SATAHC_REGISTER_SIZE, &mvhc->hc_ioh)) { aprint_error_dev(MVSATA_DEV(sc), "can't subregion SATAHC %d registers\n", hc); continue; } for (port = 0; port < sc->sc_port; port++) if (mvsata_port_init(mvhc, port) == 0) { int pre_amps; mvport = mvhc->hc_ports[port]; pre_amps = read_pre_amps ? read_preamps(mvport) : 0x00000720; mvport->_fix_phy_param.pre_amps = pre_amps; mvport->_fix_phy_param._fix_phy = _fix_phy; if (!mvsata_sreset) mvsata_reset_port(mvport); } if (!mvsata_sreset) mvsata_reset_hc(mvhc); } if (mvsata_sreset) mvsata_sreset(sc); if (mvsata_misc_reset) mvsata_misc_reset(sc); for (hc = 0; hc < sc->sc_hc; hc++) for (port = 0; port < sc->sc_port; port++) { mvport = sc->sc_hcs[hc].hc_ports[port]; if (mvport == NULL) continue; if (mvsata_sreset) mvport->_fix_phy_param._fix_phy(mvport); } for (channel = 0; channel < sc->sc_hc * sc->sc_port; channel++) wdcattach(sc->sc_ata_channels[channel]); return 0; } int mvsata_intr(struct mvsata_hc *mvhc) { struct mvsata_softc *sc = mvhc->hc_sc; struct mvsata_port *mvport; uint32_t cause; int port, handled = 0; cause = MVSATA_HC_READ_4(mvhc, SATAHC_IC); DPRINTFN(3, ("%s:%d: mvsata_intr: cause=0x%08x\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, cause)); if (cause & SATAHC_IC_SAINTCOAL) MVSATA_HC_WRITE_4(mvhc, SATAHC_IC, ~SATAHC_IC_SAINTCOAL); cause &= ~SATAHC_IC_SAINTCOAL; for (port = 0; port < sc->sc_port; port++) { mvport = mvhc->hc_ports[port]; if (cause & SATAHC_IC_DONE(port)) { #ifndef MVSATA_WITHOUTDMA handled = mvsata_edma_handle(mvport, NULL); #endif MVSATA_HC_WRITE_4(mvhc, SATAHC_IC, ~SATAHC_IC_DONE(port)); } if (cause & SATAHC_IC_SADEVINTERRUPT(port)) { wdcintr(&mvport->port_ata_channel); MVSATA_HC_WRITE_4(mvhc, SATAHC_IC, ~SATAHC_IC_SADEVINTERRUPT(port)); handled = 1; } } return handled; } int mvsata_error(struct mvsata_port *mvport) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); uint32_t cause; int handled = 0; cause = MVSATA_EDMA_READ_4(mvport, EDMA_IEC); MVSATA_EDMA_WRITE_4(mvport, EDMA_IEC, ~cause); DPRINTFN(3, ("%s:%d:%d:" " mvsata_error: cause=0x%08x, mask=0x%08x, status=0x%08x\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, cause, MVSATA_EDMA_READ_4(mvport, EDMA_IEM), MVSATA_EDMA_READ_4(mvport, EDMA_S))); cause &= MVSATA_EDMA_READ_4(mvport, EDMA_IEM); if (!cause) return 0; /* If PM connected, connect/disconnect interrupts storm could happen */ if (MVSATA_EDMA_READ_4(mvport, EDMA_IEC) & (EDMA_IE_EDEVDIS | EDMA_IE_EDEVCON)) if (sc->sc_gen == gen2 || sc->sc_gen == gen2e) { delay(20 * 1000); cause = MVSATA_EDMA_READ_4(mvport, EDMA_IEC); MVSATA_EDMA_WRITE_4(mvport, EDMA_IEC, ~cause); } if (cause & EDMA_IE_EDEVDIS) aprint_normal("%s:%d:%d: device disconnect\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port); if (cause & EDMA_IE_EDEVCON) { if (sc->sc_gen == gen1) mvsata_devconn_gen1(mvport); DPRINTFN(3, (" device connected\n")); handled = 1; } #ifndef MVSATA_WITHOUTDMA if ((sc->sc_gen == gen1 && cause & EDMA_IE_ETRANSINT) || (sc->sc_gen != gen1 && cause & EDMA_IE_ESELFDIS)) { switch (mvport->port_edmamode) { case dma: case queued: case ncq: mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); if (cause & EDMA_IE_EDEVERR) break; /* FALLTHROUGH */ case nodma: default: aprint_error( "%s:%d:%d: EDMA self disable happen 0x%x\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, cause); break; } handled = 1; } #endif if (cause & EDMA_IE_ETRANSINT) { /* hot plug the Port Multiplier */ aprint_normal("%s:%d:%d: detect Port Multiplier?\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port); } return handled; } /* * ATA callback entry points */ #ifndef MVSATA_WITHOUTDMA static int mvsata_bio(struct ata_drive_datas *drvp, struct ata_bio *ata_bio) { struct ata_channel *chp = drvp->chnl_softc; struct atac_softc *atac = chp->ch_atac; struct ata_xfer *xfer; DPRINTFN(1, ("%s:%d: mvsata_bio: drive=%d, blkno=%lld, bcount=%ld\n", device_xname(atac->atac_dev), chp->ch_channel, drvp->drive, ata_bio->blkno, ata_bio->bcount)); xfer = ata_get_xfer(ATAXF_NOSLEEP); if (xfer == NULL) return ATACMD_TRY_AGAIN; if (atac->atac_cap & ATAC_CAP_NOIRQ) ata_bio->flags |= ATA_POLL; if (ata_bio->flags & ATA_POLL) xfer->c_flags |= C_POLL; if ((drvp->drive_flags & (DRIVE_DMA | DRIVE_UDMA)) && (ata_bio->flags & ATA_SINGLE) == 0) xfer->c_flags |= C_DMA; xfer->c_drive = drvp->drive; xfer->c_cmd = ata_bio; xfer->c_databuf = ata_bio->databuf; xfer->c_bcount = ata_bio->bcount; xfer->c_start = mvsata_bio_start; xfer->c_intr = mvsata_bio_intr; xfer->c_kill_xfer = mvsata_bio_kill_xfer; ata_exec_xfer(chp, xfer); return (ata_bio->flags & ATA_ITSDONE) ? ATACMD_COMPLETE : ATACMD_QUEUED; } static void mvsata_reset_drive(struct ata_drive_datas *drvp, int flags) { struct ata_channel *chp = drvp->chnl_softc; struct mvsata_port *mvport = (struct mvsata_port *)chp; uint32_t edma_c; edma_c = MVSATA_EDMA_READ_4(mvport, EDMA_CMD); DPRINTF(("%s:%d: mvsata_reset_drive: drive=%d (EDMA %sactive)\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel, drvp->drive, (edma_c & EDMA_CMD_EENEDMA) ? "" : "not ")); if (edma_c & EDMA_CMD_EENEDMA) mvsata_edma_disable(mvport, 10000, flags & AT_WAIT); mvsata_softreset(mvport, flags & AT_WAIT); if (edma_c & EDMA_CMD_EENEDMA) { mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); } return; } static void mvsata_reset_channel(struct ata_channel *chp, int flags) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); struct ata_xfer *xfer; uint32_t sstat, ctrl; int i; DPRINTF(("%s: mvsata_reset_channel: channel=%d\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel)); mvsata_hreset_port(mvport); sstat = sata_reset_interface(chp, mvport->port_iot, mvport->port_sata_scontrol, mvport->port_sata_sstatus); if (flags & AT_WAIT && sstat == SStatus_DET_DEV_NE && sc->sc_gen != gen1) { /* Downgrade to GenI */ const uint32_t val = SControl_IPM_NONE | SControl_SPD_ANY | SControl_DET_DISABLE; MVSATA_EDMA_WRITE_4(mvport, mvport->port_sata_scontrol, val); ctrl = MVSATA_EDMA_READ_4(mvport, SATA_SATAICFG); ctrl &= ~(1 << 17); /* Disable GenII */ MVSATA_EDMA_WRITE_4(mvport, SATA_SATAICFG, ctrl); mvsata_hreset_port(mvport); sata_reset_interface(chp, mvport->port_iot, mvport->port_sata_scontrol, mvport->port_sata_sstatus); } for (i = 0; MVSATA_EDMAQ_LEN; i++) { xfer = mvport->port_reqtbl[i].xfer; if (xfer == NULL) continue; chp->ch_queue->active_xfer = xfer; xfer->c_kill_xfer(chp, xfer, KILL_RESET); } mvsata_edma_config(mvport, mvport->port_edmamode); mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); return; } static int mvsata_exec_command(struct ata_drive_datas *drvp, struct ata_command *ata_c) { struct ata_channel *chp = drvp->chnl_softc; #ifdef MVSATA_DEBUG struct mvsata_port *mvport = (struct mvsata_port *)chp; #endif struct ata_xfer *xfer; int rv, s; DPRINTFN(1, ("%s:%d: mvsata_exec_command: drive=%d, bcount=%d," " r_command=0x%x, r_head=0x%x, r_cyl=0x%x, r_sector=0x%x," " r_count=0x%x, r_features=0x%x\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel, drvp->drive, ata_c->bcount, ata_c->r_command, ata_c->r_head, ata_c->r_cyl, ata_c->r_sector, ata_c->r_count, ata_c->r_features)); xfer = ata_get_xfer(ata_c->flags & AT_WAIT ? ATAXF_CANSLEEP : ATAXF_NOSLEEP); if (xfer == NULL) return ATACMD_TRY_AGAIN; if (ata_c->flags & AT_POLL) xfer->c_flags |= C_POLL; if (ata_c->flags & AT_WAIT) xfer->c_flags |= C_WAIT; xfer->c_drive = drvp->drive; xfer->c_databuf = ata_c->data; xfer->c_bcount = ata_c->bcount; xfer->c_cmd = ata_c; xfer->c_start = mvsata_wdc_cmd_start; xfer->c_intr = mvsata_wdc_cmd_intr; xfer->c_kill_xfer = mvsata_wdc_cmd_kill_xfer; s = splbio(); ata_exec_xfer(chp, xfer); #ifdef DIAGNOSTIC if ((ata_c->flags & AT_POLL) != 0 && (ata_c->flags & AT_DONE) == 0) panic("mvsata_exec_command: polled command not done"); #endif if (ata_c->flags & AT_DONE) rv = ATACMD_COMPLETE; else { if (ata_c->flags & AT_WAIT) { while ((ata_c->flags & AT_DONE) == 0) tsleep(ata_c, PRIBIO, "mvsatacmd", 0); rv = ATACMD_COMPLETE; } else rv = ATACMD_QUEUED; } splx(s); return rv; } static int mvsata_addref(struct ata_drive_datas *drvp) { return 0; } static void mvsata_delref(struct ata_drive_datas *drvp) { return; } static void mvsata_killpending(struct ata_drive_datas *drvp) { return; } #if NATAPIBUS > 0 static void mvsata_atapibus_attach(struct atabus_softc *ata_sc) { struct ata_channel *chp = ata_sc->sc_chan; struct atac_softc *atac = chp->ch_atac; struct scsipi_adapter *adapt = &atac->atac_atapi_adapter._generic; struct scsipi_channel *chan = &chp->ch_atapi_channel; /* * Fill in the scsipi_adapter. */ adapt->adapt_dev = atac->atac_dev; adapt->adapt_nchannels = atac->atac_nchannels; adapt->adapt_request = mvsata_atapi_scsipi_request; adapt->adapt_minphys = mvsata_atapi_minphys; atac->atac_atapi_adapter.atapi_probe_device = mvsata_atapi_probe_device; /* * Fill in the scsipi_channel. */ memset(chan, 0, sizeof(*chan)); chan->chan_adapter = adapt; chan->chan_bustype = &mvsata_atapi_bustype; chan->chan_channel = chp->ch_channel; chan->chan_flags = SCSIPI_CHAN_OPENINGS; chan->chan_openings = 1; chan->chan_max_periph = 1; chan->chan_ntargets = 1; chan->chan_nluns = 1; chp->atapibus = config_found_ia(ata_sc->sc_dev, "atapi", chan, atapiprint); } static void mvsata_atapi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg) { struct scsipi_adapter *adapt = chan->chan_adapter; struct scsipi_periph *periph; struct scsipi_xfer *sc_xfer; struct mvsata_softc *sc = device_private(adapt->adapt_dev); struct atac_softc *atac = &sc->sc_wdcdev.sc_atac; struct ata_xfer *xfer; int channel = chan->chan_channel; int drive, s; switch (req) { case ADAPTER_REQ_RUN_XFER: sc_xfer = arg; periph = sc_xfer->xs_periph; drive = periph->periph_target; if (!device_is_active(atac->atac_dev)) { sc_xfer->error = XS_DRIVER_STUFFUP; scsipi_done(sc_xfer); return; } xfer = ata_get_xfer(ATAXF_NOSLEEP); if (xfer == NULL) { sc_xfer->error = XS_RESOURCE_SHORTAGE; scsipi_done(sc_xfer); return; } if (sc_xfer->xs_control & XS_CTL_POLL) xfer->c_flags |= C_POLL; xfer->c_drive = drive; xfer->c_flags |= C_ATAPI; xfer->c_cmd = sc_xfer; xfer->c_databuf = sc_xfer->data; xfer->c_bcount = sc_xfer->datalen; xfer->c_start = mvsata_atapi_start; xfer->c_intr = mvsata_atapi_intr; xfer->c_kill_xfer = mvsata_atapi_kill_xfer; xfer->c_dscpoll = 0; s = splbio(); ata_exec_xfer(atac->atac_channels[channel], xfer); #ifdef DIAGNOSTIC if ((sc_xfer->xs_control & XS_CTL_POLL) != 0 && (sc_xfer->xs_status & XS_STS_DONE) == 0) panic("mvsata_atapi_scsipi_request:" " polled command not done"); #endif splx(s); return; default: /* Not supported, nothing to do. */ ; } } static void mvsata_atapi_minphys(struct buf *bp) { if (bp->b_bcount > MAXPHYS) bp->b_bcount = MAXPHYS; minphys(bp); } static void mvsata_atapi_probe_device(struct atapibus_softc *sc, int target) { struct scsipi_channel *chan = sc->sc_channel; struct scsipi_periph *periph; struct ataparams ids; struct ataparams *id = &ids; struct mvsata_softc *mvc = device_private(chan->chan_adapter->adapt_dev); struct atac_softc *atac = &mvc->sc_wdcdev.sc_atac; struct ata_channel *chp = atac->atac_channels[chan->chan_channel]; struct ata_drive_datas *drvp = &chp->ch_drive[target]; struct scsipibus_attach_args sa; char serial_number[21], model[41], firmware_revision[9]; int s; /* skip if already attached */ if (scsipi_lookup_periph(chan, target, 0) != NULL) return; /* if no ATAPI device detected at attach time, skip */ if ((drvp->drive_flags & DRIVE_ATAPI) == 0) { DPRINTF(("%s:%d: mvsata_atapi_probe_device:" " drive %d not present\n", device_xname(atac->atac_dev), chp->ch_channel, target)); return; } /* Some ATAPI devices need a bit more time after software reset. */ delay(5000); if (ata_get_params(drvp, AT_WAIT, id) == 0) { #ifdef ATAPI_DEBUG_PROBE log(LOG_DEBUG, "%s:%d: drive %d: cmdsz 0x%x drqtype 0x%x\n", device_xname(atac->atac_dev), chp->ch_channel, target, id->atap_config & ATAPI_CFG_CMD_MASK, id->atap_config & ATAPI_CFG_DRQ_MASK); #endif periph = scsipi_alloc_periph(M_NOWAIT); if (periph == NULL) { aprint_error_dev(atac->atac_dev, "unable to allocate periph" " for channel %d drive %d\n", chp->ch_channel, target); return; } periph->periph_dev = NULL; periph->periph_channel = chan; periph->periph_switch = &atapi_probe_periphsw; periph->periph_target = target; periph->periph_lun = 0; periph->periph_quirks = PQUIRK_ONLYBIG; #ifdef SCSIPI_DEBUG if (SCSIPI_DEBUG_TYPE == SCSIPI_BUSTYPE_ATAPI && SCSIPI_DEBUG_TARGET == target) periph->periph_dbflags |= SCSIPI_DEBUG_FLAGS; #endif periph->periph_type = ATAPI_CFG_TYPE(id->atap_config); if (id->atap_config & ATAPI_CFG_REMOV) periph->periph_flags |= PERIPH_REMOVABLE; if (periph->periph_type == T_SEQUENTIAL) { s = splbio(); drvp->drive_flags |= DRIVE_ATAPIST; splx(s); } sa.sa_periph = periph; sa.sa_inqbuf.type = ATAPI_CFG_TYPE(id->atap_config); sa.sa_inqbuf.removable = id->atap_config & ATAPI_CFG_REMOV ? T_REMOV : T_FIXED; scsipi_strvis((u_char *)model, 40, id->atap_model, 40); scsipi_strvis((u_char *)serial_number, 20, id->atap_serial, 20); scsipi_strvis((u_char *)firmware_revision, 8, id->atap_revision, 8); sa.sa_inqbuf.vendor = model; sa.sa_inqbuf.product = serial_number; sa.sa_inqbuf.revision = firmware_revision; /* * Determine the operating mode capabilities of the device. */ if ((id->atap_config & ATAPI_CFG_CMD_MASK) == ATAPI_CFG_CMD_16) periph->periph_cap |= PERIPH_CAP_CMD16; /* XXX This is gross. */ periph->periph_cap |= (id->atap_config & ATAPI_CFG_DRQ_MASK); drvp->drv_softc = atapi_probe_device(sc, target, periph, &sa); if (drvp->drv_softc) ata_probe_caps(drvp); else { s = splbio(); drvp->drive_flags &= ~DRIVE_ATAPI; splx(s); } } else { DPRINTF(("%s:%d: mvsata_atapi_probe_device:" " ATAPI_IDENTIFY_DEVICE failed for drive %d: error 0x%x\n", device_xname(atac->atac_dev), chp->ch_channel, target, chp->ch_error)); s = splbio(); drvp->drive_flags &= ~DRIVE_ATAPI; splx(s); } } /* * Kill off all pending xfers for a periph. * * Must be called at splbio(). */ static void mvsata_atapi_kill_pending(struct scsipi_periph *periph) { struct atac_softc *atac = device_private(periph->periph_channel->chan_adapter->adapt_dev); struct ata_channel *chp = atac->atac_channels[periph->periph_channel->chan_channel]; ata_kill_pending(&chp->ch_drive[periph->periph_target]); } #endif /* NATAPIBUS > 0 */ #endif /* MVSATA_WITHOUTDMA */ /* * mvsata_setup_channel() * Setup EDMA registers and prepare/purge DMA resources. * We assuming already stopped the EDMA. */ static void mvsata_setup_channel(struct ata_channel *chp) { #if !defined(MVSATA_WITHOUTDMA) || defined(MVSATA_DEBUG) struct mvsata_port *mvport = (struct mvsata_port *)chp; #endif struct ata_drive_datas *drvp; uint32_t edma_mode; int drive, s; #ifndef MVSATA_WITHOUTDMA int i; const int crqb_size = sizeof(union mvsata_crqb) * MVSATA_EDMAQ_LEN; const int crpb_size = sizeof(struct crpb) * MVSATA_EDMAQ_LEN; const int eprd_buf_size = MVSATA_EPRD_MAX_SIZE * MVSATA_EDMAQ_LEN; #endif DPRINTF(("%s:%d: mvsata_setup_channel: ", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel)); edma_mode = nodma; for (drive = 0; drive < chp->ch_ndrive; drive++) { drvp = &chp->ch_drive[drive]; /* If no drive, skip */ if (!(drvp->drive_flags & DRIVE)) continue; if (drvp->drive_flags & DRIVE_UDMA) { /* use Ultra/DMA */ s = splbio(); drvp->drive_flags &= ~DRIVE_DMA; splx(s); } if (drvp->drive_flags & (DRIVE_UDMA | DRIVE_DMA)) if (drvp->drive_flags & DRIVE_ATA) edma_mode = dma; } DPRINTF(("EDMA %sactive mode\n", (edma_mode == nodma) ? "not " : "")); #ifndef MVSATA_WITHOUTDMA if (edma_mode == nodma) { no_edma: if (mvport->port_crqb != NULL) mvsata_edma_resource_purge(mvport, mvport->port_dmat, mvport->port_crqb_dmamap, mvport->port_crqb); if (mvport->port_crpb != NULL) mvsata_edma_resource_purge(mvport, mvport->port_dmat, mvport->port_crpb_dmamap, mvport->port_crpb); if (mvport->port_eprd != NULL) mvsata_edma_resource_purge(mvport, mvport->port_dmat, mvport->port_eprd_dmamap, mvport->port_eprd); return; } if (mvport->port_crqb == NULL) mvport->port_crqb = mvsata_edma_resource_prepare(mvport, mvport->port_dmat, &mvport->port_crqb_dmamap, crqb_size, 1); if (mvport->port_crpb == NULL) mvport->port_crpb = mvsata_edma_resource_prepare(mvport, mvport->port_dmat, &mvport->port_crpb_dmamap, crpb_size, 0); if (mvport->port_eprd == NULL) { mvport->port_eprd = mvsata_edma_resource_prepare(mvport, mvport->port_dmat, &mvport->port_eprd_dmamap, eprd_buf_size, 1); for (i = 0; i < MVSATA_EDMAQ_LEN; i++) { mvport->port_reqtbl[i].eprd_offset = i * MVSATA_EPRD_MAX_SIZE; mvport->port_reqtbl[i].eprd = mvport->port_eprd + i * MVSATA_EPRD_MAX_SIZE / sizeof(struct eprd); } } if (mvport->port_crqb == NULL || mvport->port_crpb == NULL || mvport->port_eprd == NULL) { aprint_error_dev(MVSATA_DEV2(mvport), "channel %d: can't use EDMA\n", chp->ch_channel); s = splbio(); for (drive = 0; drive < chp->ch_ndrive; drive++) { drvp = &chp->ch_drive[drive]; /* If no drive, skip */ if (!(drvp->drive_flags & DRIVE)) continue; drvp->drive_flags &= ~(DRIVE_UDMA | DRIVE_DMA); } splx(s); goto no_edma; } mvsata_edma_config(mvport, edma_mode); mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); #endif } #ifndef MVSATA_WITHOUTDMA static void mvsata_bio_start(struct ata_channel *chp, struct ata_xfer *xfer) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); struct atac_softc *atac = chp->ch_atac; struct wdc_softc *wdc = CHAN_TO_WDC(chp); struct ata_bio *ata_bio = xfer->c_cmd; struct ata_drive_datas *drvp = &chp->ch_drive[xfer->c_drive]; int wait_flags = (xfer->c_flags & C_POLL) ? AT_POLL : 0; u_int16_t cyl; u_int8_t head, sect, cmd = 0; int nblks, error; DPRINTFN(2, ("%s:%d: mvsata_bio_start: drive=%d\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive)); if (xfer->c_flags & C_DMA) if (drvp->n_xfers <= NXFER) drvp->n_xfers++; again: /* * * When starting a multi-sector transfer, or doing single-sector * transfers... */ if (xfer->c_skip == 0 || (ata_bio->flags & ATA_SINGLE) != 0) { if (ata_bio->flags & ATA_SINGLE) nblks = 1; else nblks = xfer->c_bcount / ata_bio->lp->d_secsize; /* Check for bad sectors and adjust transfer, if necessary. */ if ((ata_bio->lp->d_flags & D_BADSECT) != 0) { long blkdiff; int i; for (i = 0; (blkdiff = ata_bio->badsect[i]) != -1; i++) { blkdiff -= ata_bio->blkno; if (blkdiff < 0) continue; if (blkdiff == 0) /* Replace current block of transfer. */ ata_bio->blkno = ata_bio->lp->d_secperunit - ata_bio->lp->d_nsectors - i - 1; if (blkdiff < nblks) { /* Bad block inside transfer. */ ata_bio->flags |= ATA_SINGLE; nblks = 1; } break; } /* Transfer is okay now. */ } if (xfer->c_flags & C_DMA) { ata_bio->nblks = nblks; ata_bio->nbytes = xfer->c_bcount; if (xfer->c_flags & C_POLL) sc->sc_enable_intr(mvport, 0 /*off*/); error = mvsata_edma_inqueue(mvport, ata_bio, (char *)xfer->c_databuf + xfer->c_skip); if (error) { if (error == EINVAL) { /* * We can't do DMA on this transfer * for some reason. Fall back to * PIO. */ xfer->c_flags &= ~C_DMA; error = 0; goto do_pio; } if (error == EBUSY) { aprint_error_dev(atac->atac_dev, "channel %d: EDMA Queue full\n", chp->ch_channel); /* * XXXX: Perhaps, after it waits for * a while, it is necessary to call * bio_start again. */ } ata_bio->error = ERR_DMA; ata_bio->r_error = 0; mvsata_bio_done(chp, xfer); return; } chp->ch_flags |= ATACH_DMA_WAIT; /* start timeout machinery */ if ((xfer->c_flags & C_POLL) == 0) callout_reset(&chp->ch_callout, ATA_DELAY / 1000 * hz, mvsata_edma_timeout, xfer); /* wait for irq */ goto intr; } /* else not DMA */ do_pio: if (ata_bio->flags & ATA_LBA48) { sect = 0; cyl = 0; head = 0; } else if (ata_bio->flags & ATA_LBA) { sect = (ata_bio->blkno >> 0) & 0xff; cyl = (ata_bio->blkno >> 8) & 0xffff; head = (ata_bio->blkno >> 24) & 0x0f; head |= WDSD_LBA; } else { int blkno = ata_bio->blkno; sect = blkno % ata_bio->lp->d_nsectors; sect++; /* Sectors begin with 1, not 0. */ blkno /= ata_bio->lp->d_nsectors; head = blkno % ata_bio->lp->d_ntracks; blkno /= ata_bio->lp->d_ntracks; cyl = blkno; head |= WDSD_CHS; } ata_bio->nblks = min(nblks, ata_bio->multi); ata_bio->nbytes = ata_bio->nblks * ata_bio->lp->d_secsize; KASSERT(nblks == 1 || (ata_bio->flags & ATA_SINGLE) == 0); if (ata_bio->nblks > 1) cmd = (ata_bio->flags & ATA_READ) ? WDCC_READMULTI : WDCC_WRITEMULTI; else cmd = (ata_bio->flags & ATA_READ) ? WDCC_READ : WDCC_WRITE; /* EDMA disable, if enabled this channel. */ if (mvport->port_edmamode != nodma) mvsata_edma_disable(mvport, 10 /* ms */, wait_flags); /* Do control operations specially. */ if (__predict_false(drvp->state < READY)) { /* * Actually, we want to be careful not to mess with * the control state if the device is currently busy, * but we can assume that we never get to this point * if that's the case. */ /* * If it's not a polled command, we need the kernel * thread */ if ((xfer->c_flags & C_POLL) == 0 && cpu_intr_p()) { chp->ch_queue->queue_freeze++; wakeup(&chp->ch_thread); return; } if (mvsata_bio_ready(mvport, ata_bio, xfer->c_drive, (xfer->c_flags & C_POLL) ? AT_POLL : 0) != 0) { mvsata_bio_done(chp, xfer); return; } } /* Initiate command! */ MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); switch(wdc_wait_for_ready(chp, ATA_DELAY, wait_flags)) { case WDCWAIT_OK: break; case WDCWAIT_TOUT: goto timeout; case WDCWAIT_THR: return; } if (ata_bio->flags & ATA_LBA48) wdccommandext(chp, xfer->c_drive, atacmd_to48(cmd), (u_int64_t)ata_bio->blkno, nblks); else wdccommand(chp, xfer->c_drive, cmd, cyl, head, sect, nblks, (ata_bio->lp->d_type == DTYPE_ST506) ? ata_bio->lp->d_precompcyl / 4 : 0); /* start timeout machinery */ if ((xfer->c_flags & C_POLL) == 0) callout_reset(&chp->ch_callout, ATA_DELAY / 1000 * hz, wdctimeout, chp); } else if (ata_bio->nblks > 1) { /* The number of blocks in the last stretch may be smaller. */ nblks = xfer->c_bcount / ata_bio->lp->d_secsize; if (ata_bio->nblks > nblks) { ata_bio->nblks = nblks; ata_bio->nbytes = xfer->c_bcount; } } /* If this was a write and not using DMA, push the data. */ if ((ata_bio->flags & ATA_READ) == 0) { /* * we have to busy-wait here, we can't rely on running in * thread context. */ if (wdc_wait_for_drq(chp, ATA_DELAY, AT_POLL) != 0) { aprint_error_dev(atac->atac_dev, "channel %d: drive %d timeout waiting for DRQ," " st=0x%02x, err=0x%02x\n", chp->ch_channel, xfer->c_drive, chp->ch_status, chp->ch_error); ata_bio->error = TIMEOUT; mvsata_bio_done(chp, xfer); return; } if (chp->ch_status & WDCS_ERR) { ata_bio->error = ERROR; ata_bio->r_error = chp->ch_error; mvsata_bio_done(chp, xfer); return; } wdc->dataout_pio(chp, drvp->drive_flags, (char *)xfer->c_databuf + xfer->c_skip, ata_bio->nbytes); } intr: /* Wait for IRQ (either real or polled) */ if ((ata_bio->flags & ATA_POLL) == 0) { chp->ch_flags |= ATACH_IRQ_WAIT; #if 1 /* XXXXX: Marvell SATA and mvsata(4) can accept next xfer. */ chp->ch_queue->active_xfer = NULL; #endif } else { /* Wait for at last 400ns for status bit to be valid */ delay(1); if (chp->ch_flags & ATACH_DMA_WAIT) { mvsata_edma_wait(mvport, xfer, ATA_DELAY); sc->sc_enable_intr(mvport, 1 /*on*/); chp->ch_flags &= ~ATACH_DMA_WAIT; } mvsata_bio_intr(chp, xfer, 0); if ((ata_bio->flags & ATA_ITSDONE) == 0) goto again; } return; timeout: aprint_error_dev(atac->atac_dev, "channel %d: drive %d not ready, st=0x%02x, err=0x%02x\n", chp->ch_channel, xfer->c_drive, chp->ch_status, chp->ch_error); ata_bio->error = TIMEOUT; mvsata_bio_done(chp, xfer); return; } static int mvsata_bio_intr(struct ata_channel *chp, struct ata_xfer *xfer, int irq) { struct atac_softc *atac = chp->ch_atac; struct wdc_softc *wdc = CHAN_TO_WDC(chp); struct ata_bio *ata_bio = xfer->c_cmd; struct ata_drive_datas *drvp = &chp->ch_drive[xfer->c_drive]; DPRINTFN(2, ("%s:%d: mvsata_bio_intr: drive=%d\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive)); /* Is it not a transfer, but a control operation? */ if (!(xfer->c_flags & C_DMA) && drvp->state < READY) { aprint_error_dev(atac->atac_dev, "channel %d: drive %d bad state %d in mvsata_bio_intr\n", chp->ch_channel, xfer->c_drive, drvp->state); panic("mvsata_bio_intr: bad state"); } /* * if we missed an interrupt transfer, reset and restart. * Don't try to continue transfer, we may have missed cycles. */ if (xfer->c_flags & C_TIMEOU) { ata_bio->error = TIMEOUT; mvsata_bio_done(chp, xfer); return 1; } /* Ack interrupt done by wdc_wait_for_unbusy */ if (!(xfer->c_flags & C_DMA) && (wdc_wait_for_unbusy(chp, (irq == 0) ? ATA_DELAY : 0, AT_POLL) == WDCWAIT_TOUT)) { if (irq && (xfer->c_flags & C_TIMEOU) == 0) return 0; /* IRQ was not for us */ aprint_error_dev(atac->atac_dev, "channel %d: drive %d timeout, c_bcount=%d, c_skip%d\n", chp->ch_channel, xfer->c_drive, xfer->c_bcount, xfer->c_skip); ata_bio->error = TIMEOUT; mvsata_bio_done(chp, xfer); return 1; } if (xfer->c_flags & C_DMA) { if (ata_bio->error == NOERROR) goto end; if (ata_bio->error == ERR_DMA) ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); } /* if we had an error, end */ if (ata_bio->error != NOERROR) { mvsata_bio_done(chp, xfer); return 1; } /* If this was a read and not using DMA, fetch the data. */ if ((ata_bio->flags & ATA_READ) != 0) { if ((chp->ch_status & WDCS_DRQ) != WDCS_DRQ) { aprint_error_dev(atac->atac_dev, "channel %d: drive %d read intr before drq\n", chp->ch_channel, xfer->c_drive); ata_bio->error = TIMEOUT; mvsata_bio_done(chp, xfer); return 1; } wdc->datain_pio(chp, drvp->drive_flags, (char *)xfer->c_databuf + xfer->c_skip, ata_bio->nbytes); } end: ata_bio->blkno += ata_bio->nblks; ata_bio->blkdone += ata_bio->nblks; xfer->c_skip += ata_bio->nbytes; xfer->c_bcount -= ata_bio->nbytes; /* See if this transfer is complete. */ if (xfer->c_bcount > 0) { if ((ata_bio->flags & ATA_POLL) == 0) /* Start the next operation */ mvsata_bio_start(chp, xfer); else /* Let mvsata_bio_start do the loop */ return 1; } else { /* Done with this transfer */ ata_bio->error = NOERROR; mvsata_bio_done(chp, xfer); } return 1; } static void mvsata_bio_kill_xfer(struct ata_channel *chp, struct ata_xfer *xfer, int reason) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct atac_softc *atac = chp->ch_atac; struct ata_bio *ata_bio = xfer->c_cmd; int drive = xfer->c_drive; DPRINTFN(2, ("%s:%d: mvsata_bio_kill_xfer: drive=%d\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive)); /* EDMA restart, if enabled */ if (!(xfer->c_flags & C_DMA) && mvport->port_edmamode != nodma) { mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); } ata_free_xfer(chp, xfer); ata_bio->flags |= ATA_ITSDONE; switch (reason) { case KILL_GONE: ata_bio->error = ERR_NODEV; break; case KILL_RESET: ata_bio->error = ERR_RESET; break; default: aprint_error_dev(atac->atac_dev, "mvsata_bio_kill_xfer: unknown reason %d\n", reason); panic("mvsata_bio_kill_xfer"); } ata_bio->r_error = WDCE_ABRT; (*chp->ch_drive[drive].drv_done)(chp->ch_drive[drive].drv_softc); } static void mvsata_bio_done(struct ata_channel *chp, struct ata_xfer *xfer) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct ata_bio *ata_bio = xfer->c_cmd; int drive = xfer->c_drive; DPRINTFN(2, ("%s:%d: mvsata_bio_done: drive=%d, flags=0x%x\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel, xfer->c_drive, (u_int)xfer->c_flags)); callout_stop(&chp->ch_callout); /* EDMA restart, if enabled */ if (!(xfer->c_flags & C_DMA) && mvport->port_edmamode != nodma) { mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); } /* feed back residual bcount to our caller */ ata_bio->bcount = xfer->c_bcount; /* mark controller inactive and free xfer */ chp->ch_queue->active_xfer = NULL; ata_free_xfer(chp, xfer); if (chp->ch_drive[drive].drive_flags & DRIVE_WAITDRAIN) { ata_bio->error = ERR_NODEV; chp->ch_drive[drive].drive_flags &= ~DRIVE_WAITDRAIN; wakeup(&chp->ch_queue->active_xfer); } ata_bio->flags |= ATA_ITSDONE; (*chp->ch_drive[drive].drv_done)(chp->ch_drive[drive].drv_softc); atastart(chp); } static int mvsata_bio_ready(struct mvsata_port *mvport, struct ata_bio *ata_bio, int drive, int flags) { struct ata_channel *chp = &mvport->port_ata_channel; struct atac_softc *atac = chp->ch_atac; struct ata_drive_datas *drvp = &chp->ch_drive[drive]; const char *errstring; /* * disable interrupts, all commands here should be quick * enouth to be able to poll, and we don't go here that often */ MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT | WDCTL_IDS); MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); DELAY(10); errstring = "wait"; if (wdcwait(chp, WDCS_DRDY, WDCS_DRDY, ATA_DELAY, flags)) goto ctrltimeout; wdccommandshort(chp, drive, WDCC_RECAL); /* Wait for at last 400ns for status bit to be valid */ DELAY(1); errstring = "recal"; if (wdcwait(chp, WDCS_DRDY, WDCS_DRDY, ATA_DELAY, flags)) goto ctrltimeout; if (chp->ch_status & (WDCS_ERR | WDCS_DWF)) goto ctrlerror; /* Don't try to set modes if controller can't be adjusted */ if (atac->atac_set_modes == NULL) goto geometry; /* Also don't try if the drive didn't report its mode */ if ((drvp->drive_flags & DRIVE_MODE) == 0) goto geometry; wdccommand(chp, drvp->drive, SET_FEATURES, 0, 0, 0, 0x08 | drvp->PIO_mode, WDSF_SET_MODE); errstring = "piomode"; if (wdcwait(chp, WDCS_DRDY, WDCS_DRDY, ATA_DELAY, flags)) goto ctrltimeout; if (chp->ch_status & (WDCS_ERR | WDCS_DWF)) goto ctrlerror; if (drvp->drive_flags & DRIVE_UDMA) wdccommand(chp, drvp->drive, SET_FEATURES, 0, 0, 0, 0x40 | drvp->UDMA_mode, WDSF_SET_MODE); else if (drvp->drive_flags & DRIVE_DMA) wdccommand(chp, drvp->drive, SET_FEATURES, 0, 0, 0, 0x20 | drvp->DMA_mode, WDSF_SET_MODE); else goto geometry; errstring = "dmamode"; if (wdcwait(chp, WDCS_DRDY, WDCS_DRDY, ATA_DELAY, flags)) goto ctrltimeout; if (chp->ch_status & (WDCS_ERR | WDCS_DWF)) goto ctrlerror; geometry: if (ata_bio->flags & ATA_LBA) goto multimode; wdccommand(chp, drive, WDCC_IDP, ata_bio->lp->d_ncylinders, ata_bio->lp->d_ntracks - 1, 0, ata_bio->lp->d_nsectors, (ata_bio->lp->d_type == DTYPE_ST506) ? ata_bio->lp->d_precompcyl / 4 : 0); errstring = "geometry"; if (wdcwait(chp, WDCS_DRDY, WDCS_DRDY, ATA_DELAY, flags)) goto ctrltimeout; if (chp->ch_status & (WDCS_ERR | WDCS_DWF)) goto ctrlerror; multimode: if (ata_bio->multi == 1) goto ready; wdccommand(chp, drive, WDCC_SETMULTI, 0, 0, 0, ata_bio->multi, 0); errstring = "setmulti"; if (wdcwait(chp, WDCS_DRDY, WDCS_DRDY, ATA_DELAY, flags)) goto ctrltimeout; if (chp->ch_status & (WDCS_ERR | WDCS_DWF)) goto ctrlerror; ready: drvp->state = READY; /* * The drive is usable now */ MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT); delay(10); /* some drives need a little delay here */ return 0; ctrltimeout: aprint_error_dev(atac->atac_dev, "channel %d: drive %d %s timed out\n", chp->ch_channel, drive, errstring); ata_bio->error = TIMEOUT; goto ctrldone; ctrlerror: aprint_error_dev(atac->atac_dev, "channel %d: drive %d %s ", chp->ch_channel, drive, errstring); if (chp->ch_status & WDCS_DWF) { aprint_error("drive fault\n"); ata_bio->error = ERR_DF; } else { aprint_error("error (%x)\n", chp->ch_error); ata_bio->r_error = chp->ch_error; ata_bio->error = ERROR; } ctrldone: drvp->state = 0; MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT); return -1; } static void mvsata_wdc_cmd_start(struct ata_channel *chp, struct ata_xfer *xfer) { struct mvsata_port *mvport = (struct mvsata_port *)chp; int drive = xfer->c_drive; int wait_flags = (xfer->c_flags & C_POLL) ? AT_POLL : 0; struct ata_command *ata_c = xfer->c_cmd; DPRINTFN(1, ("%s:%d: mvsata_cmd_start: drive=%d\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel, drive)); /* First, EDMA disable, if enabled this channel. */ if (mvport->port_edmamode != nodma) mvsata_edma_disable(mvport, 10 /* ms */, wait_flags); MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); switch(wdcwait(chp, ata_c->r_st_bmask | WDCS_DRQ, ata_c->r_st_bmask, ata_c->timeout, wait_flags)) { case WDCWAIT_OK: break; case WDCWAIT_TOUT: ata_c->flags |= AT_TIMEOU; mvsata_wdc_cmd_done(chp, xfer); return; case WDCWAIT_THR: return; } if (ata_c->flags & AT_POLL) /* polled command, disable interrupts */ MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT | WDCTL_IDS); wdccommand(chp, drive, ata_c->r_command, ata_c->r_cyl, ata_c->r_head, ata_c->r_sector, ata_c->r_count, ata_c->r_features); if ((ata_c->flags & AT_POLL) == 0) { chp->ch_flags |= ATACH_IRQ_WAIT; /* wait for interrupt */ callout_reset(&chp->ch_callout, ata_c->timeout / 1000 * hz, wdctimeout, chp); return; } /* * Polled command. Wait for drive ready or drq. Done in intr(). * Wait for at last 400ns for status bit to be valid. */ delay(10); /* 400ns delay */ mvsata_wdc_cmd_intr(chp, xfer, 0); } static int mvsata_wdc_cmd_intr(struct ata_channel *chp, struct ata_xfer *xfer, int irq) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct wdc_softc *wdc = CHAN_TO_WDC(chp); struct ata_command *ata_c = xfer->c_cmd; int bcount = ata_c->bcount; char *data = ata_c->data; int wflags; int drive_flags; if (ata_c->r_command == WDCC_IDENTIFY || ata_c->r_command == ATAPI_IDENTIFY_DEVICE) /* * The IDENTIFY data has been designed as an array of * u_int16_t, so we can byteswap it on the fly. * Historically it's what we have always done so keeping it * here ensure binary backward compatibility. */ drive_flags = DRIVE_NOSTREAM | chp->ch_drive[xfer->c_drive].drive_flags; else /* * Other data structure are opaque and should be transfered * as is. */ drive_flags = chp->ch_drive[xfer->c_drive].drive_flags; if ((ata_c->flags & (AT_WAIT | AT_POLL)) == (AT_WAIT | AT_POLL)) /* both wait and poll, we can tsleep here */ wflags = AT_WAIT | AT_POLL; else wflags = AT_POLL; again: DPRINTFN(1, ("%s:%d: mvsata_cmd_intr: drive=%d\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel, xfer->c_drive)); /* * after a ATAPI_SOFT_RESET, the device will have released the bus. * Reselect again, it doesn't hurt for others commands, and the time * penalty for the extra regiter write is acceptable, * wdc_exec_command() isn't called often (mosly for autoconfig) */ MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); if ((ata_c->flags & AT_XFDONE) != 0) { /* * We have completed a data xfer. The drive should now be * in its initial state */ if (wdcwait(chp, ata_c->r_st_bmask | WDCS_DRQ, ata_c->r_st_bmask, (irq == 0) ? ata_c->timeout : 0, wflags) == WDCWAIT_TOUT) { if (irq && (xfer->c_flags & C_TIMEOU) == 0) return 0; /* IRQ was not for us */ ata_c->flags |= AT_TIMEOU; } goto out; } if (wdcwait(chp, ata_c->r_st_pmask, ata_c->r_st_pmask, (irq == 0) ? ata_c->timeout : 0, wflags) == WDCWAIT_TOUT) { if (irq && (xfer->c_flags & C_TIMEOU) == 0) return 0; /* IRQ was not for us */ ata_c->flags |= AT_TIMEOU; goto out; } if (ata_c->flags & AT_READ) { if ((chp->ch_status & WDCS_DRQ) == 0) { ata_c->flags |= AT_TIMEOU; goto out; } wdc->datain_pio(chp, drive_flags, data, bcount); /* at this point the drive should be in its initial state */ ata_c->flags |= AT_XFDONE; /* * XXX checking the status register again here cause some * hardware to timeout. */ } else if (ata_c->flags & AT_WRITE) { if ((chp->ch_status & WDCS_DRQ) == 0) { ata_c->flags |= AT_TIMEOU; goto out; } wdc->dataout_pio(chp, drive_flags, data, bcount); ata_c->flags |= AT_XFDONE; if ((ata_c->flags & AT_POLL) == 0) { chp->ch_flags |= ATACH_IRQ_WAIT; /* wait for intr */ callout_reset(&chp->ch_callout, mstohz(ata_c->timeout), wdctimeout, chp); return 1; } else goto again; } out: mvsata_wdc_cmd_done(chp, xfer); return 1; } static void mvsata_wdc_cmd_kill_xfer(struct ata_channel *chp, struct ata_xfer *xfer, int reason) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct ata_command *ata_c = xfer->c_cmd; DPRINTFN(1, ("%s:%d: mvsata_cmd_kill_xfer: drive=%d\n", device_xname(MVSATA_DEV2(mvport)), chp->ch_channel, xfer->c_drive)); switch (reason) { case KILL_GONE: ata_c->flags |= AT_GONE; break; case KILL_RESET: ata_c->flags |= AT_RESET; break; default: aprint_error_dev(MVSATA_DEV2(mvport), "mvsata_cmd_kill_xfer: unknown reason %d\n", reason); panic("mvsata_cmd_kill_xfer"); } mvsata_wdc_cmd_done_end(chp, xfer); } static void mvsata_wdc_cmd_done(struct ata_channel *chp, struct ata_xfer *xfer) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct atac_softc *atac = chp->ch_atac; struct ata_command *ata_c = xfer->c_cmd; DPRINTFN(1, ("%s:%d: mvsata_cmd_done: drive=%d, flags=0x%x\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive, ata_c->flags)); if (chp->ch_status & WDCS_DWF) ata_c->flags |= AT_DF; if (chp->ch_status & WDCS_ERR) { ata_c->flags |= AT_ERROR; ata_c->r_error = chp->ch_error; } if ((ata_c->flags & AT_READREG) != 0 && device_is_active(atac->atac_dev) && (ata_c->flags & (AT_ERROR | AT_DF)) == 0) { ata_c->r_head = MVSATA_WDC_READ_1(mvport, SRB_H); ata_c->r_count = MVSATA_WDC_READ_1(mvport, SRB_SC); ata_c->r_sector = MVSATA_WDC_READ_1(mvport, SRB_LBAL); ata_c->r_cyl = MVSATA_WDC_READ_1(mvport, SRB_LBAM) << 8; ata_c->r_cyl |= MVSATA_WDC_READ_1(mvport, SRB_LBAH); ata_c->r_error = MVSATA_WDC_READ_1(mvport, SRB_FE); ata_c->r_features = ata_c->r_error; } callout_stop(&chp->ch_callout); chp->ch_queue->active_xfer = NULL; if (ata_c->flags & AT_POLL) { /* enable interrupts */ MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT); delay(10); /* some drives need a little delay here */ } if (chp->ch_drive[xfer->c_drive].drive_flags & DRIVE_WAITDRAIN) { mvsata_wdc_cmd_kill_xfer(chp, xfer, KILL_GONE); chp->ch_drive[xfer->c_drive].drive_flags &= ~DRIVE_WAITDRAIN; wakeup(&chp->ch_queue->active_xfer); } else mvsata_wdc_cmd_done_end(chp, xfer); } static void mvsata_wdc_cmd_done_end(struct ata_channel *chp, struct ata_xfer *xfer) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct ata_command *ata_c = xfer->c_cmd; /* EDMA restart, if enabled */ if (mvport->port_edmamode != nodma) { mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); } ata_c->flags |= AT_DONE; ata_free_xfer(chp, xfer); if (ata_c->flags & AT_WAIT) wakeup(ata_c); else if (ata_c->callback) ata_c->callback(ata_c->callback_arg); atastart(chp); return; } #if NATAPIBUS > 0 static void mvsata_atapi_start(struct ata_channel *chp, struct ata_xfer *xfer) { struct mvsata_softc *sc = (struct mvsata_softc *)chp->ch_atac; struct mvsata_port *mvport = (struct mvsata_port *)chp; struct atac_softc *atac = &sc->sc_wdcdev.sc_atac; struct scsipi_xfer *sc_xfer = xfer->c_cmd; struct ata_drive_datas *drvp = &chp->ch_drive[xfer->c_drive]; const int wait_flags = (xfer->c_flags & C_POLL) ? AT_POLL : 0; const char *errstring; DPRINTFN(2, ("%s:%d:%d: mvsata_atapi_start: scsi flags 0x%x\n", device_xname(chp->ch_atac->atac_dev), chp->ch_channel, xfer->c_drive, sc_xfer->xs_control)); if (mvport->port_edmamode != nodma) mvsata_edma_disable(mvport, 10 /* ms */, wait_flags); if ((xfer->c_flags & C_DMA) && (drvp->n_xfers <= NXFER)) drvp->n_xfers++; /* Do control operations specially. */ if (__predict_false(drvp->state < READY)) { /* If it's not a polled command, we need the kernel thread */ if ((sc_xfer->xs_control & XS_CTL_POLL) == 0 && cpu_intr_p()) { chp->ch_queue->queue_freeze++; wakeup(&chp->ch_thread); return; } /* * disable interrupts, all commands here should be quick * enouth to be able to poll, and we don't go here that often */ MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT | WDCTL_IDS); MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); /* Don't try to set mode if controller can't be adjusted */ if (atac->atac_set_modes == NULL) goto ready; /* Also don't try if the drive didn't report its mode */ if ((drvp->drive_flags & DRIVE_MODE) == 0) goto ready; errstring = "unbusy"; if (wdc_wait_for_unbusy(chp, ATAPI_DELAY, wait_flags)) goto timeout; wdccommand(chp, drvp->drive, SET_FEATURES, 0, 0, 0, 0x08 | drvp->PIO_mode, WDSF_SET_MODE); errstring = "piomode"; if (wdc_wait_for_unbusy(chp, ATAPI_MODE_DELAY, wait_flags)) goto timeout; if (chp->ch_status & WDCS_ERR) { if (chp->ch_error == WDCE_ABRT) { /* * Some ATAPI drives reject PIO settings. * Fall back to PIO mode 3 since that's the * minimum for ATAPI. */ aprint_error_dev(atac->atac_dev, "channel %d drive %d: PIO mode %d rejected," " falling back to PIO mode 3\n", chp->ch_channel, xfer->c_drive, drvp->PIO_mode); if (drvp->PIO_mode > 3) drvp->PIO_mode = 3; } else goto error; } if (drvp->drive_flags & DRIVE_UDMA) wdccommand(chp, drvp->drive, SET_FEATURES, 0, 0, 0, 0x40 | drvp->UDMA_mode, WDSF_SET_MODE); else if (drvp->drive_flags & DRIVE_DMA) wdccommand(chp, drvp->drive, SET_FEATURES, 0, 0, 0, 0x20 | drvp->DMA_mode, WDSF_SET_MODE); else goto ready; errstring = "dmamode"; if (wdc_wait_for_unbusy(chp, ATAPI_MODE_DELAY, wait_flags)) goto timeout; if (chp->ch_status & WDCS_ERR) { if (chp->ch_error == WDCE_ABRT) { if (drvp->drive_flags & DRIVE_UDMA) goto error; else { /* * The drive rejected our DMA setting. * Fall back to mode 1. */ aprint_error_dev(atac->atac_dev, "channel %d drive %d:" " DMA mode %d rejected," " falling back to DMA mode 0\n", chp->ch_channel, xfer->c_drive, drvp->DMA_mode); if (drvp->DMA_mode > 0) drvp->DMA_mode = 0; } } else goto error; } ready: drvp->state = READY; MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT); delay(10); /* some drives need a little delay here */ } /* start timeout machinery */ if ((sc_xfer->xs_control & XS_CTL_POLL) == 0) callout_reset(&chp->ch_callout, mstohz(sc_xfer->timeout), wdctimeout, chp); MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); switch (wdc_wait_for_unbusy(chp, ATAPI_DELAY, wait_flags) < 0) { case WDCWAIT_OK: break; case WDCWAIT_TOUT: aprint_error_dev(atac->atac_dev, "not ready, st = %02x\n", chp->ch_status); sc_xfer->error = XS_TIMEOUT; mvsata_atapi_reset(chp, xfer); return; case WDCWAIT_THR: return; } /* * Even with WDCS_ERR, the device should accept a command packet * Limit length to what can be stuffed into the cylinder register * (16 bits). Some CD-ROMs seem to interpret '0' as 65536, * but not all devices do that and it's not obvious from the * ATAPI spec that that behaviour should be expected. If more * data is necessary, multiple data transfer phases will be done. */ wdccommand(chp, xfer->c_drive, ATAPI_PKT_CMD, xfer->c_bcount <= 0xffff ? xfer->c_bcount : 0xffff, 0, 0, 0, (xfer->c_flags & C_DMA) ? ATAPI_PKT_CMD_FTRE_DMA : 0); /* * If there is no interrupt for CMD input, busy-wait for it (done in * the interrupt routine. If it is a polled command, call the interrupt * routine until command is done. */ if ((sc_xfer->xs_periph->periph_cap & ATAPI_CFG_DRQ_MASK) != ATAPI_CFG_IRQ_DRQ || (sc_xfer->xs_control & XS_CTL_POLL)) { /* Wait for at last 400ns for status bit to be valid */ DELAY(1); mvsata_atapi_intr(chp, xfer, 0); } else chp->ch_flags |= ATACH_IRQ_WAIT; if (sc_xfer->xs_control & XS_CTL_POLL) { if (chp->ch_flags & ATACH_DMA_WAIT) { wdc_dmawait(chp, xfer, sc_xfer->timeout); chp->ch_flags &= ~ATACH_DMA_WAIT; } while ((sc_xfer->xs_status & XS_STS_DONE) == 0) { /* Wait for at last 400ns for status bit to be valid */ DELAY(1); mvsata_atapi_intr(chp, xfer, 0); } } return; timeout: aprint_error_dev(atac->atac_dev, "channel %d drive %d: %s timed out\n", chp->ch_channel, xfer->c_drive, errstring); sc_xfer->error = XS_TIMEOUT; MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT); delay(10); /* some drives need a little delay here */ mvsata_atapi_reset(chp, xfer); return; error: aprint_error_dev(atac->atac_dev, "channel %d drive %d: %s error (0x%x)\n", chp->ch_channel, xfer->c_drive, errstring, chp->ch_error); sc_xfer->error = XS_SHORTSENSE; sc_xfer->sense.atapi_sense = chp->ch_error; MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_4BIT); delay(10); /* some drives need a little delay here */ mvsata_atapi_reset(chp, xfer); return; } static int mvsata_atapi_intr(struct ata_channel *chp, struct ata_xfer *xfer, int irq) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct atac_softc *atac = chp->ch_atac; struct wdc_softc *wdc = CHAN_TO_WDC(chp); struct scsipi_xfer *sc_xfer = xfer->c_cmd; struct ata_drive_datas *drvp = &chp->ch_drive[xfer->c_drive]; int len, phase, ire, error, retries=0, i; void *cmd; DPRINTFN(1, ("%s:%d:%d: mvsata_atapi_intr\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive)); /* Is it not a transfer, but a control operation? */ if (drvp->state < READY) { aprint_error_dev(atac->atac_dev, "channel %d drive %d: bad state %d\n", chp->ch_channel, xfer->c_drive, drvp->state); panic("mvsata_atapi_intr: bad state"); } /* * If we missed an interrupt in a PIO transfer, reset and restart. * Don't try to continue transfer, we may have missed cycles. */ if ((xfer->c_flags & (C_TIMEOU | C_DMA)) == C_TIMEOU) { sc_xfer->error = XS_TIMEOUT; mvsata_atapi_reset(chp, xfer); return 1; } /* Ack interrupt done in wdc_wait_for_unbusy */ MVSATA_WDC_WRITE_1(mvport, SRB_H, WDSD_IBM); if (wdc_wait_for_unbusy(chp, (irq == 0) ? sc_xfer->timeout : 0, AT_POLL) == WDCWAIT_TOUT) { if (irq && (xfer->c_flags & C_TIMEOU) == 0) return 0; /* IRQ was not for us */ aprint_error_dev(atac->atac_dev, "channel %d: device timeout, c_bcount=%d, c_skip=%d\n", chp->ch_channel, xfer->c_bcount, xfer->c_skip); if (xfer->c_flags & C_DMA) ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); sc_xfer->error = XS_TIMEOUT; mvsata_atapi_reset(chp, xfer); return 1; } /* * If we missed an IRQ and were using DMA, flag it as a DMA error * and reset device. */ if ((xfer->c_flags & C_TIMEOU) && (xfer->c_flags & C_DMA)) { ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); sc_xfer->error = XS_RESET; mvsata_atapi_reset(chp, xfer); return (1); } /* * if the request sense command was aborted, report the short sense * previously recorded, else continue normal processing */ again: len = MVSATA_WDC_READ_1(mvport, SRB_LBAM) + 256 * MVSATA_WDC_READ_1(mvport, SRB_LBAH); ire = MVSATA_WDC_READ_1(mvport, SRB_SC); phase = (ire & (WDCI_CMD | WDCI_IN)) | (chp->ch_status & WDCS_DRQ); DPRINTF(( "mvsata_atapi_intr: c_bcount %d len %d st 0x%x err 0x%x ire 0x%x :", xfer->c_bcount, len, chp->ch_status, chp->ch_error, ire)); switch (phase) { case PHASE_CMDOUT: cmd = sc_xfer->cmd; DPRINTF(("PHASE_CMDOUT\n")); /* Init the DMA channel if necessary */ if (xfer->c_flags & C_DMA) { error = mvsata_bdma_init(mvport, sc_xfer, (char *)xfer->c_databuf + xfer->c_skip); if (error) { if (error == EINVAL) { /* * We can't do DMA on this transfer * for some reason. Fall back to PIO. */ xfer->c_flags &= ~C_DMA; error = 0; } else { sc_xfer->error = XS_DRIVER_STUFFUP; break; } } } /* send packet command */ /* Commands are 12 or 16 bytes long. It's 32-bit aligned */ wdc->dataout_pio(chp, drvp->drive_flags, cmd, sc_xfer->cmdlen); /* Start the DMA channel if necessary */ if (xfer->c_flags & C_DMA) { mvsata_bdma_start(mvport); chp->ch_flags |= ATACH_DMA_WAIT; } if ((sc_xfer->xs_control & XS_CTL_POLL) == 0) chp->ch_flags |= ATACH_IRQ_WAIT; return 1; case PHASE_DATAOUT: /* write data */ DPRINTF(("PHASE_DATAOUT\n")); if ((sc_xfer->xs_control & XS_CTL_DATA_OUT) == 0 || (xfer->c_flags & C_DMA) != 0) { aprint_error_dev(atac->atac_dev, "channel %d drive %d: bad data phase DATAOUT\n", chp->ch_channel, xfer->c_drive); if (xfer->c_flags & C_DMA) ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); sc_xfer->error = XS_TIMEOUT; mvsata_atapi_reset(chp, xfer); return 1; } xfer->c_lenoff = len - xfer->c_bcount; if (xfer->c_bcount < len) { aprint_error_dev(atac->atac_dev, "channel %d drive %d:" " warning: write only %d of %d requested bytes\n", chp->ch_channel, xfer->c_drive, xfer->c_bcount, len); len = xfer->c_bcount; } wdc->dataout_pio(chp, drvp->drive_flags, (char *)xfer->c_databuf + xfer->c_skip, len); for (i = xfer->c_lenoff; i > 0; i -= 2) MVSATA_WDC_WRITE_2(mvport, SRB_PIOD, 0); xfer->c_skip += len; xfer->c_bcount -= len; if ((sc_xfer->xs_control & XS_CTL_POLL) == 0) chp->ch_flags |= ATACH_IRQ_WAIT; return 1; case PHASE_DATAIN: /* Read data */ DPRINTF(("PHASE_DATAIN\n")); if ((sc_xfer->xs_control & XS_CTL_DATA_IN) == 0 || (xfer->c_flags & C_DMA) != 0) { aprint_error_dev(atac->atac_dev, "channel %d drive %d: bad data phase DATAIN\n", chp->ch_channel, xfer->c_drive); if (xfer->c_flags & C_DMA) ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); sc_xfer->error = XS_TIMEOUT; mvsata_atapi_reset(chp, xfer); return 1; } xfer->c_lenoff = len - xfer->c_bcount; if (xfer->c_bcount < len) { aprint_error_dev(atac->atac_dev, "channel %d drive %d:" " warning: reading only %d of %d bytes\n", chp->ch_channel, xfer->c_drive, xfer->c_bcount, len); len = xfer->c_bcount; } wdc->datain_pio(chp, drvp->drive_flags, (char *)xfer->c_databuf + xfer->c_skip, len); if (xfer->c_lenoff > 0) wdcbit_bucket(chp, len - xfer->c_bcount); xfer->c_skip += len; xfer->c_bcount -= len; if ((sc_xfer->xs_control & XS_CTL_POLL) == 0) chp->ch_flags |= ATACH_IRQ_WAIT; return 1; case PHASE_ABORTED: case PHASE_COMPLETED: DPRINTF(("PHASE_COMPLETED\n")); if (xfer->c_flags & C_DMA) xfer->c_bcount -= sc_xfer->datalen; sc_xfer->resid = xfer->c_bcount; mvsata_atapi_phase_complete(xfer); return 1; default: if (++retries<500) { DELAY(100); chp->ch_status = MVSATA_WDC_READ_1(mvport, SRB_CS); chp->ch_error = MVSATA_WDC_READ_1(mvport, SRB_FE); goto again; } aprint_error_dev(atac->atac_dev, "channel %d drive %d: unknown phase 0x%x\n", chp->ch_channel, xfer->c_drive, phase); if (chp->ch_status & WDCS_ERR) { sc_xfer->error = XS_SHORTSENSE; sc_xfer->sense.atapi_sense = chp->ch_error; } else { if (xfer->c_flags & C_DMA) ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); sc_xfer->error = XS_RESET; mvsata_atapi_reset(chp, xfer); return (1); } } DPRINTF(("mvsata_atapi_intr: mvsata_atapi_done() (end), error 0x%x " "sense 0x%x\n", sc_xfer->error, sc_xfer->sense.atapi_sense)); mvsata_atapi_done(chp, xfer); return 1; } static void mvsata_atapi_kill_xfer(struct ata_channel *chp, struct ata_xfer *xfer, int reason) { struct mvsata_port *mvport = (struct mvsata_port *)chp; struct scsipi_xfer *sc_xfer = xfer->c_cmd; /* remove this command from xfer queue */ switch (reason) { case KILL_GONE: sc_xfer->error = XS_DRIVER_STUFFUP; break; case KILL_RESET: sc_xfer->error = XS_RESET; break; default: aprint_error_dev(MVSATA_DEV2(mvport), "mvsata_atapi_kill_xfer: unknown reason %d\n", reason); panic("mvsata_atapi_kill_xfer"); } ata_free_xfer(chp, xfer); scsipi_done(sc_xfer); } static void mvsata_atapi_reset(struct ata_channel *chp, struct ata_xfer *xfer) { struct atac_softc *atac = chp->ch_atac; struct ata_drive_datas *drvp = &chp->ch_drive[xfer->c_drive]; struct scsipi_xfer *sc_xfer = xfer->c_cmd; wdccommandshort(chp, xfer->c_drive, ATAPI_SOFT_RESET); drvp->state = 0; if (wdc_wait_for_unbusy(chp, WDC_RESET_WAIT, AT_POLL) != 0) { printf("%s:%d:%d: reset failed\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive); sc_xfer->error = XS_SELTIMEOUT; } mvsata_atapi_done(chp, xfer); return; } static void mvsata_atapi_phase_complete(struct ata_xfer *xfer) { struct ata_channel *chp = xfer->c_chp; struct atac_softc *atac = chp->ch_atac; struct wdc_softc *wdc = CHAN_TO_WDC(chp); struct scsipi_xfer *sc_xfer = xfer->c_cmd; struct ata_drive_datas *drvp = &chp->ch_drive[xfer->c_drive]; /* wait for DSC if needed */ if (drvp->drive_flags & DRIVE_ATAPIST) { DPRINTFN(1, ("%s:%d:%d: mvsata_atapi_phase_complete: polldsc %d\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive, xfer->c_dscpoll)); if (cold) panic("mvsata_atapi_phase_complete: cold"); if (wdcwait(chp, WDCS_DSC, WDCS_DSC, 10, AT_POLL) == WDCWAIT_TOUT) { /* 10ms not enough, try again in 1 tick */ if (xfer->c_dscpoll++ > mstohz(sc_xfer->timeout)) { aprint_error_dev(atac->atac_dev, "channel %d: wait_for_dsc failed\n", chp->ch_channel); sc_xfer->error = XS_TIMEOUT; mvsata_atapi_reset(chp, xfer); return; } else callout_reset(&chp->ch_callout, 1, mvsata_atapi_polldsc, xfer); return; } } /* * Some drive occasionally set WDCS_ERR with * "ATA illegal length indication" in the error * register. If we read some data the sense is valid * anyway, so don't report the error. */ if (chp->ch_status & WDCS_ERR && ((sc_xfer->xs_control & XS_CTL_REQSENSE) == 0 || sc_xfer->resid == sc_xfer->datalen)) { /* save the short sense */ sc_xfer->error = XS_SHORTSENSE; sc_xfer->sense.atapi_sense = chp->ch_error; if ((sc_xfer->xs_periph->periph_quirks & PQUIRK_NOSENSE) == 0) { /* ask scsipi to send a REQUEST_SENSE */ sc_xfer->error = XS_BUSY; sc_xfer->status = SCSI_CHECK; } else if (wdc->dma_status & (WDC_DMAST_NOIRQ | WDC_DMAST_ERR)) { ata_dmaerr(drvp, (xfer->c_flags & C_POLL) ? AT_POLL : 0); sc_xfer->error = XS_RESET; mvsata_atapi_reset(chp, xfer); return; } } if (xfer->c_bcount != 0) DPRINTFN(1, ("%s:%d:%d: mvsata_atapi_intr:" " bcount value is %d after io\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive, xfer->c_bcount)); #ifdef DIAGNOSTIC if (xfer->c_bcount < 0) aprint_error_dev(atac->atac_dev, "channel %d drive %d: mvsata_atapi_intr:" " warning: bcount value is %d after io\n", chp->ch_channel, xfer->c_drive, xfer->c_bcount); #endif DPRINTFN(1, ("%s:%d:%d: mvsata_atapi_phase_complete:" " mvsata_atapi_done(), error 0x%x sense 0x%x\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive, sc_xfer->error, sc_xfer->sense.atapi_sense)); mvsata_atapi_done(chp, xfer); } static void mvsata_atapi_done(struct ata_channel *chp, struct ata_xfer *xfer) { struct atac_softc *atac = chp->ch_atac; struct scsipi_xfer *sc_xfer = xfer->c_cmd; int drive = xfer->c_drive; DPRINTFN(1, ("%s:%d:%d: mvsata_atapi_done: flags 0x%x\n", device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive, (u_int)xfer->c_flags)); callout_stop(&chp->ch_callout); /* mark controller inactive and free the command */ chp->ch_queue->active_xfer = NULL; ata_free_xfer(chp, xfer); if (chp->ch_drive[drive].drive_flags & DRIVE_WAITDRAIN) { sc_xfer->error = XS_DRIVER_STUFFUP; chp->ch_drive[drive].drive_flags &= ~DRIVE_WAITDRAIN; wakeup(&chp->ch_queue->active_xfer); } DPRINTFN(1, ("%s:%d: mvsata_atapi_done: scsipi_done\n", device_xname(atac->atac_dev), chp->ch_channel)); scsipi_done(sc_xfer); DPRINTFN(1, ("%s:%d: atastart from wdc_atapi_done, flags 0x%x\n", device_xname(atac->atac_dev), chp->ch_channel, chp->ch_flags)); atastart(chp); } static void mvsata_atapi_polldsc(void *arg) { mvsata_atapi_phase_complete(arg); } #endif /* NATAPIBUS > 0 */ /* * XXXX: Shall we need lock for race condition in mvsata_edma_inqueue{,_gen2}(), * if supported queuing command by atabus? The race condition will not happen * if this is called only to the thread of atabus. */ static int mvsata_edma_inqueue(struct mvsata_port *mvport, struct ata_bio *ata_bio, void *databuf) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); struct ata_channel *chp = &mvport->port_ata_channel; struct eprd *eprd; bus_addr_t crqb_base_addr; bus_dmamap_t data_dmamap; uint32_t reg; int quetag, erqqip, erqqop, next, rv, i; DPRINTFN(2, ("%s:%d:%d: mvsata_edma_inqueue:" " blkno=0x%llx, nbytes=%d, flags=0x%x\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, ata_bio->blkno, ata_bio->nbytes, ata_bio->flags)); reg = MVSATA_EDMA_READ_4(mvport, EDMA_REQQOP); erqqop = (reg & EDMA_REQQP_ERQQP_MASK) >> EDMA_REQQP_ERQQP_SHIFT; reg = MVSATA_EDMA_READ_4(mvport, EDMA_REQQIP); erqqip = (reg & EDMA_REQQP_ERQQP_MASK) >> EDMA_REQQP_ERQQP_SHIFT; next = erqqip; MVSATA_EDMAQ_INC(next); if (next == erqqop) /* queue full */ return EBUSY; if ((quetag = mvsata_quetag_get(mvport)) == -1) /* tag nothing */ return EBUSY; DPRINTFN(2, (" erqqip=%d, quetag=%d\n", erqqip, quetag)); rv = mvsata_dma_bufload(mvport, quetag, databuf, ata_bio->nbytes, ata_bio->flags); if (rv != 0) return rv; mvport->port_reqtbl[quetag].xfer = chp->ch_queue->active_xfer; /* setup EDMA Physical Region Descriptors (ePRD) Table Data */ data_dmamap = mvport->port_reqtbl[quetag].data_dmamap; eprd = mvport->port_reqtbl[quetag].eprd; for (i = 0; i < data_dmamap->dm_nsegs; i++) { bus_addr_t ds_addr = data_dmamap->dm_segs[i].ds_addr; bus_size_t ds_len = data_dmamap->dm_segs[i].ds_len; eprd->prdbal = htole32(ds_addr & EPRD_PRDBAL_MASK); eprd->bytecount = htole32(EPRD_BYTECOUNT(ds_len)); eprd->eot = htole16(0); eprd->prdbah = htole32((ds_addr >> 16) >> 16); eprd++; } (eprd - 1)->eot |= htole16(EPRD_EOT); #ifdef MVSATA_DEBUG if (mvsata_debug >= 3) mvsata_print_eprd(mvport, quetag); #endif bus_dmamap_sync(mvport->port_dmat, mvport->port_eprd_dmamap, mvport->port_reqtbl[quetag].eprd_offset, MVSATA_EPRD_MAX_SIZE, BUS_DMASYNC_PREWRITE); /* setup EDMA Command Request Block (CRQB) Data */ sc->sc_edma_setup_crqb(mvport, erqqip, quetag, ata_bio); #ifdef MVSATA_DEBUG if (mvsata_debug >= 3) mvsata_print_crqb(mvport, erqqip); #endif bus_dmamap_sync(mvport->port_dmat, mvport->port_crqb_dmamap, erqqip * sizeof(union mvsata_crqb), sizeof(union mvsata_crqb), BUS_DMASYNC_PREWRITE); MVSATA_EDMAQ_INC(erqqip); crqb_base_addr = mvport->port_crqb_dmamap->dm_segs[0].ds_addr & (EDMA_REQQP_ERQQBAP_MASK | EDMA_REQQP_ERQQBA_MASK); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQBAH, (crqb_base_addr >> 16) >> 16); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQIP, crqb_base_addr | (erqqip << EDMA_REQQP_ERQQP_SHIFT)); return 0; } static int mvsata_edma_handle(struct mvsata_port *mvport, struct ata_xfer *xfer1) { struct ata_channel *chp = &mvport->port_ata_channel; struct crpb *crpb; struct ata_bio *ata_bio; struct ata_xfer *xfer; uint32_t reg; int erqqip, erqqop, erpqip, erpqop, prev_erpqop, quetag, handled = 0, n; /* First, Sync for Request Queue buffer */ reg = MVSATA_EDMA_READ_4(mvport, EDMA_REQQOP); erqqop = (reg & EDMA_REQQP_ERQQP_MASK) >> EDMA_REQQP_ERQQP_SHIFT; if (mvport->port_prev_erqqop != erqqop) { const int s = sizeof(union mvsata_crqb); if (mvport->port_prev_erqqop < erqqop) n = erqqop - mvport->port_prev_erqqop; else { if (erqqop > 0) bus_dmamap_sync(mvport->port_dmat, mvport->port_crqb_dmamap, 0, erqqop * s, BUS_DMASYNC_POSTWRITE); n = MVSATA_EDMAQ_LEN - mvport->port_prev_erqqop; } if (n > 0) bus_dmamap_sync(mvport->port_dmat, mvport->port_crqb_dmamap, mvport->port_prev_erqqop * s, n * s, BUS_DMASYNC_POSTWRITE); mvport->port_prev_erqqop = erqqop; } reg = MVSATA_EDMA_READ_4(mvport, EDMA_RESQIP); erpqip = (reg & EDMA_RESQP_ERPQP_MASK) >> EDMA_RESQP_ERPQP_SHIFT; reg = MVSATA_EDMA_READ_4(mvport, EDMA_RESQOP); erpqop = (reg & EDMA_RESQP_ERPQP_MASK) >> EDMA_RESQP_ERPQP_SHIFT; DPRINTFN(3, ("%s:%d:%d: mvsata_edma_handle: erpqip=%d, erpqop=%d\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, erpqip, erpqop)); if (erpqop == erpqip) return 0; if (erpqop < erpqip) n = erpqip - erpqop; else { if (erpqip > 0) bus_dmamap_sync(mvport->port_dmat, mvport->port_crpb_dmamap, 0, erpqip * sizeof(struct crpb), BUS_DMASYNC_POSTREAD); n = MVSATA_EDMAQ_LEN - erpqop; } if (n > 0) bus_dmamap_sync(mvport->port_dmat, mvport->port_crpb_dmamap, erpqop * sizeof(struct crpb), n * sizeof(struct crpb), BUS_DMASYNC_POSTREAD); prev_erpqop = erpqop; while (erpqop != erpqip) { #ifdef MVSATA_DEBUG if (mvsata_debug >= 3) mvsata_print_crpb(mvport, erpqop); #endif crpb = mvport->port_crpb + erpqop; quetag = CRPB_CHOSTQUETAG(le16toh(crpb->id)); xfer = chp->ch_queue->active_xfer = mvport->port_reqtbl[quetag].xfer; #ifdef DIAGNOSTIC if (xfer == NULL) panic("unknwon response received: %s:%d:%d: tag 0x%x\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, quetag); #endif bus_dmamap_sync(mvport->port_dmat, mvport->port_eprd_dmamap, mvport->port_reqtbl[quetag].eprd_offset, MVSATA_EPRD_MAX_SIZE, BUS_DMASYNC_POSTWRITE); chp->ch_status = CRPB_CDEVSTS(le16toh(crpb->rspflg)); chp->ch_error = CRPB_CEDMASTS(le16toh(crpb->rspflg)); ata_bio = xfer->c_cmd; ata_bio->error = NOERROR; ata_bio->r_error = 0; if (chp->ch_status & WDCS_ERR) ata_bio->error = ERROR; if (chp->ch_status & WDCS_BSY) ata_bio->error = TIMEOUT; if (chp->ch_error) ata_bio->error = ERR_DMA; mvsata_dma_bufunload(mvport, quetag, ata_bio->flags); mvport->port_reqtbl[quetag].xfer = NULL; mvsata_quetag_put(mvport, quetag); MVSATA_EDMAQ_INC(erpqop); #if 1 /* XXXX: flags clears here, because necessary the atabus layer. */ erqqip = (MVSATA_EDMA_READ_4(mvport, EDMA_REQQIP) & EDMA_REQQP_ERQQP_MASK) >> EDMA_REQQP_ERQQP_SHIFT; if (erpqop == erqqip) chp->ch_flags &= ~(ATACH_DMA_WAIT | ATACH_IRQ_WAIT); #endif mvsata_bio_intr(chp, xfer, 1); if (xfer1 == NULL) handled++; else if (xfer == xfer1) { handled = 1; break; } } if (prev_erpqop < erpqop) n = erpqop - prev_erpqop; else { if (erpqop > 0) bus_dmamap_sync(mvport->port_dmat, mvport->port_crpb_dmamap, 0, erpqop * sizeof(struct crpb), BUS_DMASYNC_PREREAD); n = MVSATA_EDMAQ_LEN - prev_erpqop; } if (n > 0) bus_dmamap_sync(mvport->port_dmat, mvport->port_crpb_dmamap, prev_erpqop * sizeof(struct crpb), n * sizeof(struct crpb), BUS_DMASYNC_PREREAD); reg &= ~EDMA_RESQP_ERPQP_MASK; reg |= (erpqop << EDMA_RESQP_ERPQP_SHIFT); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQOP, reg); #if 0 /* already cleared ago? */ erqqip = (MVSATA_EDMA_READ_4(mvport, EDMA_REQQIP) & EDMA_REQQP_ERQQP_MASK) >> EDMA_REQQP_ERQQP_SHIFT; if (erpqop == erqqip) chp->ch_flags &= ~(ATACH_DMA_WAIT | ATACH_IRQ_WAIT); #endif return handled; } static int mvsata_edma_wait(struct mvsata_port *mvport, struct ata_xfer *xfer, int timeout) { struct ata_bio *ata_bio = xfer->c_cmd; int xtime; for (xtime = 0; xtime < timeout / 10; xtime++) { if (mvsata_edma_handle(mvport, xfer)) return 0; if (ata_bio->flags & ATA_NOSLEEP) delay(10000); else tsleep(&xfer, PRIBIO, "mvsataipl", mstohz(10)); } DPRINTF(("mvsata_edma_wait: timeout: %p\n", xfer)); mvsata_edma_rqq_remove(mvport, xfer); xfer->c_flags |= C_TIMEOU; return 1; } static void mvsata_edma_timeout(void *arg) { struct ata_xfer *xfer = (struct ata_xfer *)arg; struct ata_channel *chp = xfer->c_chp; struct mvsata_port *mvport = (struct mvsata_port *)chp; int s; s = splbio(); DPRINTF(("mvsata_edma_timeout: %p\n", xfer)); if ((chp->ch_flags & ATACH_IRQ_WAIT) != 0) { mvsata_edma_rqq_remove(mvport, xfer); xfer->c_flags |= C_TIMEOU; mvsata_bio_intr(chp, xfer, 1); } splx(s); } static void mvsata_edma_rqq_remove(struct mvsata_port *mvport, struct ata_xfer *xfer) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); struct ata_bio *ata_bio; bus_addr_t crqb_base_addr; int erqqip, i; /* First, hardware reset, stop EDMA */ mvsata_hreset_port(mvport); /* cleanup completed EDMA safely */ mvsata_edma_handle(mvport, NULL); bus_dmamap_sync(mvport->port_dmat, mvport->port_crqb_dmamap, 0, sizeof(union mvsata_crqb) * MVSATA_EDMAQ_LEN, BUS_DMASYNC_PREWRITE); for (i = 0, erqqip = 0; i < MVSATA_EDMAQ_LEN; i++) { if (mvport->port_reqtbl[i].xfer == NULL) continue; ata_bio = mvport->port_reqtbl[i].xfer->c_cmd; if (mvport->port_reqtbl[i].xfer == xfer) { /* remove xfer from EDMA request queue */ bus_dmamap_sync(mvport->port_dmat, mvport->port_eprd_dmamap, mvport->port_reqtbl[i].eprd_offset, MVSATA_EPRD_MAX_SIZE, BUS_DMASYNC_POSTWRITE); mvsata_dma_bufunload(mvport, i, ata_bio->flags); mvport->port_reqtbl[i].xfer = NULL; mvsata_quetag_put(mvport, i); continue; } sc->sc_edma_setup_crqb(mvport, erqqip, i, ata_bio); erqqip++; } bus_dmamap_sync(mvport->port_dmat, mvport->port_crqb_dmamap, 0, sizeof(union mvsata_crqb) * MVSATA_EDMAQ_LEN, BUS_DMASYNC_POSTWRITE); mvsata_edma_config(mvport, mvport->port_edmamode); mvsata_edma_reset_qptr(mvport); mvsata_edma_enable(mvport); crqb_base_addr = mvport->port_crqb_dmamap->dm_segs[0].ds_addr & (EDMA_REQQP_ERQQBAP_MASK | EDMA_REQQP_ERQQBA_MASK); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQBAH, (crqb_base_addr >> 16) >> 16); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQIP, crqb_base_addr | (erqqip << EDMA_REQQP_ERQQP_SHIFT)); } #if NATAPIBUS > 0 static int mvsata_bdma_init(struct mvsata_port *mvport, struct scsipi_xfer *sc_xfer, void *databuf) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); struct eprd *eprd; bus_dmamap_t data_dmamap; bus_addr_t eprd_addr; int quetag, rv; DPRINTFN(2, ("%s:%d:%d: mvsata_bdma_init: datalen=%d, xs_control=0x%x\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, sc_xfer->datalen, sc_xfer->xs_control)); if ((quetag = mvsata_quetag_get(mvport)) == -1) /* tag nothing */ return EBUSY; DPRINTFN(2, (" quetag=%d\n", quetag)); rv = mvsata_dma_bufload(mvport, quetag, databuf, sc_xfer->datalen, sc_xfer->xs_control & XS_CTL_DATA_IN ? ATA_READ : 0); if (rv != 0) return rv; mvport->port_reqtbl[quetag].xfer = chp->ch_queue->active_xfer; /* setup EDMA Physical Region Descriptors (ePRD) Table Data */ data_dmamap = mvport->port_reqtbl[quetag].data_dmamap; eprd = mvport->port_reqtbl[quetag].eprd; for (i = 0; i < data_dmamap->dm_nsegs; i++) { bus_addr_t ds_addr = data_dmamap->dm_segs[i].ds_addr; bus_size_t ds_len = data_dmamap->dm_segs[i].ds_len; eprd->prdbal = htole32(ds_addr & EPRD_PRDBAL_MASK); eprd->bytecount = htole32(EPRD_BYTECOUNT(ds_len)); eprd->eot = htole16(0); eprd->prdbah = htole32((ds_addr >> 16) >> 16); eprd++; } (eprd - 1)->eot |= htole16(EPRD_EOT); #ifdef MVSATA_DEBUG if (mvsata_debug >= 3) mvsata_print_eprd(mvport, quetag); #endif bus_dmamap_sync(mvport->port_dmat, mvport->port_eprd_dmamap, mvport->port_reqtbl[quetag].eprd_offset, MVSATA_EPRD_MAX_SIZE, BUS_DMASYNC_PREWRITE); eprd_addr = mvport->port_eprd_dmamap->dm_segs[0].ds_addr + mvport->port_reqtbl[quetag].eprd_offset; MVSATA_EDMA_WRITE_4(mvport, DMA_DTLBA, eprd_addr & DMA_DTLBA_MASK); MVSATA_EDMA_WRITE_4(mvport, DMA_DTHBA, (eprd_addr >> 16) >> 16); if (sc_xfer->xs_control & XS_CTL_DATA_IN) MVSATA_EDMA_WRITE_4(mvport, DMA_C, DMA_C_READ); else MVSATA_EDMA_WRITE_4(mvport, DMA_C, 0); return 0; } static void mvsata_bdma_start(struct mvsata_port *mvport) { #ifdef MVSATA_DEBUG if (mvsata_debug >= 3) mvsata_print_eprd(mvport, 0); #endif MVSATA_EDMA_WRITE_4(mvport, DMA_C, MVSATA_EDMA_READ_4(mvport, DMA_C) | DMA_C_START); } #endif #endif static int mvsata_port_init(struct mvsata_hc *mvhc, int port) { struct mvsata_softc *sc = mvhc->hc_sc; struct mvsata_port *mvport; struct ata_channel *chp; int channel, rv, i; const int crqbq_size = sizeof(union mvsata_crqb) * MVSATA_EDMAQ_LEN; const int crpbq_size = sizeof(struct crpb) * MVSATA_EDMAQ_LEN; const int eprd_buf_size = MVSATA_EPRD_MAX_SIZE * MVSATA_EDMAQ_LEN; mvport = malloc(sizeof(struct mvsata_port), M_DEVBUF, M_ZERO | M_NOWAIT); if (mvport == NULL) { aprint_error("%s:%d: can't allocate memory for port %d\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port); return ENOMEM; } mvport->port = port; mvport->port_hc = mvhc; mvport->port_edmamode = nodma; rv = bus_space_subregion(mvhc->hc_iot, mvhc->hc_ioh, EDMA_REGISTERS_OFFSET + port * EDMA_REGISTERS_SIZE, EDMA_REGISTERS_SIZE, &mvport->port_ioh); if (rv != 0) { aprint_error("%s:%d: can't subregion EDMA %d registers\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port); goto fail0; } mvport->port_iot = mvhc->hc_iot; rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SS, 4, &mvport->port_sata_sstatus); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion sstatus regs\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port); goto fail0; } rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SE, 4, &mvport->port_sata_serror); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion serror regs\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port); goto fail0; } if (sc->sc_rev == gen1) rv = bus_space_subregion(mvhc->hc_iot, mvhc->hc_ioh, SATAHC_I_R02(port), 4, &mvport->port_sata_scontrol); else rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SC, 4, &mvport->port_sata_scontrol); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion scontrol regs\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port); goto fail0; } mvport->port_dmat = sc->sc_dmat; #ifndef MVSATA_WITHOUTDMA mvsata_quetag_init(mvport); #endif mvhc->hc_ports[port] = mvport; channel = mvhc->hc * sc->sc_port + port; chp = &mvport->port_ata_channel; chp->ch_channel = channel; chp->ch_atac = &sc->sc_wdcdev.sc_atac; chp->ch_ndrive = 1; /* SATA is always 1 drive */ chp->ch_queue = &mvport->port_ata_queue; sc->sc_ata_channels[channel] = chp; rv = mvsata_wdc_reg_init(mvport, sc->sc_wdcdev.regs + channel); if (rv != 0) goto fail0; rv = bus_dmamap_create(mvport->port_dmat, crqbq_size, 1, crqbq_size, 0, BUS_DMA_NOWAIT, &mvport->port_crqb_dmamap); if (rv != 0) { aprint_error( "%s:%d:%d: EDMA CRQB map create failed: error=%d\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port, rv); goto fail0; } rv = bus_dmamap_create(mvport->port_dmat, crpbq_size, 1, crpbq_size, 0, BUS_DMA_NOWAIT, &mvport->port_crpb_dmamap); if (rv != 0) { aprint_error( "%s:%d:%d: EDMA CRPB map create failed: error=%d\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port, rv); goto fail1; } rv = bus_dmamap_create(mvport->port_dmat, eprd_buf_size, 1, eprd_buf_size, 0, BUS_DMA_NOWAIT, &mvport->port_eprd_dmamap); if (rv != 0) { aprint_error( "%s:%d:%d: EDMA ePRD buffer map create failed: error=%d\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port, rv); goto fail2; } for (i = 0; i < MVSATA_EDMAQ_LEN; i++) { rv = bus_dmamap_create(mvport->port_dmat, MAXPHYS, MAXPHYS / PAGE_SIZE, MAXPHYS, 0, BUS_DMA_NOWAIT, &mvport->port_reqtbl[i].data_dmamap); if (rv != 0) { aprint_error("%s:%d:%d:" " EDMA data map(%d) create failed: error=%d\n", device_xname(MVSATA_DEV(sc)), mvhc->hc, port, i, rv); goto fail3; } } return 0; fail3: for (i--; i >= 0; i--) bus_dmamap_destroy(mvport->port_dmat, mvport->port_reqtbl[i].data_dmamap); bus_dmamap_destroy(mvport->port_dmat, mvport->port_eprd_dmamap); fail2: bus_dmamap_destroy(mvport->port_dmat, mvport->port_crpb_dmamap); fail1: bus_dmamap_destroy(mvport->port_dmat, mvport->port_crqb_dmamap); fail0: return rv; } static int mvsata_wdc_reg_init(struct mvsata_port *mvport, struct wdc_regs *wdr) { int hc, port, rv, i; hc = mvport->port_hc->hc; port = mvport->port; /* Create subregion for Shadow Registers Map */ rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SHADOW_REG_BLOCK_OFFSET, SHADOW_REG_BLOCK_SIZE, &wdr->cmd_baseioh); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion shadow block regs\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } wdr->cmd_iot = mvport->port_iot; /* Once create subregion for each command registers */ for (i = 0; i < WDC_NREG; i++) { rv = bus_space_subregion(wdr->cmd_iot, wdr->cmd_baseioh, i * 4, sizeof(uint32_t), &wdr->cmd_iohs[i]); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion cmd regs\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } } /* Create subregion for Alternate Status register */ rv = bus_space_subregion(wdr->cmd_iot, wdr->cmd_baseioh, i * 4, sizeof(uint32_t), &wdr->ctl_ioh); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion cmd regs\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } wdr->ctl_iot = mvport->port_iot; wdc_init_shadow_regs(&mvport->port_ata_channel); rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SS, sizeof(uint32_t) * 3, &wdr->sata_baseioh); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion SATA regs\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } wdr->sata_iot = mvport->port_iot; rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SC, sizeof(uint32_t), &wdr->sata_control); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion SControl\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SS, sizeof(uint32_t), &wdr->sata_status); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion SStatus\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } rv = bus_space_subregion(mvport->port_iot, mvport->port_ioh, SATA_SE, sizeof(uint32_t), &wdr->sata_error); if (rv != 0) { aprint_error("%s:%d:%d: couldn't subregion SError\n", device_xname(MVSATA_DEV2(mvport)), hc, port); return rv; } return 0; } #ifndef MVSATA_WITHOUTDMA /* * There are functions to determine Host Queue Tag. * XXXX: We hope to rotate Tag to facilitate debugging. */ static inline void mvsata_quetag_init(struct mvsata_port *mvport) { mvport->port_quetagidx = 0; } static inline int mvsata_quetag_get(struct mvsata_port *mvport) { int begin = mvport->port_quetagidx; do { if (mvport->port_reqtbl[mvport->port_quetagidx].xfer == NULL) { MVSATA_EDMAQ_INC(mvport->port_quetagidx); return mvport->port_quetagidx; } MVSATA_EDMAQ_INC(mvport->port_quetagidx); } while (mvport->port_quetagidx != begin); return -1; } static inline void mvsata_quetag_put(struct mvsata_port *mvport, int quetag) { /* nothing */ } static void * mvsata_edma_resource_prepare(struct mvsata_port *mvport, bus_dma_tag_t dmat, bus_dmamap_t *dmamap, size_t size, int write) { bus_dma_segment_t seg; int nseg, rv; void *kva; rv = bus_dmamem_alloc(dmat, size, PAGE_SIZE, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT); if (rv != 0) { aprint_error("%s:%d:%d: DMA memory alloc failed: error=%d\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, rv); goto fail; } rv = bus_dmamem_map(dmat, &seg, nseg, size, &kva, BUS_DMA_NOWAIT); if (rv != 0) { aprint_error("%s:%d:%d: DMA memory map failed: error=%d\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, rv); goto free; } rv = bus_dmamap_load(dmat, *dmamap, kva, size, NULL, BUS_DMA_NOWAIT | (write ? BUS_DMA_WRITE : BUS_DMA_READ)); if (rv != 0) { aprint_error("%s:%d:%d: DMA map load failed: error=%d\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, rv); goto unmap; } if (!write) bus_dmamap_sync(dmat, *dmamap, 0, size, BUS_DMASYNC_PREREAD); return kva; unmap: bus_dmamem_unmap(dmat, kva, size); free: bus_dmamem_free(dmat, &seg, nseg); fail: return NULL; } /* ARGSUSED */ static void mvsata_edma_resource_purge(struct mvsata_port *mvport, bus_dma_tag_t dmat, bus_dmamap_t dmamap, void *kva) { bus_dmamap_unload(dmat, dmamap); bus_dmamem_unmap(dmat, kva, dmamap->dm_mapsize); bus_dmamem_free(dmat, dmamap->dm_segs, dmamap->dm_nsegs); } static int mvsata_dma_bufload(struct mvsata_port *mvport, int index, void *databuf, size_t datalen, int flags) { int rv, lop, sop; bus_dmamap_t data_dmamap = mvport->port_reqtbl[index].data_dmamap; lop = (flags & ATA_READ) ? BUS_DMA_READ : BUS_DMA_WRITE; sop = (flags & ATA_READ) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE; rv = bus_dmamap_load(mvport->port_dmat, data_dmamap, databuf, datalen, NULL, BUS_DMA_NOWAIT | lop); if (rv) { aprint_error("%s:%d:%d: buffer load failed: error=%d", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port, rv); return rv; } bus_dmamap_sync(mvport->port_dmat, data_dmamap, 0, data_dmamap->dm_mapsize, sop); return 0; } static inline void mvsata_dma_bufunload(struct mvsata_port *mvport, int index, int flags) { bus_dmamap_t data_dmamap = mvport->port_reqtbl[index].data_dmamap; bus_dmamap_sync(mvport->port_dmat, data_dmamap, 0, data_dmamap->dm_mapsize, (flags & ATA_READ) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(mvport->port_dmat, data_dmamap); } #endif static void mvsata_hreset_port(struct mvsata_port *mvport) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); MVSATA_EDMA_WRITE_4(mvport, EDMA_CMD, EDMA_CMD_EATARST); delay(25); /* allow reset propagation */ MVSATA_EDMA_WRITE_4(mvport, EDMA_CMD, 0); mvport->_fix_phy_param._fix_phy(mvport); if (sc->sc_gen == gen1) delay(1000); } static void mvsata_reset_port(struct mvsata_port *mvport) { device_t parent = device_parent(MVSATA_DEV2(mvport)); MVSATA_EDMA_WRITE_4(mvport, EDMA_CMD, EDMA_CMD_EDSEDMA); mvsata_hreset_port(mvport); if (device_is_a(parent, "pci")) MVSATA_EDMA_WRITE_4(mvport, EDMA_CFG, EDMA_CFG_RESERVED | EDMA_CFG_ERDBSZ); else /* SoC */ MVSATA_EDMA_WRITE_4(mvport, EDMA_CFG, EDMA_CFG_RESERVED | EDMA_CFG_RESERVED2); MVSATA_EDMA_WRITE_4(mvport, EDMA_T, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_IEC, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_IEM, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQBAH, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQIP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQOP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQBAH, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQIP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQOP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_CMD, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_TC, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_IORT, 0xbc); MVSATA_EDMA_WRITE_4(mvport, SATA_FISIC, 0); } static void mvsata_reset_hc(struct mvsata_hc *mvhc) { #if 0 uint32_t val; #endif MVSATA_HC_WRITE_4(mvhc, SATAHC_ICT, 0); MVSATA_HC_WRITE_4(mvhc, SATAHC_ITT, 0); MVSATA_HC_WRITE_4(mvhc, SATAHC_IC, 0); #if 0 /* XXXX needs? */ MVSATA_HC_WRITE_4(mvhc, 0x01c, 0); /* * Keep the SS during power on and the reference clock bits (reset * sample) */ val = MVSATA_HC_READ_4(mvhc, 0x020); val &= 0x1c1c1c1c; val |= 0x03030303; MVSATA_HC_READ_4(mvhc, 0x020, 0); #endif } #ifndef MVSATA_WITHOUTDMA static void mvsata_softreset(struct mvsata_port *mvport, int waitok) { uint32_t stat; int i; MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_RST | WDCTL_IDS); delay(10); MVSATA_WDC_WRITE_1(mvport, SRB_CAS, WDCTL_IDS); delay(2000); if (waitok) { /* wait maximum 31sec */ for (i = 31000; i > 0; i--) { stat = MVSATA_WDC_READ_1(mvport, SRB_CS); if (!(stat & WDCS_BSY)) break; delay(1000); } if (i == 0) aprint_error("%s:%d:%d: soft reset failed\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port); } } static void mvsata_edma_reset_qptr(struct mvsata_port *mvport) { const bus_addr_t crpb_addr = mvport->port_crpb_dmamap->dm_segs[0].ds_addr; const uint32_t crpb_addr_mask = EDMA_RESQP_ERPQBAP_MASK | EDMA_RESQP_ERPQBA_MASK; MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQBAH, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQIP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_REQQOP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQBAH, (crpb_addr >> 16) >> 16); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQIP, 0); MVSATA_EDMA_WRITE_4(mvport, EDMA_RESQOP, (crpb_addr & crpb_addr_mask)); } static inline void mvsata_edma_enable(struct mvsata_port *mvport) { MVSATA_EDMA_WRITE_4(mvport, EDMA_CMD, EDMA_CMD_EENEDMA); } static int mvsata_edma_disable(struct mvsata_port *mvport, int timeout, int waitok) { uint32_t status, command; int ms; if (MVSATA_EDMA_READ_4(mvport, EDMA_CMD) & EDMA_CMD_EENEDMA) { for (ms = 0; ms < timeout; ms++) { status = MVSATA_EDMA_READ_4(mvport, EDMA_S); if (status & EDMA_S_EDMAIDLE) break; if (waitok) tsleep(&waitok, PRIBIO, "mvsata_edma1", mstohz(1)); else delay(1000); } if (ms == timeout) return EBUSY; /* The diable bit (eDsEDMA) is self negated. */ MVSATA_EDMA_WRITE_4(mvport, EDMA_CMD, EDMA_CMD_EDSEDMA); for ( ; ms < timeout; ms++) { command = MVSATA_EDMA_READ_4(mvport, EDMA_CMD); if (!(command & EDMA_CMD_EENEDMA)) break; if (waitok) tsleep(&waitok, PRIBIO, "mvsata_edma2", mstohz(1)); else delay(1000); } if (ms == timeout) { aprint_error("%s:%d:%d: unable to stop EDMA\n", device_xname(MVSATA_DEV2(mvport)), mvport->port_hc->hc, mvport->port); return EBUSY; } } return 0; } /* * Set EDMA registers according to mode. * ex. NCQ/TCQ(queued)/non queued. */ static void mvsata_edma_config(struct mvsata_port *mvport, int mode) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); uint32_t reg; reg = MVSATA_EDMA_READ_4(mvport, EDMA_CFG); reg |= EDMA_CFG_RESERVED; if (mode == ncq) { if (sc->sc_gen == gen1) { aprint_error_dev(MVSATA_DEV2(mvport), "GenI not support NCQ\n"); return; } else if (sc->sc_gen == gen2) reg |= EDMA_CFG_EDEVERR; reg |= EDMA_CFG_ESATANATVCMDQUE; } else if (mode == queued) { reg &= ~EDMA_CFG_ESATANATVCMDQUE; reg |= EDMA_CFG_EQUE; } else reg &= ~(EDMA_CFG_ESATANATVCMDQUE | EDMA_CFG_EQUE); if (sc->sc_gen == gen1) reg |= EDMA_CFG_ERDBSZ; else if (sc->sc_gen == gen2) reg |= (EDMA_CFG_ERDBSZEXT | EDMA_CFG_EWRBUFFERLEN); else if (sc->sc_gen == gen2e) { device_t parent = device_parent(MVSATA_DEV(sc)); reg |= (EDMA_CFG_EMASKRXPM | EDMA_CFG_EHOSTQUEUECACHEEN); reg &= ~(EDMA_CFG_EEDMAFBS | EDMA_CFG_EEDMAQUELEN); if (device_is_a(parent, "pci")) reg |= ( #if NATAPIBUS > 0 EDMA_CFG_EEARLYCOMPLETIONEN | #endif EDMA_CFG_ECUTTHROUGHEN | EDMA_CFG_EWRBUFFERLEN | EDMA_CFG_ERDBSZEXT); } MVSATA_EDMA_WRITE_4(mvport, EDMA_CFG, reg); reg = ( EDMA_IE_EIORDYERR | EDMA_IE_ETRANSINT | EDMA_IE_EDEVCON | EDMA_IE_EDEVDIS); if (sc->sc_gen != gen1) reg |= ( EDMA_IE_TRANSPROTERR | EDMA_IE_LINKDATATXERR(EDMA_IE_LINKTXERR_FISTXABORTED) | EDMA_IE_LINKDATATXERR(EDMA_IE_LINKXERR_OTHERERRORS) | EDMA_IE_LINKDATATXERR(EDMA_IE_LINKXERR_LINKLAYERRESET) | EDMA_IE_LINKDATATXERR(EDMA_IE_LINKXERR_INTERNALFIFO) | EDMA_IE_LINKDATATXERR(EDMA_IE_LINKXERR_SATACRC) | EDMA_IE_LINKCTLTXERR(EDMA_IE_LINKXERR_OTHERERRORS) | EDMA_IE_LINKCTLTXERR(EDMA_IE_LINKXERR_LINKLAYERRESET) | EDMA_IE_LINKCTLTXERR(EDMA_IE_LINKXERR_INTERNALFIFO) | EDMA_IE_LINKDATARXERR(EDMA_IE_LINKXERR_OTHERERRORS) | EDMA_IE_LINKDATARXERR(EDMA_IE_LINKXERR_LINKLAYERRESET) | EDMA_IE_LINKDATARXERR(EDMA_IE_LINKXERR_INTERNALFIFO) | EDMA_IE_LINKDATARXERR(EDMA_IE_LINKXERR_SATACRC) | EDMA_IE_LINKCTLRXERR(EDMA_IE_LINKXERR_OTHERERRORS) | EDMA_IE_LINKCTLRXERR(EDMA_IE_LINKXERR_LINKLAYERRESET) | EDMA_IE_LINKCTLRXERR(EDMA_IE_LINKXERR_INTERNALFIFO) | EDMA_IE_LINKCTLRXERR(EDMA_IE_LINKXERR_SATACRC) | EDMA_IE_ESELFDIS); if (mode == ncq) reg |= EDMA_IE_EDEVERR; MVSATA_EDMA_WRITE_4(mvport, EDMA_IEM, reg); reg = MVSATA_EDMA_READ_4(mvport, EDMA_HC); reg &= ~EDMA_IE_EDEVERR; if (mode != ncq) reg |= EDMA_IE_EDEVERR; MVSATA_EDMA_WRITE_4(mvport, EDMA_HC, reg); if (sc->sc_gen == gen2e) { /* * Clear FISWait4HostRdyEn[0] and [2]. * [0]: Device to Host FIS with or bit set to 1. * [2]: SDB FIS is received with bit set to 1. */ reg = MVSATA_EDMA_READ_4(mvport, SATA_FISC); reg &= ~(SATA_FISC_FISWAIT4HOSTRDYEN_B0 | SATA_FISC_FISWAIT4HOSTRDYEN_B2); MVSATA_EDMA_WRITE_4(mvport, SATA_FISC, reg); } mvport->port_edmamode = mode; } /* * Generation dependent functions */ static void mvsata_edma_setup_crqb(struct mvsata_port *mvport, int erqqip, int quetag, struct ata_bio *ata_bio) { struct crqb *crqb; bus_addr_t eprd_addr; daddr_t blkno; uint32_t rw; uint8_t cmd, head; int i; const int drive = mvport->port_ata_channel.ch_queue->active_xfer->c_drive; eprd_addr = mvport->port_eprd_dmamap->dm_segs[0].ds_addr + mvport->port_reqtbl[quetag].eprd_offset; rw = (ata_bio->flags & ATA_READ) ? CRQB_CDIR_READ : CRQB_CDIR_WRITE; cmd = (ata_bio->flags & ATA_READ) ? WDCC_READDMA : WDCC_WRITEDMA; head = WDSD_LBA; blkno = ata_bio->blkno; if (ata_bio->flags & ATA_LBA48) cmd = atacmd_to48(cmd); else { head |= ((ata_bio->blkno >> 24) & 0xf); blkno &= 0xffffff; } crqb = &mvport->port_crqb->crqb + erqqip; crqb->cprdbl = htole32(eprd_addr & CRQB_CRQBL_EPRD_MASK); crqb->cprdbh = htole32((eprd_addr >> 16) >> 16); crqb->ctrlflg = htole16(rw | CRQB_CHOSTQUETAG(quetag) | CRQB_CPMPORT(drive)); i = 0; if (mvport->port_edmamode == dma) { if (ata_bio->flags & ATA_LBA48) crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_SECTORCOUNT, ata_bio->nblks >> 8)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_SECTORCOUNT, ata_bio->nblks)); } else { /* ncq/queued */ /* * XXXX: Oops, ata command is not correct. And, atabus layer * has not been supported yet now. * Queued DMA read/write. * read/write FPDMAQueued. */ if (ata_bio->flags & ATA_LBA48) crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_FEATURES, ata_bio->nblks >> 8)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_FEATURES, ata_bio->nblks)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_SECTORCOUNT, quetag << 3)); } if (ata_bio->flags & ATA_LBA48) { crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_LBALOW, blkno >> 24)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_LBAMID, blkno >> 32)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND( CRQB_ATACOMMAND_LBAHIGH, blkno >> 40)); } crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND(CRQB_ATACOMMAND_LBALOW, blkno)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND(CRQB_ATACOMMAND_LBAMID, blkno >> 8)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND(CRQB_ATACOMMAND_LBAHIGH, blkno >> 16)); crqb->atacommand[i++] = htole16(CRQB_ATACOMMAND(CRQB_ATACOMMAND_DEVICE, head)); crqb->atacommand[i++] = htole16( CRQB_ATACOMMAND(CRQB_ATACOMMAND_COMMAND, cmd) | CRQB_ATACOMMAND_LAST); } #endif static uint32_t mvsata_read_preamps_gen1(struct mvsata_port *mvport) { struct mvsata_hc *hc = mvport->port_hc; uint32_t reg; reg = MVSATA_HC_READ_4(hc, SATAHC_I_PHYMODE(mvport->port)); /* * [12:11] : pre * [7:5] : amps */ return reg & 0x000018e0; } static void mvsata_fix_phy_gen1(struct mvsata_port *mvport) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); struct mvsata_hc *mvhc = mvport->port_hc; uint32_t reg; int port = mvport->port, fix_apm_sq = 0; if (sc->sc_model == PCI_PRODUCT_MARVELL_88SX5080) { if (sc->sc_rev == 0x01) fix_apm_sq = 1; } else { if (sc->sc_rev == 0x00) fix_apm_sq = 1; } if (fix_apm_sq) { /* * Disable auto-power management * 88SX50xx FEr SATA#12 */ reg = MVSATA_HC_READ_4(mvhc, SATAHC_I_LTMODE(port)); reg |= (1 << 19); MVSATA_HC_WRITE_4(mvhc, SATAHC_I_LTMODE(port), reg); /* * Fix squelch threshold * 88SX50xx FEr SATA#9 */ reg = MVSATA_HC_READ_4(mvhc, SATAHC_I_PHYCONTROL(port)); reg &= ~0x3; reg |= 0x1; MVSATA_HC_WRITE_4(mvhc, SATAHC_I_PHYCONTROL(port), reg); } /* Revert values of pre-emphasis and signal amps to the saved ones */ reg = MVSATA_HC_READ_4(mvhc, SATAHC_I_PHYMODE(port)); reg &= ~0x000018e0; /* pre and amps mask */ reg |= mvport->_fix_phy_param.pre_amps; MVSATA_HC_WRITE_4(mvhc, SATAHC_I_PHYMODE(port), reg); } static void mvsata_devconn_gen1(struct mvsata_port *mvport) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); /* Fix for 88SX50xx FEr SATA#2 */ mvport->_fix_phy_param._fix_phy(mvport); /* If disk is connected, then enable the activity LED */ if (sc->sc_rev == 0x03) { /* XXXXX */ } } static uint32_t mvsata_read_preamps_gen2(struct mvsata_port *mvport) { uint32_t reg; reg = MVSATA_EDMA_READ_4(mvport, SATA_PHYM2); /* * [10:8] : amps * [7:5] : pre */ return reg & 0x000007e0; } static void mvsata_fix_phy_gen2(struct mvsata_port *mvport) { struct mvsata_softc *sc = device_private(MVSATA_DEV2(mvport)); uint32_t reg; if ((sc->sc_gen == gen2 && sc->sc_rev == 0x07) || sc->sc_gen == gen2e) { /* * Fix for * 88SX60X1 FEr SATA #23 * 88SX6042/88SX7042 FEr SATA #23 * 88F5182 FEr #SATA-S13 * 88F5082 FEr #SATA-S13 */ reg = MVSATA_EDMA_READ_4(mvport, SATA_PHYM2); reg &= ~(1 << 16); reg |= (1 << 31); MVSATA_EDMA_WRITE_4(mvport, SATA_PHYM2, reg); delay(200); reg = MVSATA_EDMA_READ_4(mvport, SATA_PHYM2); reg &= ~((1 << 16) | (1 << 31)); MVSATA_EDMA_WRITE_4(mvport, SATA_PHYM2, reg); delay(200); } /* Fix values in PHY Mode 3 Register.*/ reg = MVSATA_EDMA_READ_4(mvport, SATA_PHYM3); reg &= ~0x7F900000; reg |= 0x2A800000; /* Implement Guidline 88F5182, 88F5082, 88F6082 (GL# SATA-S11) */ if (sc->sc_model == PCI_PRODUCT_MARVELL_88F5082 || sc->sc_model == PCI_PRODUCT_MARVELL_88F5182 || sc->sc_model == PCI_PRODUCT_MARVELL_88F6082) reg &= ~0x0000001c; MVSATA_EDMA_WRITE_4(mvport, SATA_PHYM3, reg); /* * Fix values in PHY Mode 4 Register. * 88SX60x1 FEr SATA#10 * 88F5182 GL #SATA-S10 * 88F5082 GL #SATA-S10 */ if ((sc->sc_gen == gen2 && sc->sc_rev == 0x07) || sc->sc_gen == gen2e) { uint32_t tmp = 0; /* 88SX60x1 FEr SATA #13 */ if (sc->sc_gen == 2 && sc->sc_rev == 0x07) tmp = MVSATA_EDMA_READ_4(mvport, SATA_PHYM3); reg = MVSATA_EDMA_READ_4(mvport, SATA_PHYM4); reg |= (1 << 0); reg &= ~(1 << 1); /* PHY Mode 4 Register of Gen IIE has some restriction */ if (sc->sc_gen == gen2e) { reg &= ~0x5de3fffc; reg |= (1 << 2); } MVSATA_EDMA_WRITE_4(mvport, SATA_PHYM4, reg); /* 88SX60x1 FEr SATA #13 */ if (sc->sc_gen == 2 && sc->sc_rev == 0x07) MVSATA_EDMA_WRITE_4(mvport, SATA_PHYM3, tmp); } /* Revert values of pre-emphasis and signal amps to the saved ones */ reg = MVSATA_EDMA_READ_4(mvport, SATA_PHYM2); reg &= ~0x000007e0; /* pre and amps mask */ reg |= mvport->_fix_phy_param.pre_amps; reg &= ~(1 << 16); if (sc->sc_gen == gen2e) { /* * according to mvSata 3.6.1, some IIE values are fixed. * some reserved fields must be written with fixed values. */ reg &= ~0xC30FF01F; reg |= 0x0000900F; } MVSATA_EDMA_WRITE_4(mvport, SATA_PHYM2, reg); } #ifndef MVSATA_WITHOUTDMA static void mvsata_edma_setup_crqb_gen2e(struct mvsata_port *mvport, int erqqip, int quetag, struct ata_bio *ata_bio) { struct crqb_gen2e *crqb; bus_addr_t eprd_addr; daddr_t blkno; uint32_t ctrlflg, rw; uint8_t cmd, head; const int drive = mvport->port_ata_channel.ch_queue->active_xfer->c_drive; eprd_addr = mvport->port_eprd_dmamap->dm_segs[0].ds_addr + mvport->port_reqtbl[quetag].eprd_offset; rw = (ata_bio->flags & ATA_READ) ? CRQB_CDIR_READ : CRQB_CDIR_WRITE; ctrlflg = (rw | CRQB_CDEVICEQUETAG(quetag) | CRQB_CPMPORT(drive) | CRQB_CPRDMODE_EPRD | CRQB_CHOSTQUETAG_GEN2(quetag)); cmd = (ata_bio->flags & ATA_READ) ? WDCC_READDMA : WDCC_WRITEDMA; head = WDSD_LBA; blkno = ata_bio->blkno; if (ata_bio->flags & ATA_LBA48) cmd = atacmd_to48(cmd); else { head |= ((ata_bio->blkno >> 24) & 0xf); blkno &= 0xffffff; } crqb = &mvport->port_crqb->crqb_gen2e + erqqip; crqb->cprdbl = htole32(eprd_addr & CRQB_CRQBL_EPRD_MASK); crqb->cprdbh = htole32((eprd_addr >> 16) >> 16); crqb->ctrlflg = htole32(ctrlflg); if (mvport->port_edmamode == dma) { crqb->atacommand[0] = htole32(cmd << 16); crqb->atacommand[1] = htole32((blkno & 0xffffff) | head << 24); crqb->atacommand[2] = htole32(((blkno >> 24) & 0xffffff)); crqb->atacommand[3] = htole32(ata_bio->nblks & 0xffff); } else { /* ncq/queued */ /* * XXXX: Oops, ata command is not correct. And, atabus layer * has not been supported yet now. * Queued DMA read/write. * read/write FPDMAQueued. */ crqb->atacommand[0] = htole32( (cmd << 16) | ((ata_bio->nblks & 0xff) << 24)); crqb->atacommand[1] = htole32((blkno & 0xffffff) | head << 24); crqb->atacommand[2] = htole32(((blkno >> 24) & 0xffffff) | ((ata_bio->nblks >> 8) & 0xff)); crqb->atacommand[3] = htole32(ata_bio->nblks & 0xffff); crqb->atacommand[3] = htole32(quetag << 3); } } #ifdef MVSATA_DEBUG #define MVSATA_DEBUG_PRINT(type, size, n, p) \ do { \ int _i; \ u_char *_p = (p); \ \ printf(#type "(%d)", (n)); \ for (_i = 0; _i < (size); _i++, _p++) { \ if (_i % 16 == 0) \ printf("\n "); \ printf(" %02x", *_p); \ } \ printf("\n"); \ } while (0 /* CONSTCOND */) static void mvsata_print_crqb(struct mvsata_port *mvport, int n) { MVSATA_DEBUG_PRINT(crqb, sizeof(union mvsata_crqb), n, (u_char *)(mvport->port_crqb + n)); } static void mvsata_print_crpb(struct mvsata_port *mvport, int n) { MVSATA_DEBUG_PRINT(crpb, sizeof(struct crpb), n, (u_char *)(mvport->port_crpb + n)); } static void mvsata_print_eprd(struct mvsata_port *mvport, int n) { struct eprd *eprd; int i = 0; eprd = mvport->port_reqtbl[n].eprd; while (1 /*CONSTCOND*/) { MVSATA_DEBUG_PRINT(eprd, sizeof(struct eprd), i, (u_char *)eprd); if (eprd->eot & EPRD_EOT) break; eprd++; i++; } } #endif #endif